
20th International
Configuration Workshop

Proceedings of

the 20th International Configuration Workshop

Edited by
Alexander Felfernig, Juha Tiihonen,
Lothar Hotz, and Martin Stettinger

September 27 – 28, 2018

Graz, Austria

Organized by

University of Hamburg
Hamburger Informatik Technologie‐Center e.V.
Department of Computer Science
Vogt‐Kölln‐Str. 30, 22527 Hamburg
GERMANY

ISSN 1613‐0073

Alexander FELFERNIG, Juha TIIHONEN, Lothar HOTZ, and Martin STETTINGER, Editors
Proceedings of the 20th International Configuration Workshop
September 27‐28, 2018, Graz, Austria

Chairs
Alexander Felfernig, Graz University of Technology, Austria

Juha Tiihonen, University of Helsinki, Finland
Lothar Hotz, University of Hamburg, HITeC, Germany

Martin Stettinger, Graz University of Technology, Austria

Program Committee
Michel Aldanondo, Toulouse University, Mines Albi, France

Tomas Axling, Tacton Systems, Denmark
Andrés Felipe Barco, Universidad de San Buenaventura‐Cali, Colombia

David Benavides, University of Seville, Spain
Andreas Falkner, Siemens AG, Austria

Alexander Felfernig, Graz University of Technology, Austria
Cipriano Forza, University of Padova, Italy

Gerhard Friedrich, University of Klagenfurt, Austria
Paul Grünbacher, Johannes Kepler University Linz, Austria

Albert Haag, Product Management GmbH, Germany
Alois Haselböck, Siemens AG, Austria
Petri Helo, University of Vaasa, Finland

Lothar Hotz, University of Hamburg, HITeC, Germany
Dietmar Jannach, University of Klagenfurt, Austria

Katrin Kristjansdottir, Technical University of Denmark, Denmark
Yiliu Liu, Norwegian University of Science and Technology, Norway

Tomi Männistö, University of Helsinki, Finland
Mikko Raatikainen, Aalto University, Finland

Rick Rabiser, Johannes Kepler University Linz, Austria
Sara Shafiee, Technical University of Denmark, Denmark
Markus Stumptner, University of South Australia, Australia

Juha Tiihonen, University of Helsinki, Finland
Elise Vareilles, Toulouse University, Mines Albi, France
Yue Wang, Hang Seng Management College, Hong Kong

Linda Zhang, IESEG Business School of Management Paris, France

Local Arrangements
Alexander Felfernig, Graz University of Technology, Austria
Elisabeth Orthofer, Graz University of Technology, Austria
Martin Stettinger, Graz University of Technology, Austria

Sponsors

Preface

Configuration is the task of composing product models of complex systems from
parameterisable components. This task demands for powerful knowledge‐representation
formalisms to capture the great variety and complexity of configurable product models.
Furthermore, efficient reasoning and conflict resolution methods and are required to
provide intelligent interactive behavior in configurator software, such as solution search,
satisfaction of user preferences, personalization, or optimization.

The main goal of the Configuration Workshop is to promote high‐quality research in all
technical and application areas related to configuration. In this year, besides typical
contributions about knowledge representation and reasoning in configuration, interacting
with configurators is a main focus.

The workshop is of interest for both, researchers working in the various fields of Artificial
Intelligence (AI) technologies as well as industry representatives interested in the
relationship between configuration technology and the business problem behind
configuration and mass customization. It provides a forum for the exchange of ideas,
evaluations and experiences especially in the use of AI techniques within these application
and research areas.

The 2018 Workshop on Configuration continues the series of workshops started at the
AAAI'96 Fall Symposium and continued on IJCAI, AAAI, and ECAI since 1999. In recent years,
the workshop was held independently from major conferences.

Alexander Felfernig, Juha Tiihonen, Lothar Hotz, and Martin Stettinger

August 2018

Contents

Interacting with Configurators

Product Configuration in the Wild: Strategies for Conflicting Decisions in
Web Configurators 1
Thomas Thüm, Sebastian Krieter, and Ina Schaefer

Configuring Release Plans 9
Alexander Felfernig and Johannes Spöcklberger and Ralph Samer and
Martin Stettinger, Müslüm Atas, Juha Tiihonen, and Mikko Raatikainen

Insights for Configuration in Natural Language (short paper) 15
Andrés Felipe Barco, Élise Vareilles, and César Iván Osorio

Group Decision Support for Requirements Management Processes 19
Ralph Samer, Müslüm Atas, Alexander Felfernig, Martin Stettinger,
Andreas Falkner, and Gottfried Schenner

Chatbot‐based Tourist Recommendations using Model‐based Reasoning 25
Iulia Nica, Oliver A. Tazl, and Franz Wotawa

The Effect of Default Options on Consumer Decisions in the Product
Configuration Process 31
Yue Wang and Daniel Yiu‐Wing Mo

Business Aspects

Cost Benefit Analysis in Product Configuration Systems (short paper) 37
Sara Shafiee, Alexander Felfernig, Lars Hvam, Poorang Piroozfar, and
Cipriano Forza

Do You Read Me? On the Limits of Manufacturing Part Numbers for
Communicating Product Variety 41
Aleksander Lubarski, Frank Dylla, Holger Schultheis, and Thorsten Krebs

Behavior‐Driven Development in Product Configuration Systems (short paper) 49
Sara Shafiee, Lars Hvam, Anders Haug, and Yves Wautelet

Knowledge Representation and Reasoning

Integrating Semantic Web Technologies and ASP for Product Configuration 53
Stefan Bischof, Gottfried Schenner, Simon Steyskal, and Richard Taupe

Measuring the Complexity of Product Configuration Systems 61
Amartya Ghosh, Katrin Kristjansdottir, Lars Hvam, and Élise Vareilles

Generating Configuration Models from Requirements to Assist in Product
Management – Dependency Engine and its Performance Assessment 69
Juha Tiihonen, Iivo Raitahila, Mikko Raatikainen, Alexander Felfernig,
and Tomi Männistö

Quasi‐finite Domains: Dealing with the Infinite in Mass Customization 77
Albert Haag

Software Configuration Diagnosis – A Survey of Existing Methods and
Open Challenges 85
Artur Andrzejak, Gerhard Friedrich, and Franz Wotawa

Liquid Democracy in Group‐based Configuration 93
Muesluem Atas, Thi Ngoc Trang Tran, Ralph Samer, Alexander Felfernig
and Martin Stettinger

Applications

Knowledge Retrieval for Configuring Risks when Answering Calls to Tenders
or Direct Customer Demands (short paper) 99
Rania Ayachi, Delphine Guillon, Élise Vareilles, François Marmier,
Michel Aldanondo, Thierry Coudert, and Laurent Geneste

How to deal with Engineering‐to‐Order Product/System Configuration? 103
Abdourahim Sylla, Delphine Guillon, Rania Ayachi, Élise Vareilles,
Michel Aldanondo, Thierry Coudert, and Laurent Geneste

Towards Knowledge Infrastructure for Highly Variant Voltage Transmission
Systems 109
Mathias Uta and Alexander Felfernig

Configuration Lifecycle Management – An Assessment of the Benefits Based on
Maturity 119
Anna Myrodia, Thomas Randrup, and Lars Hvam

Copyright © 2018 for the individual papers by the papers' authors. Copying permitted for
private and academic purposes. This volume is published and copyrighted by its editors.

Product Configuration in the Wild:
Strategies for Conflicting Decisions in Web Configurators

Thomas Thüm1 and Sebastian Krieter2 and Ina Schaefer1

Abstract. Customization is omnipresent in our everyday live. There

are web configurators to customize cars, trucks, bikes, computers,

clothes, furniture, and food. At first glance, customization using con-

figurators appears trivial; we simply select the configuration options

that we want. However, in practice, options are usually dependent on

each other. Reasons for dependencies are manifold and are typically

specific for the particular domain. Dependencies can be simple, such

as one option requiring or excluding another option, but also arbi-

trarily complex, involving numerous options. In this study, we aim

to understand how today’s web configurators support users in their

decision making process. In particular, we are interested in under-

standing how configurators handle decisions that are in conflict with

dependencies. To abstract from different visualizations, we classify

the existing strategies of web configurators and discuss advantages

and disadvantages of them. While we identified eight strategies, a

single configurator typically uses several of those strategies.

1 Introduction
Mass customization is the vision that customized products are pro-

duced to a price similar to that with mass production [3, 4, 13, 15].

This vision requires that customers specify their needs explic-

itly [10]. To this end, there are thousands of product configurators

available in the world wide web,3 which guide customers during the

decision making process. Unfortunately, customers do not only need

to understand which options are available, but also which combina-

tions of options are valid. For the success of mass customization it is

crucial that potential customers are able to easily explore valid com-

binations and to make compliant decisions. Our personal experience

with product configurators suggests that we are not there yet, as con-

figurators often require a considerable mental effort from their users.

In Figure 1, we show an excerpt of a configurator for a Lenovo

ThinkPad. The excerpt contains three configuration options, of which

each stands for a different display being available for the notebook.

However, these three options cannot be chosen freely due to existing

dependencies. First, the options are alternatives to each other, mean-

ing that a notebook must have exactly one of those three displays.

For that purpose, the three options are arranged in a category called

Display. Second, the green hint below the last option reveals that this

display is only available if option WWAN (not shown in the excerpt)

is chosen. While the first dependency is enforced by the configurator,

the second must be taken care of by the user. We argue that depen-

dencies are one of the main challenges for customers, as they heavily

influence the decision making process.

1 TU Braunschweig, Germany
2 University of Magdeburg, Germany
3 https://www.configurator-database.com/

Figure 1. Example dependency in Lenovo’s ThinkPad configurator.

While there are several approaches to implement configurators [5,

15], we aim to understand how configurators handle dependencies

from a user’s point of view. That is, we want to identify strategies to

guide the decision process, which are currently applied in real-world

configurators. Our insights may be used to uncover gaps between

research and practice on product configuration. In particular, we ana-

lyze advantages and disadvantages of each strategy, which may sup-

port development of more sophisticated strategies in the future.

By studying a corpus of seven web configurators (cf. Section 2),

we identified eight strategies to handle dependencies and discuss

their advantages and disadvantages (cf. Section 3). We focus on web

configurators, because they are freely available and are used by thou-

sands or even millions of customers. Interestingly, of each config-

urator uses a different subset of all identified strategies. Moreover,

configurators with fewer categories seem to be simpler in a sense

that they apply fewer strategies. In particular, we even studied a con-

figurator applying all eight strategies.

2 Subject Configurators

As considering all product configurators on the web is certainly not

feasible, finding a representative selection of configurators is crucial

for our study. Initially, we googled the term “configurator” and in-

spected the first 100 search results to understand which configurators

are used frequently on the web. Almost all entries that we found were

configurators for cars, but we wanted to cover more than just the au-

tomotive industry. We though of further industries where we expe-

rienced mass customization before. Then, we tried to find represen-

tative configurators for those industries that are likely to be used by

a wide audience. Ultimately, we have chosen configurators from the

domain of automotive, mobile computers, smartphone accessories,

and clothing.

In our study, we do not distinguish between configurators that

are used for customized production opposed to a selection of pre-

produced goods (aka. selectors), as this distinction is typically not

visible to customers anyway. Even though the number of potential

11

combinations and length of the delivery period might be good indi-

cators. For instance, in order to speed up delivery, t-shirts are typi-

cally available in different sizes and colors, which are often produced

before customers make their decision.

As we aim to provide evidence for our study by means of screen-

shots, we decided to use the UK version of all configurators. Nev-

ertheless, we have drawn samples in other languages, too. The only

differences we identified were options being available only in some

countries, whereas the principle strategies have been identical. We

accessed all configurators in May 2018, whereupon we experienced

that configurators and their behaviors change on a daily basis. That

is, dependencies are updated frequently, whereas we did only expe-

rience changes in the strategy for one configurator (cf. Section 3.2).

BMW 1 (3 Door) BMW is a German car manufacturer provid-

ing individual configurators for 49 different car models.4 As cars are

known to have hundreds of configuration options, we decided to use

the configurator for the cheapest car model to find a comparatively

small, and thus manageable number of configuration options for our

study. There are 42 alternative options for engines and gearboxes,

eleven exterior colors, five alloy wheels, three options for upholstery,

four interior designs, two packages, and 81 further options with re-

spect to optional equipment.

Toyota AYGO x-play 5 Door Hatchback With about 9 million

sold cars a year, Toyota is one of the largest car manufacturers. Toy-

ota offers 19 models, which are available in a total of 84 editions

of which each can be configured separately. Just as for BMW, we

wanted to select the cheapest model and edition available, namely

Toyota AYGO x3 Door Hatchback. However, users cannot even

choose anything in the first configuration step for this edition. Thus,

we have chosen the cheapest edition for this model for which users

can choose between manual and automatic gearshift, namely Toyota

AYGO x-play 5 Door Hatchback.5

HP Velotechnik Streetmachine GTE Besides cars, many other

transportation means exist that can be configured. In particular, bi-

cycles can often be configured by customers. We investigated the

configurator of HP Velotechnik, as we already had experience with

this configurator prior to this study. Customers can choose one of 14

recumbent bicycles and then start the configurator. We have chosen

the model Streetmachine GTE which provides 34 categories of which

customers have to chose one option each.6

Lenovo ThinkPad X1 Yoga (3rd Gen) ThinkPad X1 is one of the

most expensive and powerful convertibles of Lenovo. Before users

can configure it on Lenovo’s website,7 they have to choose between

three models in black and one model in silver. Of those, we have

chosen the cheapest as it seems to provide the most configuration

options (i.e., many options could not be downgraded in the more ex-

pensive models). The configurator provides 39 configuration options

in eleven categories, such as processor, operating system, display,

hard drive, and keyboard. Besides those, there are another eleven cat-

egories with a single option (i.e., cannot be selected by the user).

4 https://www.bmw.co.uk/configurator#/
5 https://www.toyota.co.uk/new-cars/aygo/build
6 http://hpvelotechnik.velocom.de/step-1.jsf
7 https://www3.lenovo.com/gb/en/laptops/thinkpad/x-
series/ThinkPad-X1-Yoga-3rd-Gen/p/22TP2TXX13Y

Microsoft Surface Book 2 Surface Book 2 is the latest high-end

convertible by Microsoft. With 13 configuration options in five cate-

gories there is only some rudimentary support for customization. On

Microsoft’s website there is a link to pre-configured products,8 but

also to different versions of a configurator to which we later refer

to as a version with a default configuration9 and a version without a

default configuration.10

T-Shirts at Amazon Online shopping is an increasing market and

Amazon is one of the most popular web stores. Although not all prod-

ucts can be configured, there is huge amount of products for which

at least certain properties, such as color and size, can be specified.

Even though there are many products, the configurator technology

seems to be rather generic at Amazon. For our study, we have cho-

sen a t-shirt configurator, as t-shirts are a rather common consumer

good and typically have two categories, which is necessary to study

dependencies. The subject configurator offers 21 colors and 8 sizes,

whereas 123 of 168 combinations are valid (i.e., 73.2%).11

Smartphone Cases at Ebay Another popular web store is Ebay,

which appears to be similar in terms of configuration compared to

Amazon. Again, the underlying configurator seems to have the same

behavior for very different kinds of products. Nevertheless, we have

to decide on one product for our case study, for which we have cho-

sen a configurator for smartphone cases.12 The configurator supports

the selection out of 36 smartphone models and eight colors. Overall,

208 out of 288 principal combinations are valid (i.e., 72.2%).

3 Strategies for Conflicting Decisions
We investigate all seven configurators to explore how they deal with

conflicting customer decisions. For that purpose, we randomly se-

lected options and observed whether those decisions had any conse-

quences for the selection of other options. We identified the following

eight strategies, whereas we abstract from the visual representation

of selected and deselected options.

3.1 Automatic Deselection in Alternatives
A simple but effective strategy exists for alternative options within

one category. If an option A is already selected and a user attempts

to select an alternative option B in the same category, a configurator

may automatically deselect option A. Users are typically not notified

about this change.

All configurators that we studied apply this strategy. As an exam-

ple, we refer again to Figure 1 and the display options of a ThinkPad.

If a user selects the second or third display option, the first display

option is deselected (i.e., the price difference is shown).

The automatic deselection avoids further burden on the user for

these kinds of simple conflicts, as the conflict is immediately solved.

It is also an intuitive strategy, especially if accompanied with a graph-

ical representation that suggests that these options are alternative to

8 https://www.microsoft.com/en-gb/surface/devices/
surface-book-2/

9 https://www.microsoft.com/en-gb/store/config/
surface-book-2/8MCPZJJCC98C/17NG

10 https://www.microsoft.com/en-gb/store/config/
surface-book-2/8MCPZJJCC98C

11 https://www.amazon.co.uk/gp/product/B00V3IDB3Q
12 https://www.ebay.co.uk/itm/Sports-Running-Gym-
Cycling-Jogging-Armband-Case-Cover-For-Huawei-
Mobile-Phones/181809023183

22

each other (e.g., a drop down box as in Figure 3 or radio buttons as

in Figure 5). Nevertheless, the deselection is problematically if the

user does not recognize it (e.g., if the deselected option is not on

the screen). Furthermore, the deselection itself may result in further

conflicts with other decisions.

3.2 Starting with a Default Configuration
Dependencies are typically unsatisfied when no options are selected

at all. For example, a notebook needs exactly one kind of display. A

very common strategy to avoid invalid states when starting the con-

figuration process is to start with a default configuration. The default

configuration satisfies all dependencies and may be changed by the

user during the process.

For instance, the first display is already selected when opening

Lenovo’s configurator (cf. Figure 1) and in BMW’s configurator a

default engine is selected from the start. Interestingly, Microsoft’s

configurator can be accessed via different links of which some start

with a default configuration and others do not. However, even when

starting with a valid default configuration in Microsoft’s configurator,

any change resets decisions on later categories. As a consequence,

changing the display to 15 inch removes all default selections and

makes the configuration invalid (cf. Figure 2). It requires decisions

on all subsequent categories to finish and to come to a valid con-

figuration again. Note that all decisions of subsequent categories are

reseted independent of whether they are actually conflicting or not.13

Figure 2. Default configuration and its reset in Microsoft’s configurator.

Starting with a valid configuration means that a user can also skip

the configuration process completely. It may also help users to avoid

making some decisions, if they do not care about all options. They

simply have to change options they care about. However, the down-

side of starting with a default configuration is that users can often

not recognize which options they have chosen and which have al-

ready been chosen by the default configuration. As a consequence,

they may forget to examine some of the decisions and may end up

with a product not customized to their needs.

3.3 Hiding Invalid Combinations
Another simple strategy to deal with conflicts is to hide all options

that are in conflict with previous decisions. At the start, all options of

13 When we tested the configurator in April 2018, the configuration in sub-
sequent categories was even re-assigned automatically. This behavior was
even worse from a user’s point of view as decisions on all subsequent cat-
egories are not just requested again, but even overridden without notice. It
is likely that this behavior was replaced as being too unintuitive or even
questionable from a legal perspective.

all categories are visible and no option is selected by default. Once

a user makes a selection in one of the categories, all other categories

are filtered for compatible options. As a result, no decision of the

user leads to a conflicting state.

This strategy is followed by the configurator available to products

at the Ebay web store. All models and all colors are shown when

nothing is selected. For a given color, between 22 and 33 models are

visible, and for a given model, there are between one and all eight

colors. In Figure 3, we selected the Huawei Ascend P7, for which a

case is only available in black, blue, and gray.

Figure 3. Hiding of invalid combinations in the Ebay configurator.

The advantage of hiding invalid combinations is that users are not

overwhelmed by a large number of options that are actually not avail-

able for their prior decisions. Also, there is no need to solve any con-

flicts and users only need to decide on the remaining valid options.

Nevertheless, there are also major drawbacks. This strategy seems

to be rather incompatible with a default configuration and, thus, it

will not be possible to simply continue and skip decisions. Requiring

users to make every decision is fine if there are only a few categories,

but can be infeasible for large configuration spaces. Nevertheless, we

found such a combination in the configurator by Toyota: a default

car color is selected when entering the configurator for which black

wheels are filtered out. Hence, users will only find out about black

wheels if they change the car color first. Furthermore, this strategy

might be unintuitive to users who do not expect such a filtering. In-

deed, it took us a while to find out that the lists in the Ebay configura-

tor are changed depending on other selections. Finally, it seems that

users should start with selecting the most relevant criteria for them,

because otherwise they will simply not notice that there are other,

potentially better options for later selected categories.

3.4 Alternatives of Compound Options

Most product configurators have categories with alternative options

(i.e., options of which exactly one or at most one option can be cho-

sen). If there are dependencies between these categories, one strat-

egy is to build pairs of the corresponding options that are wanted.

Those alternative pairs are then grouped under one compound cate-

gory. Pairs not allowed by dependencies are simply omitted.

For instance, in the ThinkPad configurator, dependencies between

the categories Microsoft Office and Adobe Acrobat are handled this

way. Office is available as 365 Home, 365 Personal, Home and Stu-
dent, Home and Business, and Professional. However, what is avail-

able does also depend on whether Acrobat is selected: Professional
requires Acrobat and Acrobat requires Home and Business or Profes-
sional. Instead of presenting six options for Office and two options

for Acrobat with two dependencies, there are seven compound op-

tions without dependencies, as illustrated in Figure 4.

33

Figure 4. Compound options in Lenovo’s ThinkPad configurator.

BMW uses compound options for dependencies between 23 en-

gines and three gearbox options. Out of 69 combinatorial combina-

tions, only 42 are considered valid. In particular, four engines are

not available with manual gearbox and engines are either available

with Automatic Gearbox or with Sport Automatic Transmission (i.e.,

4+ (23− 4) ∗ 2 = 42). A possible reason for compound options be-

sides eliminating constraints is that the choice of engine and gearbox

affects the acceleration, consumption, CO2 emission, and pricing,

which are properties shown next to each option (cf. Figure 5).

Figure 5. Compound options with non-functional properties for a BMW.

Compound options can essentially be used to get rid of all depen-

dencies, which results in an enumeration of all products. Microsoft

gives customers both options, a configurator and a simple selection

among pre-configured products as shown in Figure 6. Interestingly,

our comparison of available products revealed that the keyboard is

always pre-configured to be British Qwerty and else only one prod-

ucts is missing opposed to the product configurator (i.e., Intel Core i5
with 128GB storage). That is, ten configuration options in four cate-

gories have so many constraints that they only result in eight different

products for customers, instead of 32 theoretical combinations.

Compound options are well-suited if the combined options have

many dependencies and customers can directly explore the few avail-

able combinations. In particular, it would not be feasible to present

all 123 combinations of colors and sizes in the Amazon configurator

(cf. Figure 10). However, compound options also typically lead to the

problem that one original option is represented by several compound

options, which increases the effort for customers when comparing

Figure 6. Microsoft’s product selection opposed to configuration.

compound options. Furthermore, compound options may complicate

the handling of dependencies to options in other parts of the config-

urator. For instance, a simple rule requiring another option may then

need to be duplicated for all occurrences in compound options.

3.5 Continuing with Invalid States

A further strategy to deal with conflicting options is to let users con-

tinue with the configuration process although the current configu-

ration is invalid. That is, users may even select an option that is not

allowed according to dependencies and already selected options. The

action required by the user to fix the configuration is basically post-

poned to a later point during the configuration process.

As illustrated in Figure 7, Lenovo’s configurators issue a warning

to the user once a conflict was detected. The user can continue with

the configuration process, but the same warning appears after every

selection until the problem is fixed. Unfortunately, the only hint on

how to solve this problem is the written-down dependency along with

one of the interacting configuration options. Thus, the dependency

may happen to be written next to the option whose selection lead to

the problem or next to any other option.

44

Figure 7. Warning for invalid states in Lenovo’s ThinkPad configurator.

Letting users continue with invalid states seems to be a flexible

way for configuration, as users can decide when to handle conflicts.

In particular, a user can focus on the most relevant options first and

then solve conflicts with the remaining options. However, especially

problematic is that postponing a fix can result in multiple conflicts,

which are even harder to fix. Furthermore, it seems that tool support

for invalid states is not straightforward, as we have only found this

strategy in the two configurators by Lenovo and Toyota, of which

neither provided useful support.

3.6 Subsequent Configuration Steps

Configurators with many options often split the decision process over

several steps. The decisions in one configuration step are confirmed

before continuing with subsequent steps. While configurators typi-

cally allow to go back and forth in those steps, the configuration de-

cisions of subsequent configuration steps may be reverted in this pro-

cess. In some configurators, certain steps can even be skipped based

on the configuration in prior steps.

For instance, the BMW configurator consists of seven steps and

depending on the choice of engine, a further additional step called

Model Variants may appear (cf. Figure 8). However, in the studied

configurator, the additional step was only used to show an inclusive

option called Sport package, which cannot be deselected.

Figure 8. Configuration steps in the BMW configurator.

Configuration steps seem to increase the overview over complex

configuration processes with hundreds of features. Hiding irrelevant

configuration steps is also an interesting concept to deal with con-

straints. Nevertheless, hiding certain steps may also be a challenge

for users that are actually looking for a given step and do not un-

derstand why it is not visible. In addition, users could be unaware

of configuration steps that would be helpful in their decision making

process. Furthermore, although guiding the user and hiding options,

configuration steps do not solving the problem of conflicting config-

uration options. Even worse, constraints between different configu-

ration steps could be a particular challenge for users, if they have to

switch back and forth over and over again.

3.7 Automated Reconfiguration
Another strategy to deal with constraints is to automatically select

and deselect options after every user decision. In particular, con-

straints are used to identify conflicting decisions. Those conflicts are

then resolved automatically, if possible.

Automated reconfiguration is applied by the BMW configurator. If

already chosen configuration options are affected by the current de-

cision, a configuration assistant is shown to the user summarizing the

automated changes (cf. Figure 9). There is also an automatic mode

in which the configuration assistant will not inform users after every

reconfiguration. Unfortunately, we were not able to provoke a situa-

tion in which the configurator obviously has to chose one of several

alternative fixes. Such a situation would be interesting to see whether

some kind of user interaction is supported in this process.

Figure 9. Automated reconfiguration in the BMW configurator.

In the Amazon configurator, we can distinguish available from un-

available combinations visually, as illustrated in Figure 10. Never-

theless, we can select also grayed-out options, such that a conflicting

state arises. How the conflict is solved dependent on the latest de-

cision. If a new size is selected that is not available for the current

color selection, then another color that is still available is automat-

ically selected. The selection appeared to be arbitrary, but it could

be based on a recommender knowing more common combinations

(e.g., red for smaller sizes and blue for larger ones). Interestingly, if

a new color is selected the configurator does not automatically select

another size, but instead resets the size selection. A reason for this

different strategy might be that people can come to terms with an-

other color, but typically are not willing to choose a t-shirt in a great

color with a size that does not fit them.

One advantage of automated reconfiguration is that conflicts are

directly solved when they occur. Furthermore, users may have the

chance to confirm or abort the current decision propagation. How-

ever, an issue with this strategy is that reverting decisions that trig-

gered automated reconfiguration may not revert the automatically in-

troduced changes. This behavior can be confusing to the user and can

55

Figure 10. Automated reconfiguration in the Amazon configurator.

even introduce further conflicts. Furthermore, automated reconfigu-

ration can interact with other applied strategies in undesired ways,

which can again lead to the introduction of conflicts.

3.8 Interactive Resolution of Conflicts
Once a conflict occurred, it can either be resolved automatically, as

discussed in Section 3.7, or with user interaction. With interactive

resolution, we refer to a process in which the configurator informs

users about conflicts in the current configuration and guides them to

a resolution by proposing possible changes. Thus, interactive resolu-

tion is especially helpful if there are several meaningful resolutions

to a conflict and the users input is required.

We experienced interactive resolution of conflicts in the configu-

rators by Toyota and by HP Velotechnik. For Toyota, we identified

a dependency between car colors and wheels. Black wheels are only

available for three of six car colors, namely White Flash, Electro
Gray, and Bold Black. Only when of those colors is selected, black

wheels are visible (cf. hiding invalid combinations). However, when

black wheels are selected, we can still choose one of the three in-

compatible car colors, as those are not hidden. In that case, the con-

figurator selects the incompatible car color and shows the dialog for

wheels in which the previously chosen wheel is hidden. If users se-

lect another wheel, the conflict is resolved. However, we experienced

Figure 11. An unresolved conflict leading to a wrong price computation in

the Toyota configurator.

bugs when users decide to cancel the interactive process. We were

actually able to configure a car with a wrong price computation (cf.

Figure 11). If we continue and try to actually buy that car, the reason

for the wrong computation becomes clear; the configurator automati-

cally selected two wheel types, for which eight instead of four wheels

are charged in terms of costs (cf. Figure 12). When we tried to fix the

conflict manually, we were not even able to open the configuration

dialog for wheels anymore. However, the Toyota configurator has a

rather unique feature allowing users to undo and even redo previous

decisions by going back and forth in the browser.

Figure 12. Two alternative wheels selected in the Toyota configurator.

For HP Velotechnik, interactive resolution is applied to all con-

flicts that occur between any pair of two categories. When opening

the configurator, each category is set to the first option, whereas op-

tions are sorted in alphabetical order. When changing the tires to

Schwalbe Kojak for the default configuration, a dialog opens asking

the user to select one of two options as a drivetrain (cf. Figure 13).

Although we opened the UK version, there is a hint in German say-

ing that an unrelated drivetrain (i.e., not available and not selected

as default) has some conflicts with particular brakes. After studying

the configurator for a while, we found out that this hint is always

shown if there is a conflict with drivetrains and the hint is most likely

supposed to help with another conflict. Selecting one of those two

options leads to another conflict which is resolved with the same

technique. While, in this case, there are only two interactive reso-

lution steps due to one selection, we experienced cascades of up-to

five conflicts. With such cascades, there is a considerable burden on

the user to understand why all those changes need be done. Configu-

ration is especially challenging as users easily get lost which options

were the default, which did they chose on purpose, and which options

had to be selected in the interactive conflict resolution.

The advantage of resolving conflicts interactively is that the user is

essentially making decisions on conflicting options. Hence, opposed

to automatic reconfiguration users have the control over conflict res-

olution and opposed to the hiding of invalid combinations they can

actually see and decide on all options. The downside is, however,

that users have to take decisions in response to a conflict directly. In

particular, this may lead to a frustrating cascade of numerous con-

flict resolutions, which may even need to be reverted, if the user is

not satisfied with the options in one conflict resolutions. A postponed

interactive resolution would probably need some kind of support for

continuing with invalid states (cf. Section 3.5), which seems to be

hard to be implemented properly.

66

Figure 13. A cascade of conflicts in the HP Velotechnik configurator.

3.9 Combinations of Strategies

In the previous sections, we discussed each identified strategy inde-

pendently. However, in practice, none of the studied configurators

applies only a single strategy. Instead, we found that configurators

apply between two and eight strategies, as illustrated in Table 1. HP

Velotechnik, Ebay, and Amazon only apply two or three strategies.

The configurators of Ebay and Amazon did only come with a few

categories of alternative options. The most strategies are applied in

the car configurators by Toyota and BMW, which also comprise the

largest number of options and categories. The configurator by Toyota

even applies all eight strategies.

We can further distinguish between strategies that are applied

globally to all options or only locally to some options. Automatic

deselection of alternative options is not only applied in all configu-

rators, but also for all categories with alternative options. Similarly,

configuration steps and default options have been applied only glob-

ally. In contrast, all other strategies have typically be applied locally

to some options in the configurator. One exception is that the Ebay

configurator uses hiding of invalid combinations in all parts, but there

were only two categories of alternative features. Other exceptions

Strategy B
M

W

T
o
y

o
ta

H
P

V
el

o
te

ch
n

ik

L
en

o
v
o

M
ic

ro
so

ft

A
m

az
o

n

E
b

ay

Automatic Deselection in Alternatives y y y y y y y

Default Configuration y y y y y/n y n

Hiding Invalid Combinations n y n n n n y

Compound Options y y n y y n n

Continuing with Invalid States n y n y n n n

Subsequent Configuration Steps y y n n n n n

Automated Reconfiguration y y n n y/n y n

Interactive Resolution of Conflicts n y y n n n n

Table 1. Overview on configurators and their strategies.

are that BMW applies automated reconfiguration globally and HP

Velotechnik uses interactive resolution for all categories.

The configurator by Microsoft is especially interesting as there

are multiple links to configurators for the same product, which apply

different strategies. For instance, there is a version of a configurator

using default configurations and another version that opens without

any decisions. Also, we experienced that the Microsoft configurator

stopped using automated reconfiguration in April or May 2018.

The strategies that we identified can be further classified into

strategies avoiding all or at least some conflicts and those strategies

resolving conflicts. Default configurations, hiding invalid combina-

tions, compound options, and configuration steps help to avoid con-

flicts. All other strategies let users make conflicting decisions and

later solve them automatically or interactively.

4 Related Work
There exists a number of previous studies comparing web-based con-

figurators [1, 14, 12]. Each of these studies considers different as-

pects of these tools. For instance, Streichsbier et al. focuses on the

differing user interface of configurators for different domains [14].

They describe differences and similarities in the design of configura-

tors, such as navigation buttons, product images, and prices displays,

across multiple domains. Abbasi et al. compare 111 different config-

uration tools regarding the process of configuration and the internal

behavior of configurators [1]. In their work, they consider the visual

representation of options and constraints and the corresponding se-

mantics behind it, constraint syntax and handling, and control flow

of the configuration process. Pil and Holweg studied configurators

of ten car manufacturers [12]. In addition to the external variety pro-

vided by the configurator, they also studied the internal variety by

surveying the manufacturers. In contrast to these prior studies, we

explicitly focus on the underlying strategies for handling conflicts

and categorize these further.

Other work, such as Herrmann et al., Haag et al., and Hubaux et al.

have looked at specific strategies that we cover in our paper [6, 7, 9].

In their paper, Herrmann et al. investigate the effects of starting the

configuration process with a default configuration, which can be

adapted by the user [7]. Although we do not investigate user be-

havior when using a particular conflict handling strategies, we aim

to provide a broader view of currently used strategies on the web.

Haag et al. consider different techniques for finding explanations

in conflicting configurations [6]. This is corresponds to our iden-

tified strategy of resolving conflicts interactively. Amongst others,

Hubaux et al. investigate which conflict handling strategies are being

used in the two product lines Linux and eCos [9]. Although they are

77

more focused on the user perspective, they find that the Linux’ con-

figuration tool uses a mix of different strategies, such as automated
reconfiguration, hiding invalid combinations, and resolving conflicts
interactively and that eCos also allows to continue with invalid states.

Product configuration is very similar to software configuration [8],

for which many tools exist [2, 11]. Berger et al. conducted a sur-

vey among practitioners and researchers with industrial experience

on software product-line engineering and variability modeling [2].

Amongst others, they present data about the distribution of model-

ing and configuration tools that are used in practice and the scale of

real-world variability models, regarding number of configuration op-

tions and dependencies. While, in this paper, we are also interested

in dependencies that result from variability modeling, we foremost

consider the strategies to enforce these dependencies during the con-

figuration process.

5 Conclusion and Future Work

Product configurators are essential for the vision of mass customiza-

tion. Customers use configurators to identify options and their valid

combinations. A configurator is often the main source of knowledge

being queried in the decision making process. We studied a corpus of

seven configurators to understand how they handle dependencies be-

tween configuration options. Those dependencies can easily lead to

decisions by a customer that are in conflict with each other. We argue

that how a configurator supports users in avoiding or fixing conflicts

is crucial for the success of mass customization.

In our study, we identified eight strategies to handle dependencies.

Half of those strategies aim to prevent conflicting decisions whereas

the rest help customers to resolve conflicts automatically or with their

interaction. Most strategies are applied by several but not all con-

figurators, whereas one strategy is applied by all configurators and

all other strategies are applied by at least two configurators. Sim-

ilarly, each studied configurator applies at least two strategies and

we also found a configurator that applies all eight strategies. It seems

that smaller configurators with fewer options and fewer dependencies

tend to use fewer strategies and larger configurators apply numerous

strategies.

While we discussed advantages and disadvantages of all strategies,

it is an open research question which combinations of those strategies

are best in which situations. Furthermore, it would be interesting to

investigate whether there are further strategies and how each strategy

can be supported with the state-of-the-art techniques for the imple-

mentation of configurators. In any case, studying further real-world

configurators may give more insights.

REFERENCES
[1] Ebrahim Khalil Abbasi, Arnaud Hubaux, Mathieu Acher, Quentin

Boucher, and Patrick Heymans, ‘The Anatomy of a Sales Configura-
tor: An Empirical Study of 111 Cases’, in Proc. Int’l Conf. Advanced
Information Systems Engineering (CAiSE), pp. 162–177, Berlin, Hei-
delberg, (2013). Springer.

[2] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin
Becker, Krzysztof Czarnecki, and Andrzej Wąsowski, ‘A Survey of
Variability Modeling in Industrial Practice’, in Proc. Int’l Workshop
Variability Modelling of Software-Intensive Systems (VaMoS), pp. 7:1–
7:8, New York, NY, USA, (2013). ACM.

[3] Stanley M. Davis, Future Perfect, 1987.
[4] Rebecca Duray, Peter T. Ward, Glenn W. Milligan, and William L.

Berry, ‘Approaches to Mass Customization: Configurations and Em-
pirical Validation’, J. Operations Management (JOM), 18(6), 605–625,
(2000).

[5] Cipriano Forza and Fabrizio Salvador, Product Information Manage-
ment for Mass Customization: Connecting Customer, Front-Office and
Back-Office for Fast and Efficient Customization, Palgrave Macmillan,
New York, NY, USA, 2006.

[6] Albert Haag, Ulrich Junker, and Barry O’Sullivan, ‘A survey of ex-
planation techniques for configurators’, in Proceedings of ECAI-2006
Workshop on Configuration, volume 41, p. 44.

[7] Andreas Herrmann, Daniel G. Goldstein, Rupert Stadler, Jan R.
Landwehr, Mark Heitmann, Reto Hofstetter, and Frank Huber, ‘The
Effect of Default Options on Choice—Evidence from Online Product
Configurators’, J. Retailing and Consumer Services, 18(6), 483–491,
(2011).

[8] Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta,
Tomi Männistö, Krzysztof Czarnecki, Patrick Heymans, Tien N.
Nguyen, and Markus Zanker, ‘Unifying Software and Product Configu-
ration: A Research Roadmap’, in Proc. Configuration Workshop (Con-
fWS), pp. 31–35, (August 2012).

[9] Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki, ‘A User Sur-
vey of Configuration Challenges in Linux and eCos’, in Proc. Int’l
Workshop Variability Modelling of Software-Intensive Systems (Va-
MoS), pp. 149–155, New York, NY, USA, (2012). ACM.

[10] Cynthia Huffman and Barbara E. Kahn, ‘Variety for Sale: Mass Cus-
tomization or Mass Confusion?’, J. Retailing, 74(4), 491–513, (1998).

[11] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, and
Gunter Saake, ‘An Overview on Analysis Tools for Software Prod-
uct Lines’, in Proc. Workshop Software Product Line Analysis Tools
(SPLat), pp. 94–101, New York, NY, USA, (2014). ACM.

[12] Frits K. Pil and Matthias Holweg, ‘Linking Product Variety to Order-
Fulfillment Strategies’, Interfaces, 34(5), 394–403, (October 2004).

[13] Giovani Da Silveira, Denis Borenstein, and Flávio S. Fogliatto, ‘Mass
Customization: Literature Review and Research Directions’, Int’l J.
Production Economics, 72(1), 1–13, (2001).

[14] Clarissa Streichsbier, Paul Blazek, Fabian Faltin, and Wolfgang Früh-
wirt, ‘Are De-Facto Standards a Useful Guide for Designing Human-
Computer Interaction Processes? The Case of User Interface Design for
Web Based B2C Product Configurators’, in Proc. Hawaii Int’l Conf.
System Sciences (HICSS), pp. 1–7, Washington, DC, USA, (2009).
IEEE.

[15] Juha Tiihonen and Alexander Felfernig, ‘An Introduction to Personal-
ization and Mass Customization’, J. Intell. Inf. Syst., 49(1), 1–7, (Au-
gust 2017).

88

Configuring Release Plans

A. Felfernig1 and J. Spöcklberger1 and R. Samer1 and M. Stettinger1 and
M. Atas1 and J. Tiihonen2 and M. Raatikainen2

Abstract. Release planning takes place (1) on the strategic
level where the overall goal is to prioritize (high-level) re-
quirements and (2) on the operational level where the major
focus is to define more detailed implementation plans, i.e., the
assignment of requirements to specific releases and often the
assignment of stakeholders to requirements. In this paper, we
show how release planning can be represented as a configu-
ration task and how re-configuration tasks can be supported.
Thus we advance the state-of-the-art in software release plan-
ning by introducing technologies that support the handling of
inconsistencies in already existing plans.

1 Introduction

Higher flexibility of software development and better satis-
fied customer requirements can be achieved by developing
and delivering software in an incremental fashion [8]. Release
planning is needed to support such development approaches
in a structured fashion. Release planning can be regarded
as a company-wide optimization problem where stakeholders
want to maximize the utilization of often limited resources
[8, 10, 11]. Planning often takes place on two levels [1]. First,
on a strategic level where the major task is to prioritize re-
quirements with regard to criteria such as business relevance
(profit), feasibility (risk)3, and related efforts [9, 11]. On an
operational level, a detailed planning takes place where re-
quirements are assigned to releases and often also to stake-
holders in charge of their implementation. The consequences
of poor release planning are low software quality, lost busi-
ness oportunities, more replanning efforts, and also project
cancellation [10].

Figure 1 depicts an overview of a release planning process.
First, requirements are prioritized on the basis of a utility
analysis [3]. Second, detailed planning takes place where re-
quirements are assigned to releases and a release planner is in
charge of assuring the consistency of the plan with regard to a
set of additional constraints related to dependencies between
requirements and further constraints imposed by stakeholders
(see the example release constraints depicted in Table 5).

The major contributions of this paper are the following.
First, we show how to represent a release planning problem
as a configuration task. In this context, we also show how re-
configuration can be supported on the basis of configuration

1 Graz University of Technology, Graz, Austria email:
{felfernig,spoecklberger,samer,stettinger,atas}@ist.tugraz.at

2 University of Helsinki, Finland email:
{juha.tiihonen,mikko.raatikainen}@helsinki.fi

3 We interpret profit as the value of a requirement for the user [7].

and diagnosis techniques. Second, we report the results of a
performance analysis that has been conducted on the basis of
different types of release planning (configuration) problems.

The remainder of this paper is organized as follows. In Sec-
tion 2, we sketch how utility analysis can be performed on the
basis of a given set of requirements. Thereafter, in Section 3
we show how release planning can be represented as a con-
figuration task and how re-configuration can be supported in
this context. In Section 4, we report the results of an evalua-
tion of the proposed approach. The paper is concluded with
a discussion of issues for future work.

2 Utility-based Prioritization of
Requirements

The prioritization of requirements can be performed on the
basis of a utility analysis, i.e., the evaluation and ranking of
requirements with regard to a predefined set of interest di-
mensions such as profit, effort, and risk [3]. In the line of the
two basic recommendation approaches in group recommender
systems [4], prioritization can be performed in two ways (see
Figure 1): (1) aggregated utilities based approaches collect
stakeholder-individual requirements evaluations with regard
to a set of interest dimensions, aggregate those evaluations,
and calculate requirement utilities thereof, (2) aggregated pri-
oritizations based approaches aggregate stakeholder-specific
prioritizations into the final prioritization. In the following,
we explain both approaches in more detail. The second vari-
ant assumes that each stakeholder provides a prioritization
(directly or in terms of utility evaluations) wheres the first
approach also allows prioritization in situations where not all
stakeholders evaluated each of the given requirements.

Prioritization with Aggregated Utilities. In this context,
multi-attribute utility theory can be applied to determine a
ranking (prioritization) of a given set of requirements (see Ta-
ble 1). First, each stakeholder si evaluates each individual re-
quirement with regard to interest dimensions. In our example,
we use the interest dimensions profit, effort, and risk, which
are typical interest dimensions in release planning. Interest
dimensions can have an assigned weight, for example, it is
more important to avoid risky release plans than maximizing
the potential profit.

In such a setting, the distribution of weights could be sim-
ilar to the one defined in Table 2. Second, on the basis of a
given set of evaluations and a specification of the importance
of individual interest dimensions, requirements can be ranked
according to Formula 1 where imp(d) denotes the importance
of interest dimension d and contrib(r, d) denotes the contri-

9

Figure 1. Utility-based prioritization and constraint-based configuration of release plans. Requirements can be prioritized on the basis
of a group-based utility analysis (MAUT – multi-attribute utility theory [3]). The resulting prioritization can be determined on the basis
of aggregated utilities or aggregated prioritizations. Release plans are generated on the basis of a given prioritization and corresponding

release constraints defined by stakeholders.

bution of requirement r to dimension d.

utility(r) = Σd∈Dimimp(d)× contrib(r, d) (1)

When applying Formula 1 to the entries in Table 1 and
Table 2, we are able to derive a ranking of the requirements
R = {r1, r2, .., rn} as depicted in Table 3.

In this paper, we directly evaluate requirements with regard
to interest dimensions (on a rating scale [1..10]). Especially
for the dimensions effort and profit, alternative evaluation
scales can be defined which are then mapped to a utility scale
(e.g., [1..10]). For example, instead of evaluating effort directly
on a scale [1..10], effort could be specified in man-months
which are then translated into a corresponding utility scale.
In the context of our examples, high values for profit denote a
high associated profit, whereas high values for effort and risk
denote low associated effort and risk estimates.

Prioritization with Aggregated Prioritizations. First, multi-
attribute utility theory can be applied to determine
stakeholder-individual requirement utilities (priorities) (see
Table 4). Each stakeholder si evaluates individual require-
ments with regard to the pre-defined interest dimensions.
Alternatively, stakeholders can specify prioritizizations ”di-
rectly”, i.e., without a utility-based pre-evaluation. Second,
requirement utilities can be determined on the basis of For-
mula 2 where s represents a stakeholder, d ∈ Dim represents
an interest dimension, and r is a requirement. We assume
a globally defined specific weight for the individual interest
dimensions (see Table 2).

utility(r, s) = Σd∈Dimimp(d)× contrib(r, d, s) (2)

Stakeholder-individual prioritizations (see Table 4) have to
be aggregated. One approach to support this aggregation is to
apply basic social choice based preference aggregation func-
tions such as Borda Count where the winner is the require-
ment with the best total ranking score where each requirement
rank is associated with a score 0 .. #requirements-1 (see Table
6).4

Testing Prioritizations. A prioritization derived on the basis
of a utility analysis can be tested for plausibility. For exam-
ple, stakeholders can specify specific prioritization constraints
that have to hold in the final prioritization. Such tests could

4 For an overview of different types of preference aggregation func-
tions we refer to [4].

be applied, for example, when different departments are co-
operating in a prioritization process and specific constraints
have been pre-defined by upper-level management. Such con-
straints can be regarded as test cases for the prioritization
process (see Definition 1).

Definition 1: Consistent Prioritization: given a prioritiza-
tion P = {p1 : r1 = v1, p2 : r2 = v2, .., pn : rn = vn} for
requirements REQ = {r1, r2, .., rn} (vi ∈ domain(ri)) and a
set of test cases T = {t1, t2, .., tk}. Then P is a consistent
prioritization if P ∪ ti is consistent ∀ti ∈ T .

Consistent prioritizations determined on the basis of a util-
ity analysis can be regarded as input for release planning. In
the following, we show how prioritizations can be exploited in
the context of release planning and how release planning can
be represented as a constraint-based configuration task.

3 Constraint-based Release Configuration

Constraints ri = vi (vi ∈ domain(ri)) representing individ-
ual requirement prioritizations can be used as one input of a
release configuration problem [5] by generating release assign-
ment constraints following the rule ∀{pi : ri = vi, pj : rj =
vj} ∈ P (i 6= j) : vi > vj → relrj ≥ relri. Since r1 > r2

holds in our working example, we can derive the constraint
pc : relr2 ≥ relr1 as an input for our release configuration
task (see Definition 2). We denote the set

⋃
pci derived from

a prioritization P as PC.
Definition 2: Constraint-based Release Configuration Task :

a constraint-based release configuration task can be defined
as a tuple (R,PC,RC) where R = {relr1, relr2, .., relrn} is
a set of variables representing potential assignments of re-
quirements to releases (domain(relri)=[0..n] – 0 refers to re-
quirements not assigned to a release), PC = {pc1, pc2, .., pcm}
represents a set of prioritization constraints5, and RC =
{rc1, rc2, .., rcl} is a set of release constraints.

Examples of typically used release constraints are given in
Table 5. Further release constraints that will not be taken into
account in our working example are release capacity in hours,
total capacity in hours, release costs, total costs, assignment
of stakeholders to requirements, average risk level per release,
minimum market value per release, and further optimization

5 Hard prioritization constraints are often too strict in practice.
They can also be interpreted as preferences, i.e., solvers should
take these into account as much as possible.

10

requirement r1 r2 r3

profit effort risk profit effort risk profit effort risk

s1 3 3 4 7 8 6 1 2 1

s2 5 2 4 4 4 5 3 4 3

s3 6 3 2 5 5 7 4 1 4

average(AV G) 4.67 2.67 3.33 5.33 5.67 6.0 2.67 2.33 2.67

Table 1. Contribution (on a scale 1–10) of requirements R = {r1, r2, r3} to the interest dimensions Dim = {profit, effort, risk}.
Following the ”aggregated utilities” approach, utility analysis determines a prioritization. AV G is one possible aggregation function – for

further alternatives we refer to [4].

profit effort risk

importance(imp) 1 3 6

Table 2. Importance of interest dimensions in a specific requirements prioritization context.

r1 r2 r3

utility(ri) 32.66 58.34 25.68

prioritization 2 1 3

Table 3. Utility and prioritization of individual requirements R = {r1, r2, r3} with regard to the interest dimensions
Dim = {profit, effort, risk}. In this context, we assume that each requirement has its unique prioritization, i.e., prioritization(ri) =

prioritization(rj) → i = j.

criteria such as maximum profit, maximum customer value,
and minimum risk. For simplicity, Table 5 contains only bi-
nary constraints, however, these are generalizable to higher-
order constraints [2], for example, coupling(relra, relrb, relrc)
would be translated into relra = relrb ∧ relrb = relrc.

An example of a constraint-based release configuration task
is the following. This task includes the three requirements
from Section 2. Furthermore, three releases are available.

• R = {relr1, relr2, relr3}
• domain(relri) = [1..3]
• PC = {pc1 : relr2 ≤ relr1, pc2 : relr2 ≤ relr3, pc3 : relr1 ≤
relr3}

• RC = {rc1 : relr1 = relr2 , rc2 : relr1 = 1}

Definition 3: Constraint-based Release Configuration:
A constraint-based release configuration (solution) for a
constraint-based release configuration task can be represented
by a complete assignment RP = {relra = va, relrb =
vb, .., relrk = vk} where vk is the release number of require-
ment rk such that RP ∪ PC ∪RC is consistent.

In the context of our working example, an example of
a constraint-based release configuration is RP = {relr1 =
1, relr2 = 1, relr3 = 2}.

As it is often the case, prioritization as well as release plan-
ning is an iterative process [8]. As a consequence, prioritiza-
tions PC of requirements change (resulting in PC’) as well as
release constraints, i.e., RC is transformed into RC′. In such
contexts, situations can occur where RP ∪PC′∪RC′ becomes
inconsistent and we are in the need of a reconfiguration of
RP (resulting in RP ′). Consequently, a release reconfigura-
tion task has to be solved (see Definition 4).

Definition 4: Release Reconfiguration Task : A release re-
configuration task can be defined by a tuple (RP,PC′, RC′)
where PC′ represents a set of adapted prioritization con-
straints, RC′ a set of adapted release constraints, and RP ∪
PC′ ∪ RC′ is assumed to be inconsistent. The underlying
task is to identify a minimal set of constraints ∆ ⊆ RP
such that RP − ∆ ∪ PC′ ∪ RC′ is consistent. If parts of
RP have already been implemented, we can assume RP =
RPcompleted ∪ RPopen and the task is to identify a diagnosis
∆ with RPopen −∆ ∪RPcompleted ∪ PC′ ∪RC′ is consistent.

A reconfiguration for a given release reconfiguration task
can be defined as follows (see Definition 5).

Definition 5: Release Reconfiguration: A release reconfigu-
ration (solution) for a release reconfiguration task can be rep-
resented by an assignment RECONF = {relra = va′, relrb =
vb′, .., relrk = vk′} where relri = vi′ ∈ RECONF → relri =
vi ∈ ∆ and vi 6= vi′.

In this context, ∆ represents a diagnosis, i.e., a minimal
set of constraints that, if deleted from RP (RPopen), help to
restore consistency, i.e., RP −∆ ∪ PC′ ∪RC′ is consistent.

The set ∆ can be determined on the basis of a model-based
diagnosis algorithm such as FastDiag [6] which returns a
minimal set of constraints that have to be deleted in order
to restore consistency. In order to assure the existence of a
diagnosis ∆, we have to assume the consistency of PC′∪RC′.

One could also be interested in identifying minimal sets of
changes ∆ in given prioritizations PC such that PC−∆∪RC
is consistent. Table 7 provides an overview of example (re-
)configuration services that can be provided in release configu-
ration scenarios. (1) proposed prioritizations (PC) have to be
checked with regard to their consistency with a defined set of
release constraints (RC). (2) Assuming the consistency of RC

11

requirement r1 r2 r3

profit effort risk utility (prio) profit effort risk utility (prio) profit effort risk utility (prio)

s1 3 3 4 36 (2) 7 8 6 68 (1) 1 2 1 13 (3)

s2 5 2 4 35 (2) 4 4 5 46 (1) 3 4 3 33 (3)

s3 6 3 2 27 (3) 5 5 7 62 (1) 4 1 4 31 (2)

Table 4. Contribution (on a scale 1–10) of requirements R = {r1, r2, r3} to the interest dimensions Dim = {profit, effort, risk}. High
values for profit denote a high associated profit, whereas high values for effort and risk denote low associated effort and risk estimates.

Following the ”aggregated predictions” approach, utility analysis determines stakeholder-specific prioritizations.

constraint formalization description

coupling(relra, relrb) relra = relrb
{relra, relrb} have to be implemented in

the same release

different(relra, relrb)
relra 6= relrb ∨ relra =

0 ∧ relrb = 0
{relra, relrb} have to be implemented in

different releases

eitheror(relra, relrb)
(relra = 0 ∧ relrb 6=

0)∨ (relra 6= 0∧ relrb = 0)
{relra, relrb} are exclusive

atleastone(relra, relrb) ¬(relra = 0 ∧ relrb = 0)
at least one out of {relra, relrb} has to

be assigned to a release

atleastonea(relra, relrb, a) ¬(relra 6= a ∧ relrb 6= a)
at least one out of {relra, relrb} has to

be assigned to release a

atmostone(relra, relrb) ¬(relra 6= 0 ∧ relrb 6= 0)
at most one out of {relra, relrb} has to

be assigned to a release

atmostonea(relra, relrb, a) ¬(relra = a ∧ relrb = a)
at most one out of {relra, relrb} has to

be assigned to release a

weakprecedence(relra, relrb)
relra ≤ relrb

relra must be implemented before relrb
or in the same release

weakprecedence(relra, relrb)
relra ≤ relrb ∧ relra > 0

relra must be implemented before relrb
or in the same release

strictprecedence(relra, relrb)
relra < relrb relra must be implemented before relrb

strictprecedence(relra, relrb)
relra < relrb ∧ relra > 0 relra must be implemented before relrb

valuedependency(relra, relrb)
¬(|relra − relrb| > k)

relra and relrb must be implemented in
nearly the same release

effortdependency(relra, relrb)
¬(|relra − relrb| > k)

relra and relrb must be implemented in
nearly the same release

fixed(relr, a) relr = a
requirement r must be implemented in

release a

nolaterthan(relr, a) relr ≤ a
requirement r must not be implemented

after release a

notearlierthan(relr, a) relr ≥ a
requirement r must not be implemented

before release a

Table 5. Example release constraints. For the constraint types valuedependency and effortdependency we assume a maximum
deviation of k.

12

r1 r2 r3

s1 2 1 3
s2 3 1 2
s3 3 1 2

score (BRC) 1 6 2
prioritization 3 1 2

Table 6. Aggregation of stakeholder-individual prioritizations
based on the Borda Count (BRC) aggregation function (highest
score receives 2 points, second highest score 1 point, and lowest

score receives 0 points [4]).

and the inconsistency of PC ∪RC, a minimal set of elements
in PC has to be identified such that PC−∆∪RC is consistent.
(3) Assuming the consistency of PC′ ∪RC′, a minimal set of
elements in RP has to be identified (i.e., a potential change
of the current release plan) such that RP − ∆ ∪ PC′ ∪ RC′
is consistent. (4) Given a diagnosis ∆ for RP (with regard to
PC′ ∪ RC′), a constraint solver can determine a solution for
RP −∆∪PC′∪RC′. (5) If there exists a test case t ∈ T with
inconsistent(t∪PC), a diagnosis ∆ represents a minimal set
of elements in PC such that PC −∆∪ t is consistent ∀t ∈ T .

ID service

1 consistency check of PC ∪RC
2 diagnosis of PC with regard to RC
3 diagnosis of PC with regard to test cases T
4 diagnosis of RP with regard to PC′ ∪RC′

5 reconfiguration of RP with regard to PC′ ∪RC′

6 diagnosis of RC

Table 7. Overview of example release (re-)configuration
services.

4 Evaluation

Beside performance analyses, there are different alternative
ways to evaluate the release planning related services men-
tioned in Table 7.

Release plans as outcome of a configuration process can be
evaluated with regard to different interest dimensions such as
profit, risk, and effort. The corresponding utility function is
the following (see Formula 3).

utility(RP) =
Σrelr∈RPΣd∈Dim

contrib(r,d)×imp(d)
relr

|relr ∈ RP |
(3)

An evaluation of the utility of release plans generated with
the Choco constraint solver6 is depicted in Table 8. A corre-
sponding performance evaluation is depicted in Table 9. For
each combination of |RC| × #releases, we randomly gener-
ated |RC| release constraints 10 times. In this context, we did
not optimize solution search on the basis of search heuristics
– this is regarded as a major task of our future work. In Table
8, we can observe a decreasing utility of release plans along
with an increasing size of RC. Table 9 shows increasing run-
times with an increasing size of RC and an increasing number
of releases.

6 choco-solver.org

#releases
|RC| 1 5 10 25 50 100

25 114.6 110.8 123.3 123.2 114.2 118.1
50 125.3 110.9 118.0 121.9 112.9 120.7
100 114.4 99.6 111.3 108.0 111.3 120.9
250 114.3 78.4 827.3 104.2 112.0 114.9
500 123.1 61.8 70.6 88.4 110.6 123.1
1000 112.3 63.1 50.7 71.7 95.3 109.4

Table 8. Avg. utility of release plans without optimization.

#releases
|RC| 1 5 10 25 50 100

25 54.0 19.9 16.5 77.2 142.5 587.9
50 36.1 22.1 33.3 53.5 142.5 622.4
100 75.0 84.1 85.0 144.1 654.2 641.9
250 300.8 721.9 829.4 1161.5 2094.2 3831.6
500 1110.3 2824.9 5053.4 6790.1 9372.7 16677.6
1000 5018.1 12537.6 23975.8 43738.5 58207.6 73785.1

Table 9. Avg. performance of release plan determination in ms.

Reconfigurations of release plans can be evaluated with re-
gard to the similarity between the new configuration and the
old configuration where a(S) denotes the set of variable as-
signments contained in solution S.

similarity(Sold, Snew) =
a(Sold) ∩ a(snew)

a(Sold) ∪ a(snew)
(4)

An evaluation of the similarity between reconfigurations
and original release plans is depicted in Table 10. For each
combination of |RC| × #releases, we randomly generated
|RC| release constraints and a corresponding release plan 10
times, randomly changed 10% of the (original) release con-
straints and determined a reconfiguration (for the given re-
lease plan). We can observe a decreasing similarity with a
corresponding increasing number of release constraints.

#releases
|RC| 1 5 10 25 50 100

25 .96 .99 1.00 1.00 1.00 1.00
50 .93 .97 .99 1.00 1.00 1.00
100 .87 .96 .97 .99 .99 1.00
250 .96 .87 .93 .98 .99 .99
500 .99 .76 .86 .95 .97 .99
1000 1.00 .75 .78 .90 .95 .97

Table 10. Avg. similarity of reconfigurations.

Diagnoses can be evaluated with regard to their degree of
conservativism (see Formula 5), i.e., the number of changes
needed in a constraint set C compared to the overall number
of elements in C. Furthermore, diagnoses can be evaluated
with regard to their relevance: the lower the total relevance
of constraints contained in a diagnosis (represented as the sum
of the individual relevances (rel(δi)) of constraints in ∆), the
higher the relevance of the ∆ (see Formula 6).

13

conservativism(∆, C) = 1− |∆||C| (5)

relevance(∆ = {δ1, δ2, .., δq}) =
Σδi∈∆rel(δi)

|∆| (6)

An evaluation of conservativism and relevance of generated
diagnoses is depicted in Table 11. For each combination of
|RC| ×#releases, we randomly generated |RC| release con-
straints 10 times, assigned importance values to these con-
straints, and randomly changed 10% of the constraints. The
resulting (inconsistent) constraint sets were diagnosed with
FastDiag [6]. The corresponding evaluation results are de-
picted in Table 11. We can observe a decreasing degree of con-
servativism with an increasing number of release constraints
RC.

#releases
|RC| 1 5 10 25 50 100

25 .84/1.0 .99/.2 .99/.1 1.00/0 1.00/0 1.00/0
50 .75/1.0 .99/.5 .99/.4 1.00/0 1.00/0 1.00/0
100 .62/1.0 .98/1.0 .99/.7 1.00/.2 1.00/0 1.00/0
250 .58/1.0 .86/1.0 .96/1.0 .99/.9 1.00/.8 1.00/.1
500 .56/1.1 .76/1.0 .89/1.0 .98/1.0 .99/.8 1.00/.8
1000 .55/1.2 .64/1.0 .76/1.0 .92/1.0 .97/1.0 .99/1.0

Table 11. Avg. conservativism and relevance (c/r) of diagnoses.

5 Conclusion and Future Work

In this paper, we have shown how to represent release plan-
ning as a configuration problem. This representation is a ma-
jor basis for supporting re-planning tasks, i.e., the adaptation
of plans that become inconsistent due to changing constraints
(e.g., a changing availability of resources). In this context, we
also focused on introducing concepts that support the auto-
mated adaptation of release plans (reconfiguration of release
plans) and different variants thereof such as the diagnosis of
release constraints and prioritization constraints. To show the
applicability of the presented concepts, we have presented ini-
tial evaluation results based on a couple of evaluation metrics.
Future work will include the development and evaluation of
different types of preference aggregation functions (see Sec-
tion 2) with regard to their capability of generating relevant
prioritizations. Furthermore, we will optimize the determina-
tion of release plans, reconfigurations, and diagnoses by inte-
grating intelligent search heuristics that help to improve the
quality of identified solutions. In this context, we will com-
pare constraint-based reasoning approaches with local search
based ones [8] with regard to efficiency and solution quality.

Acknowledgment

The work presented in this paper has been conducted within
the scope of the Horizon 2020 project OpenReq (732463).

REFERENCES

[1] D. Ameller, C. Farre, X. Franch, D. Valerio, and A. Cassarino,
‘Towards continuous software release planning’, in SANER
2017, pp. 402–406, Klagenfurt, Austria, (2017).

[2] F. Bacchus, X. Chen, P. van Beek, and T. Walsh, ‘Binary
vs. non-binary constraints’, Artificial Intelligence, 140(1–2),
1–37, (2002).

[3] J. Dyer, ‘Multi attribute utility theory’, International Series
in Operations Research and Management Science, 78, 265–
292, (1997).

[4] A. Felfernig, L. Boratto, M. Stettinger, and M. Tkalcic, Group
Recommender Systems – An Introduction, Springer, 2018.

[5] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-
based Configuration: From Research to Business Cases, Else-
vier/Morgan Kaufmann Publishers, 1st edn., 2014.

[6] A. Felfernig, M. Schubert, and C. Zehentner, ‘An Efficient Di-
agnosis Algorithm for Inconsistent Constraint Sets’, Artificial
Intelligence for Engineering Design, Analysis, and Manufac-
turing (AIEDAM), 26(1), 175–184, (2012).

[7] D. Greer, D. Bustard, and T. Sunazuka, ‘Prioritization of sys-
tem changes using cost-benefit and risk assessments’, in 4th
International Symposium on Requirements Engineering, pp.
180–187, Limerick, Ireland, (1999).

[8] D. Greer and G. Ruhe, ‘Software release planning: An evo-
lutionary and iterative approach’, Information and Software
Technology, 46(4), 243–253, (2004).

[9] H. Jung, ‘Optimizing value and cost in requirements analysis’,
IEEE Software, 15(4), 74–78, (1998).

[10] M. Lindgren, R. Land, C. Norström, and A. Wall, ‘Key as-
pects of software release planning in industry’, in 19th Aus-
tralian Conference on Software Engineering, pp. 320–329,
Perth, WA, Australia, (2008).

[11] G. Ruhe and M. Saliu, ‘The art and science of software release
planning’, IEEE Software, 22(6), 47–53, (2005).

14

Insights for Configuration in Natural Language
Andrés F. Barco1 and Élise Vareilles2 and César I. Osorio1

Abstract. Usually, in configuration processes, customers interact

with a decision support system, also named configurator, by explic-

itly selecting components or required functionalities through a writ-

ten series of questions, until the complete configuration is done and

the desired product is defined. The interactions during a configura-

tion process may vary vastly depending on the customers’ knowledge

about the product and his/her understanding of its potential function-

alities. However, configurators are not conceived for making a differ-

ence between expert and inexpert customers as interfaces and input

information are all expected to be the same for everyone. This pa-

per discusses how natural language can enhance configuration pro-

cess by making possible for customers to express their desires, needs

and preferences in natural language, and for configurators to interpret

their words and better help them to find relevant solutions. This kind

of configuration process could have as foundations an expert systems

that that maps speech into constraints and objectives. We present the

artificial intelligence trends motivating our research, an initial archi-

tectural design and potential applications of the research.

1 Introduction

For several decades now, customers want to bring a personal touch to

their products to make them special and unique. To meet this grow-

ing demand of personalization, companies nowadays no longer of-

fer standard products, but more and more personalizable ones [1].

Thanks to the Web technologies and dedicated decision support sys-

tems, named configurators, this personalization is done directly and

interactively online [1]. Customers can play with the wide range of

choices and options offered by companies: they can assemble, cut,

color, choose, ..., and visualize the result of their desires and ulti-

mately order it, all in few clicks and minutes.

This concept of personalization or configuration of products con-

sists in assembling modules or predefined components, to produce a

unique and specific product [10]. For businesses, this is a way to of-

fer personalized products to stand out from the competition and build

customers’ loyalty through more accurately reflecting their tastes and

needs.

Interactions between potential customers and configurators, be-

come now one of the key aspects of configuration problems [22].

Nevertheless, often the configuration relies in a long data capturing

process. Normally, to configure the product object of desires, any

potential customer has to:

1. Face the increasing range of choices and options without being

completely able to focus on his/her essential items,

1 Universidad de San Buenaventura Cali. Santiago de Cali, Colombia. email:
{anfelbar,ciosoriod}@usbcali.edu.co

2 Université de Toulouse, Mines Albi. Albi, France. email:
elise.vareilles@mines-albi.fr

2. answer a predefined series of questions, always in the same order

whatever his/her knowledge and needs about the product,

3. express his/her needs and preferences in such a way they fit the

predefined set of choices and options proposed online by configu-

rators, and

4. click to select the relevant functions or components meeting the

best of his/her needs.

All these facts gathered make the configuration of products more

and more a counter-intuitive process. Also, current interaction makes

no difference between expert and non-expert user as most of the input

mechanism (such of as graphical windows, drawings, text fields) are

all expected to be the same for everyone [2].

This paper discusses how the mature techniques from AI may be

used to allow a more natural interaction between customers and con-

figuration systems. In essence, we describe the future of configura-

tion in which natural language interactions could replace the tradi-

tional one based on writing, explicit selection of items and rigid se-

ries of questions. More precisely, we argue that current AI advances

like natural language processing could help customers to express

their needs implicitly in speech format (e.g. “I need a cheap lap-

top with good video card”) while an expert system could infer the

requirements and set the goals of the configuration (e.g. video card

≥ good). We call this kind of configuration Configuration in Natural
Language. We also present an idea of architecture of such an expert

system.

The paper is divided as follows. In Section 2, the traditional and

future customer-system interactions in configuration are discussed.

In section 3, a software architecture based on current advances in AI

is introduced. In Section 4, some of the mathematical frameworks

from which the configuration in natural language can take advantage

are discussed. Finally, in Section 5, some applications of the research

and conclusions are presented.

2 Configuration Interactions: Past and Future

We present in this section the interaction typically made in configu-

ration systems and contrast it with the idea of configuration in natural

language proposed in this paper.

2.1 Traditional Configuration Interactions

In most of the cases, configuration systems follow a series of itera-

tive steps that guide the customer and help him/her to progressively

configure his/her own product. These steps, that we call the standard
way of configuration, are as follows:

1. The system shows some sets of components and functionalities to

the customer in a predefined way,

1515

2. The customer either selects the most relevant component or func-

tionality which meets his/her needs and desires, or specifies a

value for the most important criteria (such as the price he/she is

willing to pay for the product),

3. The system removes or assigns the set of remaining components

and functionalities according to the set of constraints in the prod-

uct,

4. The system computes the price of each possible product and valu-

ates their criteria.

In step 2, the selection is usually done manually by clicking on

the relevant item via a mouse-click or a touch screen, or by inputting

its specific value directly from a keyboard. At the end of the standard

way of configuration, the customer selects his/her unique product and

orders it.

2.2 Future Configuration Interactions

The configuration in natural language changes the interactions be-

tween customers and configurators. Customers will be able, what-

ever their requirements and knowledge about the product, to express

better in a more natural way their preferences, desires and needs and

configure faster their own products. The significant difference be-

tween traditional and forthcoming configuration interactions lies in

the way of expressing and capturing customers’ needs and goals. The

steps for the configuration in natural language are as follows:

1. The system welcomes the customer.

2. The customer writes or says what he/she wants or needs by using

his/her own words.

3. The system infers the set of components and functionality the user

wants or needs, and the goal of the configuration.

4. The system removes or assigns the set of remaining components

and functionalities according to the set of constraints in the prod-

uct.

5. The system computes the price of each possible product and valu-

ates their criteria.

To exemplify this kind of configuration, limit us to written inter-

actions in natural language via a keyboard or similar device. Three

examples of such interactions when configuring a computer, and the

respective responses of the inferring engine, are:

• Customer express: “I want a really fast computer but not too ex-

pensive”

System infers: Component(processor, speed, high)

Goal(computer, cost, low)

• Customer express: “I just want to play video games, preferably

not heavy so I can carry it easily”

System infers: Component(video card, processing, high)

Goal(computer, weight, low)

• Customer express: “I need to write my texts”

System infers: Component(keyboard, comfort, high) Goal(none,

none, none)

As expected, inferring components or functionalities and configu-

ration objectives is a major challenge. On the first hand, the universe

of words used by humans to express the same thing may be vast.

Second, the way to build expressions may vary largely depending on

academic background, experience, state of mind and mood, to name a

few. Finally, it is difficult to set a difference between components and

functionalities, and goals; critical to reach an appropriate configura-

tion solution. For instance, in the first of the two previous examples,

both the processor speed and the computer cost may be seen as con-

figuration goals. For tackling this challenge, we propose an expert

system architecture built upon AI trends.

3 AI Trends-based Architecture

The field of AI is generating broad interest. Technological advances

using AI techniques, such as the DeepMind GO system developed

by GoogleTM [19] and the IBM WatsonTM analytic system [11],

draw the attention of the academic and non-academic world on the

innovative role of mathematical models from computer science and

philosophy. Current trends show that the use of AI and other related

fields are being widely used sectors such as economy, health, trans-

port industry, aviation and games, among others [20].

The configuration in natural language is motivated by the recent

advances in AI and by industrial trends, in particular the growing in-

terest in the construction of machines that understand human emo-

tions and act according to the interaction with human [16]. It is

sought that the machines assist decision-making processes whereas

the understanding of human emotions helps to improve the expert

systems behavior and interaction [8]. This idea, known as Human
Aware AI, is not new in configuration as it has been used as a goal

in different configuration systems (see for instance [3]). Further, the

idea of understating or inferring user needs has been widely study

in the plan recognition problem [6]. Nonetheless, to the best of our

knowledge, current advances in natural language use remain to be

adopted in configurators implementations.

Within the human aware AI field, the Natural Language Understat-

ing (NLU) [4] and Natural Language Processing (NLP) [12] draw at-

tention for its capabilities of human computer interaction. In essence,

NLU and NLP systems allow the user to ask questions in everyday

language and try to understand these questions in order to return

appropriated answers. Typically, these systems makes some hypoth-

esis according to the question and a knowledge base, such as Inter-

net, and then process an output. This is akin to the problem of plan

recognition, i.e., knowing the user’s plans and goals [6]. Further, if

these systems are improved with natural language generation (NLG)

in order to produce responses, the system then becomes a question

answering system (QAS) [13]. These systems were conceived to re-

ceived provide argued answers to user queries. From these systems,

WolframAlphaTM [7] and IBM WatsonTM [11] present the more

innovative results for configuration as these systems are able to rec-

ognize some information in form of requirements within informal

speech in text format.

To illustrate these capabilities, Figure 1 shows the result when

querying “I want a computer of less than 1000 dollars.” in the

WolframAlphaTM system. To construct a response, the system

maps the input into a more elaborated query, encoding the query thus

making a syntactic and semantic analysis. Nevertheless, as the sys-

tem does not focus on inferring mathematical notions, it is easily con-

fused by adding words that add relevant constraints. For instance, no

result shown when querying the same computer but DellTM man-

ufactured; “I want a dell computer of less than 1000 dollars”. We

consider that this is a major drawback in the system when addressing

configuration problems.

The IBM WatsonTM system works similarly to the

WolframAlphaTM. It encodes a query by applying automated

reasoning, machine learning and several other techniques to analyze

the speech. One of the more innovative applications of the IBM

1616

17

solutions to users, often optimal, even when they do not provide

all configuration parameters.

• Among the same lines we have integer programming (IP). It is a

mathematical optimization in which some or all of the variables

are restricted to be integers [18]. Likewise the constraint satisfac-

tion model, it is built from constraints and limitations over vari-

ables, although variables do not have a given domain, and objec-

tive functions such as minimization and maximization. This model

or extensions of it (Mixed IP or Linear IP) have been widely used

to reason and solve configuration problems (see for instance [9]).

• Finally, another framework that can be used in configuration in

natural language is SAT; determining if a given propositional for-

mula is satisfiable by an interpretation [5]. The inclusion or ex-

clusion of a given feature in a product may be seen as boolean

assignments. Thus, it would be possible to deduce if a solution ex-

ists by constructing a boolean formula using the requirements of

the customers and the configuration knowledge (e.g. compatibil-

ity among components). The modeling of a configuration problem

under SAT is not new (see for instance [14]).

5 Concluding Remarks

In this paper, we have presented insights on how to enhance the inter-

action between customers and configuration systems into something

called configuration in natural language. In summary, we have dis-

cussed the possibility of using AI techniques, namely, human-aware

AI to implement an expert system that infers constraints and objec-

tives from a speech input.

We have built out the idea around the concepts of NLU, NLP and

QAS. Then, we argue that although current systems have reached

a stable development, there is still research to be done when infer-

ring mathematical notions from informal sentences, i.e., everyday

language. In addition, we have argued that advanced question an-

swering systems such as IBM WatsonTM are not yet well suited

for configuration problems as they are not intended to map implicit

requirements into mathematical models.

To give a view of the mathematical models that can prove use-

ful to construct the proposed expert system, we have briefly de-

scribed three techniques from AI and operational research. These,

techniques, namely, constraints programming, integer programming

and boolean satisfiability, have been used to solve different configu-

ration and optimization problems and are in our point of view inter-

esting models to construct a configurator in natural language.

The main application of inferring constraints and goals from

speech is linked to the mathematical modeling of real-world prob-

lems. Simply stated, the inference system may be used to build

mathematical models to solve linear problems, discrete optimiza-

tion problems and probabilistic problems, among others. Further,

specific properties from each mathematical framework may be ex-

ploited, such as the expressivity of declarative approaches like logic

and constraint programming. Intuitively, many more applications ex-

ists; those in which user requirements, preferences, limitations or ob-

jectives are needed. For instance package managers in unix-based

operating systems. Typically, a package manager from a Unix-based

system must be asked to search or install a specific package. Using

a expert systems that maps speech into constraints and objectives, a

manager would accept inputs like “I need a powerful UML diagram
editor” to present some potential editors to be installed. Further, ar-

guments used by such managers can be replaced by everyday words

thus preventing the non-expert user to learn the specifics of the pro-

grams.

REFERENCES
[1] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach,

M. Meyer, G. Petrone, R. Schafer, W. Schutz, and M. Zanker, Person-
alising on-line configuration of products and services, 225–229, Thiel,
S., Pohl, K., Lyon France, 2002.

[2] Liliana Ardissono, Anna Goy, Matt Holland, Giovanna Petrone, and
Ralph Schäfer, Customising the Interaction with Configuration Sys-
tems, 283–287, Springer Berlin Heidelberg, 2003.

[3] Virginia E. Barker, Dennis E. O’Connor, Judith Bachant, and Elliot
Soloway, ‘Expert systems for configuration at digital: Xcon and be-
yond’, Commun. ACM, 32(3), 298–318, (March 1989).

[4] M Bates, ‘Models of natural language understanding’, Proceedings of
the National Academy of Sciences, 92(22), 9977–9982, (1995).

[5] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Ap-
plications, IOS Press, Amsterdam, The Netherlands, The Netherlands,
2009.

[6] Sandra Carberry, ‘Techniques for plan recognition’, User Modeling and
User-Adapted Interaction, 11(1), 31–48, (Mar 2001).

[7] John B. Cassel, Wolfram—Alpha: A Computational Knowledge
“Search” Engine, 267–299, Springer New York, New York, NY, 2016.

[8] Celso M. de Melo, Stacy Marsella, and Jonathan Gratch, ‘”do as i say,
not as i do”: Challenges in delegating decisions to automated agents’,
in Proceedings of the 2016 International Conference on Autonomous
Agents #38 Multiagent Systems, AAMAS ’16, pp. 949–956, Richland,
SC, (2016). International Foundation for Autonomous Agents and Mul-
tiagent Systems.

[9] Ingo Feinerer, ‘Efficient large-scale configuration via integer linear pro-
gramming’, Artif. Intell. Eng. Des. Anal. Manuf., 27(1), 37–49, (January
2013).

[10] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha Tiihonen,
Knowledge-based Configuration: From Research to Business Cases,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1 edn.,
2014.

[11] D. A. Ferrucci, ‘Introduction to “This is Watson”’, IBM Journal of Re-
search and Development, 56(3.4), 1:1–1:15, (May 2012).

[12] Chowdhury Gobinda G., ‘Natural language processing’, Annual Review
of Information Science and Technology, 37(1), 51–89.

[13] L. Hirschman and R. Gaizauskas, ‘Natural language question answer-
ing: The view from here’, Nat. Lang. Eng., 7(4), 275–300, (December
2001).

[14] M. Janota, Do SAT Solvers Make Good Configurators?, 191–195, Thiel,
S., Pohl, K., Limerick, Ireland, 2008.

[15] Ulrich Junker, Configuration., Chapter 24 of Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier Science
Inc., New York, NY, USA, 2006.

[16] Stacy Marsella and Jonathan Gratch, ‘Computationally modeling hu-
man emotion’, Commun. ACM, 57(12), 56–67, (November 2014).

[17] Francesca Rossi, Peter van Beek, and Toby Walsh, Handbook of Con-
straint Programming (Foundations of Artificial Intelligence), Elsevier
Science Inc., New York, NY, USA, 2006.

[18] G. Sierksma, Linear and Integer Programming: Theory and Practice,
Second Edition, Advances in Applied Mathematics, Taylor & Francis,
2001.

[19] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Tim-
othy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis, ‘Mastering the game of go with deep neural net-
works and tree search’, Nature, 529, 484–503, (2016).

[20] Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Et-
zioni, Greg Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece
Kamar, Sarit Kraus, Kevin Leyton-Brown, David Parkes, William
Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, and Astro Teller,
‘Artificial intelligence and life in 2030’, Technical report, Stanford Uni-
versity, Stanford, CA, (September 2016). One Hundred Year Study on
Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford
University.

[21] Maite Taboada, ‘Sentiment analysis: An overview from linguistics’, An-
nual Review of Linguistics, 2(1), 325–347, (2016).

[22] Mitchell M. Tseng and S. Jack Hu, Mass Customization, 836–843,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

1818

Group Decision Support for
Requirements Management Processes

R. Samer and M. Atas and A. Felfernig and M. Stettinger
Graz University of Technology, Graz, Austria

email: {rsamer, muesluem.atas, alexander.felfernig, martin.stettinger}@ist.tugraz.at

A. Falkner and G. Schenner
Siemens AG, Vienna, Austria

email: {andreas.a.falkner, gottfried.schenner}@siemens.com

Abstract. Requests for proposal (RFP) trigger company-internal
requirements management (RM) processes in order to assure
that offers comply with a given set of customer requirements.
As traditional RM approaches require a deep involvement of the
requirements managers of a RM project especially when it comes to
assigning suitable stakeholders to requirements, the quality of the
decisions and the time effort for making correct decisions mainly
depends on these experts. In this paper, we present a novel stake-
holder assignment approach that reduces the overall involvement of
these experts and also limits the uncertainty of overseeing suitable
stakeholders at the same time. The assignment of responsible
stakeholders is represented as a group decision task expressed in the
form of a basic configuration problem. The outcome of such a task
is a configuration which is represented in terms of an assignment of
responsible stakeholders to corresponding requirements.

1 Introduction
Group-based configuration is an important application area of Arti-
ficial Intelligence [3, 4]. It aims to support a group of users in the
configuration of complex products or services. In general, when in-
teracting with group-based configurators, group members first artic-
ulate their preferences, then adapt inconsistent constraints, and fi-
nally, solutions are generated (i.e, reflecting the given configuration).
In particular, when interacting with a configurator in the context of
a typical requirements engineering task, each group member (i.e.,
stakeholder) has to evaluate each requirement according to differ-
ent dimensions such as priority, effort, and taken risk. However, for
the definition and evaluation of these requirements, first, suitable
stakeholders have to be identified who are responsible for the de-
velopment of these requirements. In addition, an early involvement
of these stakeholders in the project is essential for the success of a
project [5, 6, 13, 18]. This is because a low involvement of stakehold-
ers in a project can lead to project failure. Project failures are often
caused by missing or wrong assignments of stakeholders to require-
ments in early phases of the requirements engineering process [14].
Stakeholder recommendations can help to identify persons who are
capable of providing a complete analysis and description of software

requirements. Recommended stakeholders also need to bring deep
knowledge about the corresponding item domain in order to provide
precise evaluations of the requirements.

STAKENET [14] is an application that supports stakeholder identi-
fication on the basis of social network analysis. This approach builds
a social network on the basis of a set of stakeholders. In this social
network, stakeholders are represented by nodes and recommenda-
tions articulated by the stakeholders are represented by links. On the
basis of such social networks, different social network measures are
used for the prioritization of the stakeholders. One example of such
a measure is betweenness centrality which measures the priority of a
certain stakeholder s based on the ability of this user to play a role as
a broker between separate groups of stakeholders. Castro-Herrera et
al. [1] and Mobasher et al. [17] introduce a content-based recommen-
dation approach where requirements are grouped by using different
clustering techniques. Subsequently, stakeholders are recommended
and assigned to these groups on the basis of content-based filtering.
In this paper, a novel stakeholder assignment approach is introduced.
The presented approach, acting as basic configuration service, lets
voters evaluate stakeholders based on different criteria/dimensions
and then aggregates their votes to derive possible configurations
which are then recommended for the final stakeholder assignment
decision to the requirements manager. In contrast to the aforemen-
tioned stakeholder recommendation approaches where the generated
recommendations are directly suggested to the requirements man-
ager, the content-based recommendation service presented in this
paper only acts as a single artificial voter in addition to some hu-
man voters. Hence, the stakeholder recommendations (i.e., possible
configurations) shown to the requirements manager are determined
based on a combination of votes reflecting opinions of human voters
as well as votes reflecting opinions of artificial voters.

The major contributions of this paper are the following. First, we
analyze in detail a real-world scenario of a typical bid project. Sec-
ond, we show an approach to identify relevant stakeholders for spe-
cific requirements and thus generate a global assignment of stake-
holders to requirements. The remainder of this paper is organized as
follows. In Section 2, we describe a typical application scenario of
a bid project applied in an industrial context and provide a practical
view of a traditional requirements management process commonly
used for planning large industry projects. Additionally, a novel so-
phisticated approach is explained which further improves and ex-

19

tends the traditional approach by considering group decision sup-
port techniques. Section 3 discusses some potential issues and several
factors this approach depends on. Subsequently, Section 4 explains
the implementation of such an approach from a technical viewpoint.
Finally, Section 5 concludes with a brief recap of this paper and
presents some ideas for future work.

2 Application Scenario

Whenever an organizational unit of a large company (e.g., Siemens)
decides to bid for a Request for Proposal (RFP), a new bid project
for that proposal is initiated and the necessary stakeholders of the bid
project are identified. RFPs for technical systems usually consist of a
set of PDF or Microsoft Word documents which describe all require-
ments for the requested system covering technical, financial, legal,
etc. aspects. Examples of stakeholders can be project managers, sys-
tem architects, requirements managers, quality management depart-
ments, legal departments, engineering departments relevant for the
bid, and potential external suppliers.

Within the context of a bid project, a requirements management
(RM) process is initiated at the beginning. The purpose of this pro-
cess is to assure that no requirement of the RFP has been overlooked.
It involves the extraction of all the requirements contained in the RFP
documents. The identified requirements must be assessed by the rel-
evant stakeholders. This means that requirements concerning con-
tracts must be assessed by the stakeholder(s) of the legal department,
technical requirements must be assessed by the affected engineering
department, etc. The assessment may involve statements about vari-
ous criteria such as compliance, risks, approaches, etc. These state-
ments are interpreted as evaluation dimensions in the remainder of
this paper. At the end, each requirement of the RFP must have been
assessed by at least one appropriate stakeholder.

2.1 Traditional RM Process

The traditional requirements management process can be best ex-
plained with an example. In the following, we describe a simplified
example of a traditional RM process in a rail automation context
based on a conventional RM tool such as IBM DOORS.

At the beginning, the requirements manager of the bid project cre-
ates a new project in the RM tool. After that, the necessary stake-
holders for the current bid project are defined. In this context, stake-
holders do not necessarily correspond to persons but correspond to
roles which are uniquely identified with a unique string (called Do-
main). These string-based identifiers are unique within the organiza-
tion. Furthermore, the RM tool supports the mapping of existing roles
(i.e., domain identifiers) to concrete persons within the bid project.
This way, responsible persons are assigned to roles based on their
skills and domain knowledge.

Table 1 presents some examples of domain identifiers which oc-
cur in the context of rail automation. For such large bid projects usu-
ally more than 50 different domains are defined with the RM tool.
However, in practice, most projects only use 20 different domains on
average.

As a next step, the requirements manager imports all the relevant
documents of the RFP into the project by using the RM tool. The RM
tool automatically converts each paragraph of the documents into a
(potential) requirement whilst the structure of the documents is pre-
served. The requirement manager then classifies the (potential) re-
quirements in the project as either an actual requirement or as an arbi-

Domain Stakeholder
PM project manager
SA system architect
RM requirements manager
RAMS reliability, availability, maintainability, and safety
S(ignal) engineering department for railway signals
PS engineering department for power supply
TVD department for track vacancy detection
ETCS department for European Train Control System
Test quality management department
Supplier1 external supplier, subcontractor

Table 1: Examples of domain identifiers for rail automation

trary comment (called prose). In general, large infrastructure projects
may contain more than 10,000 (potential) requirements.

Each (actual) requirement must be assessed by at least one stake-
holder. The requirements manager has to figure out which stakehold-
ers are appropriate for which requirements and needs to assign them
accordingly. However, other stakeholders may improve such initial
assignments later during the assessment phase. The RM tool notifies
all assigned stakeholders via e-mail to assess the requirements they
are assigned to.

Table 2 shows an example of an initial assignment done by the re-
quirements manager (RM). In this table, each row corresponds to a
requirement and each column refers to a stakeholder. Each cell rep-
resents a single decision (of a stakeholder) for a stakeholder assign-
ment (to a requirement). At the beginning, only the RM proposes
assignments of potential stakeholders to requirements based on the
manager’s expertise and knowledge. For example, the assignment of
{S, PM} to the requirement R5 in the RM column indicates that
R5 has been initially assigned to the signal department (S) and to
the project management department (PM) by the requirements man-
ager (RM). As only the RM makes assignments in this initialization
phase, the values of all other columns remain empty (i.e., are filled
with the ”-” label) until the assessment phase.

Req RM PM RAMS S(ignal)
R1 {PM} - - -
R2 {PM} - - -
R3 {S} - - -
R4 {S} - - -
R5 {S, PM} - - -
...

Table 2: Initial assignment of stakeholders to requirements done by
requirements manager (RM). The dash symbol (”-”) indicates that
the other stakeholders have not made a decision yet.

Next, in the assessment phase, the affected stakeholders take a
look at each of their assigned requirements in the RM tool and can
either accept the requirement and assess it or they can veto the pro-
posed assignment. Additionally, they can also propose an alternative
stakeholder for the requirement or suggest (although rarely) an ad-
ditional stakeholder for the requirement. For the remainder of this
paper, this process is hereinafter referred to as assignment feedback.
After that, the requirements manager can either accept the veto and
assign the requirement to a different stakeholder or decline the veto
and reassign the stakeholder to the requirement.

Table 3 shows an intermediate state during the assignment phase
which demonstrates examples of assignment feedback given by the
stakeholders PM and S(ignal):

20

Req RM PM RAMS S(ignal)
R1 {PM} {PM} - -
R2 {PM} {RAMS} - -
R3 {S} - - {S, RAMS}
R4 {S} - - {}
R5 {S, PM} {S, PM} - {S, PM}
...

Table 3: State of assignment during assessment phase

• Requirement R1 has been accepted by PM
• Requirement R2 has been vetoed by PM and RAMS has been

proposed by PM as alternative stakeholder
• Requirement R3 has been accepted by S(ignal), but RAMS has

been proposed by S(ignal) as an additional stakeholder
• Requirement R4 has been vetoed by S(ignal)
• Requirement R5 has been accepted by all proposed stakeholders

It is important to point out the fact that in the traditional scenario,
it is always the main responsibility of the requirements manager
to resolve potential conflicts. Typically, this usually involves some
personal discussions with the involved stakeholders and some final
decisions made by the requirement manager. These final decisions
then assure a consistent assignment of all requirements to responsi-
ble stakeholders. Table 4 presents such a final state where all conflicts
have been resolved.

Req RM PM RAMS S(ignal)
R1 {PM} {PM} - -
R2 {RAMS} {RAMS} {RAMS} -
R3 {S, RAMS} - {S,RAMS} {S, RAMS}
R4 {S} {S} - {S}
R5 {S, PM} {S, PM} - {S, PM}
...

Table 4: Final state after assessment phase. Consistent assignment of
stakeholders to requirements.

The requirements manager periodically reminds the assigned
stakeholders about their unassessed requirements. This process is re-
peated until all requirements have been assessed and the assessment
phase is finished. Thus, the assignment of stakeholders can be con-
sidered as a manual configuration process. The outcome of this pro-
cess is a configuration in terms of a consistent assignment of stake-
holders to requirements they are responsible for. In our current im-
plementation, the overall goal is to achieve consensus regarding the
stakeholder assignment. Future versions of our system include fur-
ther constraints that have to be taken into account in task allocation
tasks as discussed in this paper.

2.2 RM Process with Group Decision Support
The main idea of our novel requirements management approach is
to introduce additional stakeholder votes made by artificial stake-
holders (called bots). Additionally, the bots automatically propose
stakeholders in the initial phase of the RM process. Furthermore, an
intelligent group decision service is included in the RM tool to au-
tomatically aggregate all votes given by human stakeholders as well
as artificial stakeholders. On a technical level, such a group decision
service represents a group recommender system which generates rec-
ommendations based on aggregated votes given by group members
of a group (i.e., the stakeholders) [2]. Basically, there exist different
strategies on how to aggregate votes of group members [8] such as
majority, average, least-misery, etc. In addition, more sophisticated

aggregation functions exist - for further information regarding pref-
erence aggregation functions we refer to [2, 15]. To limit the scope
of this paper, we assume that the group decision service is a simple
group recommender using basic aggregation strategies.

The votes of the artificial stakeholders (i.e., bots) are generated
by using appropriate content-based recommendation algorithms (see
Section 4). This way, the group decision service allows to replace the
traditional mainly manual stakeholder assignment process (see Sec-
tion 2.1) with a semi-automatic process. As a key difference to the
traditional approach, the group decision service automatically aggre-
gates the decisions of all voters and thereby allows the smart incorpo-
ration of additional (automatic) voters, i.e., intelligent recommenda-
tion services for stakeholder assignments. From an abstract point of
view, the process can be interpreted as a basic configuration process.
Like in the traditional RM process (see Section 2.1), the outcome
of this process represents a consistent assignment of stakeholders to
requirements they are responsible for.

Table 5 illustrates a possible initial state in the presence of a group
decision service (GDS) and a stakeholder assignment recommen-
dation service (denoted as RS1). In sharp contrast to the assign-
ments made by other stakeholders, the recommendation service does
not provide a binary decision for every stakeholder but a confidence
value which lies in the range between 1 and 10, whereby a higher
number corresponds to more confidence and a lower number corre-
sponds to a lower level of confidence.

The column for the GDS shows the result of the group de-
cision service for each requirement, i.e., the aggregated decision
of all voters (including humans and bots/algorithms). Note that a
clear benefit of the group decision service is that some requirements
can already be assessed by the assigned stakeholders, even though
they have not yet been proposed/assigned by the requirements man-
ager. In other words, stakeholders are automatically proposed by the
bots/algorithms based on their skills in the initial phase and can al-
ready evaluate their assignment to the requirements. Hence, much
assignment effort is taken away in the initial phase from the time-
pressured requirements managers and the initial phase can be signif-
icantly speeded up. Moreover, it is necessary to point out that the
stakeholders GDS (perform aggregation) and RM (perform final
decision) can be considered to have a special role in this evaluation
process, whereas all other stakeholders only occur as voters in the
process. Consequently, the major responsibility/task of a RM in this
process is to review the decision suggested by the GDS and to per-
form the final decision about the assignment of the stakeholders to
the requirements.

3 Potential Issues of Group Decision Support

The exact behavior of the new system presented in Section 2.2 will
depend on various factors. Examples of such factors include the ag-
gregation strategy used by the group decision service to aggregate
the votes (e.g., majority, average, etc.), the individual weight of the
voters (e.g., “deciders”/experts count higher than normal stakehold-
ers), and the confidence/trust users have in different recommendation
algorithms.

Furthermore, the question arises how conflicting decisions (for ex-
ample, stakeholder A assigns stakeholder B and B assigns A) can be
resolved or supportive advice to manually resolve such conflicts can
be given to the voters by the system. Also, inconsistencies and con-
tradictions may occur in the evaluation of stakeholders between the
voters. These voters can be other stakeholders and artificial stake-
holders. In particular, for artificial stakeholders textual explanations

21

Req GDS RS1 RM PM RAMS S(ignal)
R1 {PM} {PM:9} {PM} - - -
R2 {RAMS} {RAMS:8, PM:5} - - - -
R3 {S} {S:8, RAMS:6} - - - -
R4 {S} {S:5} - - - -
R5 {S} {S:6} {S,PM} - - -
...

Table 5: State of assignment with group decision service (GDS) and stakeholder recommendation service (RS1). The recommendation service
provides a confidence value which lies in the range between 1 and 10.

can be presented to the group of voters being in conflict. Such textual
explanations can then express the concrete reason and arguments for
the votes provided by the artificial stakeholders.

Moreover, the prediction quality (i.e., performance) of the artifi-
cial stakeholders (i.e., the recommender systems) plays a major role
in the process. In particular, the generated recommendations should
be evaluated and examined with respect to completeness. In terms
of common information retrieval measures (such as precision and re-
call), this would, for example, mean that more emphasis should be
given to the recall of the results rather than the precision achieved by
the recommender. In addition to that, an appropriate recommenda-
tion algorithm should also be capable of giving negative indication
by telling the RM which stakeholders are definitely not suitable to
be assigned to a requirement at all. Such a negative indication can
be shown as, e.g., RAMS:0. Finally, another important aspect would
be to take the availability of stakeholders into account before they
get finally assigned to a requirement. This adds another complexity
dimension to the underlying basic configuration problem.

4 Group Decision Support for Bidding Processes
In this section, a slightly modified version of the aforementioned
RM process based on Group Decision Support (see Section 2.2)
is described. The description explains the technical implementation
of this process provided by the requirements engineering platform
OPENREQ MVP1 which is developed within the scope of the Open-
Req EU Horizon 2020 research project. At the current stage, the im-
plementation is already in use, however, still ongoing and ready to
be further enriched with additional features. The remainder of this
section describes the current status of the existing implementation.

In the initial phase, the requirements manager (RM) is asked by the
system to propose suitable stakeholders for each requirement. As al-
ready described in Section 2.2, a content-based recommender system
(RS1) helps the RM to find stakeholders based on keywords extracted
from former requirements those stakeholders have solved. Thereby,
on an abstract level, the automated stakeholder-recommendation al-
gorithm (of RS1) can be interpreted as a text classification task [7]
where the recommendation algorithm exploits several Natural Lan-
guage Processing [19, 20] techniques in order to correctly classify
stakeholders suitable for a given requirement.

The algorithm automatically extracts relevant keywords from the
title and description text of all former requirements which a stake-
holder was assigned to, in order to build a user profile for the re-
spective stakeholder. First, the title and description text is cleaned by
removing special characters (such as “.”, “,”, “;”, “#”, etc.). Next, the
text is split into tokens (which, basically, represent the words in the
text) and stop words such as prepositions (e.g., “in”, “on”, “at”, etc.)
or articles (e.g., “the”, “a”, “an”) are removed. After applying Part-
of-speech tagging, tokens/words of classes (such as verbs, adjectives,

1 OpenReq MVP: http://openreq.ist.tugraz.at

or numbers) that are most probably irrelevant to be used as keywords
are removed. Finally, the remaining tokens of each former require-
ment (which was assigned to the stakeholder) are merged together
into a single user profile.

By applying the same procedure to new requirements, keywords
for new requirements are extracted as well. Given the keywords of a
new requirement and the user profiles of the individual stakeholders,
a similarity between a new requirement and a stakeholder is calcu-
lated for every stakeholder provided that the stakeholder has been as-
signed to an (already completed) requirement in the past. Formula 1
shows the Dice coefficient formula [9] which is a variation of the Jac-
card coefficient and used to compute the similarity between a stake-
holder and a requirement. The similarity is measured by comparing
the overlap of the keywords of the stakeholder’s user profile (denoted
as Ua) and the relevant keywords of the respective requirement (de-
noted as rx) with the total number of keywords appearing in Ua as
well as rx.

sim(Ua, rx) =
2 ∗ |keywords(Ua) ∩ keywords(rx)|
|keywords(Ua)|+ |keywords(rx)|

(1)

Stakeholders who are most similar to a given requirement are sug-
gested by the content-based recommender to the RM. This way, the
initial phase can be speeded up and the chance of overseeing suitable
stakeholders for requirements at this early stage of the process, is de-
creased. In the next step, the OPENREQ MVP system shows a list of
the initially assigned stakeholders for each requirement. Stakehold-
ers who are assigned to a requirement can either accept or reject their
assignment. In addition, the assignments of the stakeholders for the
requirement can be evaluated by all stakeholders.

This evaluation of a stakeholder-assignment is done based on the
criteria Appropriateness and Availability (see Figure 1). Both criteria
are interpreted as evaluation dimensions and stakeholders are evalu-
ated based on both dimensions. Furthermore, an assigned stakeholder
can also propose the assignment of further stakeholders to the re-
quirement. These newly assigned stakeholders can then be evaluated
again. After a new vote has been given, the group decision service
(GDS) is triggered to compute a utility value for the rated stake-
holder. Formula 2 shows the calculation of the utility value of an
evaluated stakeholder s, whereas D is the set containing both dimen-
sions, i.e., D = {Appropriateness,Availability}.

utility(s, r) =

∑
t∈T

∑
d∈D

eval(s,r,d,t)·weight(d)∑
d∈D

weight(d)

|T | (2)

The formula describes the stakeholder s to be voted by other stake-
holders, whereby T represents the set of stakeholders t ∈ T who
evaluated s. More formally expressed, T is a set which contains the

22

http://openreq.ist.tugraz.at

Figure 1: Evaluation of stakeholders in OPENREQ MVP. Each
stakeholder-assignment is evaluated by two evaluation dimensions
(appropriateness and availability). The utility value of an evaluated

stakeholder is calculated by using Formula 2.

stakeholders (including s) who evaluated stakeholder s, i.e., T ⊆ S.
Furthermore, the OPENREQ MVP platform allows the requirements
manager to define different importance levels for both dimensions.
In Formula 2, the importance of a dimension d ∈ D is expressed
by the function weight(d). Moreover, eval(s, r, d, t) refers to the
dimension-specific rating given by stakeholder t for stakeholder s
for the requirement r. Finally, the result of utility(s, r) represents
the aggregated utility of a stakeholder s for requirement r.

Once all assignments have been evaluated by a sufficient number
of stakeholders, a stable state of the assignment utilities is achieved.
The utility values are then used as main feedback source for the re-
quirements manager to make the final decision about which stake-
holder(s) should be assigned to the requirement.

5 Conclusion and Future Work

Conclusion. In this paper, we discussed common application scenar-
ios of requirements engineering in the context of industry projects.
These scenarios range from traditional requirements management
processes where the assignment process of stakeholders is solely
controlled by the requirements manager, to more sophisticated auto-
mated approaches where the involvement of the requirements man-
ager is reduced to a minimum. The latter represents a basic config-
uration service which includes artificial stakeholders as additional
voters and a group decision support system as a vote aggregation
component in the evaluation of stakeholder assignments to require-
ments. On the basis of this scenario we showed how these two com-
ponents can be applied in order to improve the requirements manage-
ment process such that the overall effort and the chance of overseeing
stakeholders suitable for requirements can be reduced for the time-
pressured requirements managers.

Future Work. As bidding processes can be seen as repetitive
processes, mechanisms which are capable of learning stakeholder
weights and taking individual expertise levels of stakeholders into
account can be considered as potential ideas regarding future work.
Moreover, the set of existing evaluation dimensions can be further
extended such that more fine-grained control is given to the evalu-
ation process as well as to the group decision service. Additionally,
the concept of liquid democracy can be integrated into the evalua-
tion process [10]. This way, stakeholders who do not have sufficient

knowledge concerning the details of a requirement can easily dele-
gate their votes to more well-informed and experienced experts.

With respect to conflicting decisions (see Section 3), future work
should also include mechanisms to automatically resolve such con-
flicts or mechanisms which provide supportive advice to the voters,
showing how they can manually resolve such conflicts. Furthermore,
the configuration approach can be enriched with further constraints
taking resource management aspects of stakeholders into considera-
tion, in order to optimize the overall allocation of human resources
in release planning.

Finally, there is also still plenty of room for improvement regard-
ing the extraction of keywords used by the discussed content-based
recommender system (i.e., artificial stakeholder). For example,
a more descriptive and characteristic representation of the key-
words can be obtained by using more sophisticated content-based
approaches such as Latent Semantic Analysis (LSA) [11, 16] or
word2vec algorithms [12, 16].

Acknowledgment

The work presented in this paper has been conducted within the
scope of the Horizon 2020 project OPENREQ (732463).

REFERENCES
[1] Carlos Castro-Herrera, Chuan Duan, Jane Cleland-Huang, and

Bamshad Mobasher, ‘Using data mining and recommender systems to
facilitate large-scale, open, and inclusive requirements elicitation pro-
cesses’, 165–168, (09 2008).

[2] A. Felfernig, L. Boratto, M. Stettinger, and M. Tkalcic, Group Recom-
mender Systems – An Introduction, Springer, 2018.

[3] Alexander Felfernig, M Atas, T Tran, and Martin Stettinger, ‘Towards
group-based configuration’, in International Workshop on Configura-
tion 2016 (ConfWS16), pp. 69–72, (2016).

[4] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha Tiihonen,
Knowledge-based Configuration: From Research to Business Cases,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1 edn.,
2014.

[5] Alexander Felfernig, Martin Stettinger, Andreas Falkner, Muesluem
Atas, Xavier Franch, and Christina Palomares, ‘Openreq: Recom-
mender systems in requirements engineering’, pp. 1–4, (10 2017).

[6] Hubert F. Hofmann and Franz Lehner, ‘Requirements engineering as a
success factor in software projects’, IEEE software, 18(4), 58, (2001).

[7] Emmanouil Ikonomakis, Sotiris Kotsiantis, and V Tampakas, ‘Text
classification using machine learning techniques’, 4, 966–974, (08
2005).

[8] Anthony Jameson and Barry Smyth, ‘The adaptive web’, chapter Rec-
ommendation to Groups, 596–627, Springer-Verlag, Berlin, Heidel-
berg, (2007).

[9] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich, Recommender Systems: An Introduction, Cambridge Univer-
sity Press, New York, NY, USA, 1st edn., 2010.

[10] Anson Kahng, Simon Mackenzie, and Ariel D. Procaccia, ‘Liquid
democracy: An algorithmic perspective’, in AAAI, (2018).

[11] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham, ‘An introduc-
tion to latent semantic analysis’, (1998).

[12] Jey Han Lau and Timothy Baldwin, ‘An empirical evaluation of
doc2vec with practical insights into document embedding generation’,
CoRR, abs/1607.05368, (2016).

[13] Dean Leffingwell, ‘Calculating your return on investment from more ef-
fective requirements management’, American Programmer, 10(4), 13–
16, (1997).

[14] S.L. Lim, D. Quercia, and A. Finkelstein, ‘Stakenet: Using social net-
works to analyse the stakeholders of large-scale software projects’, in
Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ICSE ’10, pp. 295–304, New York, NY,
USA, (2010). ACM.

23

[15] J. Masthoff, ‘Group recommender systems’, Recommender Systems
Handbook, 677–702, (2011).

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jef-
frey Dean, ‘Distributed representations of words and phrases and their
compositionality’, in Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’13, pp.
3111–3119, USA, (2013). Curran Associates Inc.

[17] B. Mobasher and J.Clehand-Huang, ‘Recommender systems in require-
ment engineering’, 81–89, (2011).

[18] Bamshad Mobasher and Jane Cleland-Huang, ‘Recommender systems
in requirements engineering’, AI magazine, 32(3), 81–89, (2011).

[19] Kevin Ryan, ‘The role of natural language in requirements engineer-
ing’, in [1993] Proceedings of the IEEE International Symposium on
Requirements Engineering, pp. 240–242, (Jan 1993).

[20] J. Winkler and A. Vogelsang, ‘Automatic classification of requirements
based on convolutional neural networks’, in 2016 IEEE 24th Interna-
tional Requirements Engineering Conference Workshops(REW), vol-
ume 00, pp. 39–45, (Sept. 2016).

24

Chatbot-based Tourist Recommendations Using
Model-based Reasoning

Iulia Nica and Oliver A. Tazl and Franz Wotawa1

Abstract. Chatbots have gained increasing importance for research
and practice with a lot of applications available today including Ama-
zon’s Alexa or Apple’s Siri. In this paper, we present the underlying
methods and technologies behind a Chatbot for e-tourism that allows
people textually communicate with the purpose of booking hotels,
planning trips, and asking for interesting sights worth being visit. In
particular, we show how model-based reasoning can be used for en-
hancing user experience during a chat, e.g., in cases where too many
possible selections are available or where user preferences are too
restricted causing inconsistencies and as a consequence not possible
answers to be provided. Besides the underlying foundations, we pro-
vide a use case from the intended tourism domain to show how such
a model-based chatbot effectively can be used in practice.

1 Introduction
Communicating with systems based on natural language is very
much appealing and of growing interest and importance also for in-
dustry. See for example [1, 2] for predictions about the rise of the
chatbot market in the future. Natural language interfaces (NLI) offer
a lot of new possibilities for humans to interact and collaborate with
users [8]. Chatbots are a form of artificial intelligence system that al-
lows a human-computer interaction in a natural language form. They
could be based on rule sets or neural networks in order to decide the
correct answer to the user’s request. Chatbots are not restricted to
certain application domains. They are flexible enough to be used in
many different application scenarios and domains including systems
for tourists recommending sights, hotels, or even complete travel
plans. Often chatbots rely on pre-specified patterns that trigger the
chatbot’s behavior, e.g., see [25], restricting its space of interaction
with users.

In this paper, we focus on improving adaptivity of chatbots in the
context of recommender systems, where we have identified two is-
sues that arise during and human-computer interaction session. In
order to make a recommendation, the chatbot has to interact with the
user in order to find out preferences and wishes in order to make an
appropriate recommendation. In case of too little preference infor-
mation, the first issue is, that a chatbot may not be able to restrict the
number of recommendations to be provided to the user. Selecting a
particular recommendation, e.g., the first one in a list of 1,000 ele-
ments might not be the best idea. It might also be not possible to find
a general applicable function that returns the best solution for the cur-
rent user. Hence, there is a need to further restrict the search space,
which can be provided by asking the user about further preferences
that allow to restrict the search space in an optimal way.

1 TU Graz, Institute for Software Technology, Inffeldgasse 16b/2, A-8010
Graz, Austria, email: {inica, oliver.tazl, wotawa}@ist.tugraz.at

The second issue that may arise is the impossibility of providing
even a single recommendation because of inconsistent or too restric-
tive preferences provided by the user. In this case, it is necessary, to
provide feedback to the user and ask for removing preferences or for
ranking preferences accordingly to their importance. In this paper,
we focus on these two issues and provide a solution for both. For the
first issue, we propose the use of Entropies for selecting new prefer-
ences. For the second issue, we suggest using model-based diagnosis
for identifying the causes of inconsistencies. In addition, we put both
parts together in a single recommendation algorithm for improving
user experience when interacting with a chatbot.

The main contributions of this paper can be summarized as the
follows.

1. An algorithm that is based on the ideas of model-based diagno-
sis and Shannon’s information entropy to solve recommendation
problems.

2. An iterative approach to the algorithm realized with a natural lan-
guage interface using a chatbot.

The remainder of this paper is organized as follows: In the next
section we introduce an example domain and give an overview of
our algorithmic approach. Afterwards, we get into more details re-
garding the designed algorithms. Finally, we discuss related research
and conclude the paper.

2 Chatbot for Tourism – A Case Study
In this section, we discuss the use of chatbots for recommendation
in the area of tourism where we introduce a typical conversation be-
tween a tourist and a chatbot. This conversion presents a use case of
a tourism chatbot and serves as motivating example throughout this
paper. We depict the whole conversation in Figure 1, which illustrates
the recommendation process for hotels in a specific area. There, after
selecting the sight of interest, i.e., the Branderburg gate, the tourist
requests a low-priced hotel near this sight. The answer of the chat-
bot from Line 14 in Figure 1 introduce a first challenging situation
of every recommender, i.e., an unsuccessful user query. An intelli-
gent recommender should be able to deal with such a situation and
provide a list of items which fulfill as many requirements as possi-
ble, and ideally explain the cause of trouble. Therefore, the next step
for the recommender should be to automatically identify the minimal
set of inconsistent requirements provided by the user. Furthermore,
a flexible, interactive query-based approach should allow the user to
choose from the identified inconsistent requirements, and as a conse-
quence enhancing the recommendation. The second corner situation,
which is illustrated in Line 18, deals with the case where we have too
many hotels matching the customer requirements. In this situation,

25

2
 1 Bot: Hello John, how can I help you today?
 2 John: I would like to plan a trip.
 3 Bot: Great! Are you interested in a specific region
 4 or would you like to plan the trip by activities?
 5 John: I am interested in a specific region.
 6 Bot: Please click on map to pick the point of interest
 7 or type in the place that you are interested in.
 8 (John clicks a point on the map near the city Berlin)
 9 Bot: OK, I will search for relevant sights near Berlin.
10 (Shows a list of relevant sights in Berlin.)
11 John: Show me the Brandenburger Tor.
12 (The bot shows several information about the Brandenburger Tor.)
13 John: Looks nice! Find a low-priced hotel near this sight.
14 Bot: I am sorry, but there are no hotels of this category near
15 Brandenburger Tor. Which requirement is not that important
16 to you? Price or distance?
17 John: Distance.
18 Bot: OK! There are 9 hotels available for you. You should
19 incorporate another filter. How about parking? Will
20 you have a car?
21 John: No, I do not need a parking facility.
22 Bot: OK! Now there are 4 hotels left. Here is the list: Hotel 7,
23 Hotel 10, Hotel 15, Hotel 18.
24 John: Cool! Is Hotel 15 available from 19.08.2018 to 25.08.2018
25 for two people?
26 Bot: Yes! Should I book it?
27 John: Yes.
28 Bot: Hotel booked!

Figure 1: An Example Conversation

the system should be able to generate a proposal for the user, sug-
gesting which hotel attribute or feature should be further constrained
to narrow down the number of relevant hotels. Here the chatbot could
randomly offer alternative features to choose from, or even better, it
could optimize the searching process by making use of an algorithm
to determine the attribute, which if constrained, leads to the largest
information gain. Note that we rely on a pure knowledge-based ap-
proach, i.e., we assume that no other filtering like collaborative or
content-based is available.

name distance category parking price
Hotel 1 med 5-stars false med
Hotel 2 med 5-stars true high
Hotel 3 med 3-stars true low
Hotel 4 long 3-stars true low
Hotel 5 med 5-stars false high
Hotel 6 short 4-stars true high
Hotel 7 long 2-stars false low
Hotel 8 med 5-stars false high
Hotel 9 long 3-stars true low
Hotel 10 long 2-stars false low
Hotel 11 short 4-stars true high
Hotel 12 short 3-stars false med
Hotel 13 med 5-stars true high
Hotel 14 short 3-stars false med
Hotel 15 long 3-stars false low
Hotel 16 long 3-stars true med
Hotel 17 med 3-stars true low
Hotel 18 med 2-stars false low
Hotel 19 long 2-stars true low
Hotel 20 long 4-stars true med

Table 1: Item set for type = hotel

In the following, we further discuss the details of how to overcome

the considered issues that arise during the recommendation process,
i.e., not being able to provide a recommendation due to inconsisten-
cies, and not being able to reduce the number of selection given the
current requirements. In this discussion we focus only on those parts
that are important for the case study for the sake of clarity. There-
fore, we further consider only the items of type hotel to be part of
the knowledge base, which we depict in Table 1. There we further
assume that each hotel possesses a simplified set of attributes, con-
taining the name of the hotel, its price, defining the price range (low,
medium, or high), its category with the domain {2-stars, 3-stars, 4-
stars, 5-stars}, the availability of parking space being either true or
false, and distance (short, medium, or long). Note that distance is
a special attribute, as it represents the distance to the starting point
introduced by the user in the current recommendation session and
thus it has to be recalculated on demand and not actually stored in
the knowledge base.

It is easy to see that the requirements specified by the customer in
Line 13 cannot be satisfied by the items from Table 1:

R1 = {r1 : distance = short; r2 : price = low},

as there is no low-priced hotel within distance = short in the given
assortment. Hence, we are interested in identifying that minimal set
of requirements that when changed, lead to a recommendation for the
customer. In our example, the situation is simple. The recommenda-
tion system determines that either r1 or r2 have to be relaxed (in
the sense that the chosen requirement will not be further taken into
consideration when computing the recommendation). Still, in more
complex scenarios, when the user query implies more requirements,
the solution is not so straightforward. For instance, if the query was:
” Find a low-priced, 4-stars hotel near this sight.”, then we would
have to deal with the following user requirements:

R2 = {r1 : distance = short; r2 : price = low;

r3 : category = 4− stars}.

There choosing r1 alone as inconsistent requirement would not solve
the problem, because, as one can see in Table 1, we still have no items
that satisfy both r2 and r3. Hence, in order to automatically identify
the minimal set of inconsistent requirements, we would have to make
use of logical reasoning methods that are able to determine causes for
inconsistencies, e.g., consistency-based reasoning, where we have to
describe the inconsistent requirements problem as a diagnosis prob-
lem. The idea is not new and state-of-the-art knowledge-based ap-
proaches like [6, 7, 14, 21] compute minimal sets of faulty require-
ments, which should be changed in order to find a solution. In this
paper, we take the idea and transfer it to the domain of chatbots. In
addition, we do not need to come up with conflicts for computing di-
agnoses but instead compute inconsistent requirements directly from
the given formalized knowledge. Furthermore, the idea of personal-
ized repairs is covered by asking the user directly which requirements
he or she prefers. We discuss the recommendation algorithm in detail
in Section 3.

In the following, we now discuss the other particular situation,
where a recommender would have to deliver too many items match-
ing the customer’s requirements. In order to determine which at-
tribute selection is the best one for accelerating the searching pro-
cess, we suggest computing the entropy of the items’ attributes at the

26

3
name distance category parking price
Hotel 3 med 3-stars true low
Hotel 4 long 3-stars true low
Hotel 7 long 2-stars false low
Hotel 9 long 3-stars true low
Hotel 10 long 2-stars false low
Hotel 15 long 3-stars false low
Hotel 17 med 3-stars true low
Hotel 18 med 2-stars false low
Hotel 19 long 2-stars true low

Table 2: Solution list for the user query distance = {med, long}, price =
low

first place. Using entropies for finding the best next selection in or-
der to accelerate the overall search process is not new. For example,
De Kleer and Williams [3] introduced a measurement selection al-
gorithm for obtaining the next best measurement in order to reduce
the diagnosis search space. In our case, we have a similar situation
and adapt using Entropies for our purpose. Further not that entropy
is a measure commonly used in decision and information theory to
quantify choice and uncertainty. For more details on Shannon’s in-
formation entropy, we refer the interested reader to [24].

Let us consider our case study. In this example, the user query
R = {distance = {med, long}; price = low} leads to the solu-
tion list given in Table 2. There we have a set of 9 hotels with the
attributes distance, category, parking, and price. In order to fur-
ther reduce the number of hotels provided by the recommender, we
have to identify the next attribute that should be further constraint by
the user. In case of entropy used for selection, we have to compute
the entropy for each attribute first. For more details on Shannon’s
information entropy we refer the reader to [24]. For computing the
entropy of an attribute X , we make use of the following formula
from [24] where P (xi) is the probability that attribute X takes value
xi:

H(X) = −
∑
i

P (xi) logP (xi) (1)

Entropy has several interesting properties. Among them, as Shan-
non mentions in [24], H = 0 if and only if all the P (xi) but one are
zero. Thus only when we are certain of the outcome does H vanish,
otherwise H is positive. In the other extreme case, for a given n, H is
a maximum and equal to logn when all the P (xi) are equal to 1/n.

Let us now make use of entropies for selecting the next best at-
tribute. Hence, we compute the attributes’ entropies as follows:

H(distance) = −P (med) logP (med)− P (long) logP (long)

= −1/3 log(1/3)− 2/3 log(2/3)

= 0.92

H(category) = −P (3s) logP (3s)− P (2s) logP (2s)

= −5/9 log(5/9)− 4/9 log(4/9)

= 0.99

H(parking) = −P (t) logP (t)− P (f) logP (f)

= −5/9 log(5/9)− 4/9 log(4/9)

= 0.99

H(price) = −P (low) logP (low)

= 9/9 log(9/9)

= 0

From these figures we see that we obtain the maximum entropy
for the attributes category and parking, whereas the minimum en-
tropy is computed for price. In order to make the best choice, the
recommendation system offers the attribute with the largest entropy
value, i.e., category or parking in our case, to the user and asks him
or her to further constrain it via selecting a certain attribute value. If
the number of the remaining recommendations still exceeds a prede-
fined maximum number of recommendations, the described solution
reduction process based on entropy continues with the second best
entropy attribute as already described above. In the next section, we
describe an algorithm implementing this process in more detail and
also integrate it within a whole recommendation process loop.

3 EntRecom Algorithm
Before stating our recommendation algorithm, which is based on a
diagnosis algorithm that is close to ConDiag [20], and on a method
that applies Shannon’s information entropy [24] for the attributes, we
introduce and discuss basic definitions. We first formalize the incon-
sistent requirements problem, by exploiting the concepts of Model-
Based Diagnosis (MBD) [3, 22] and constraint solving [4].

The inconsistent requirements problem requires information on
the item catalog (i.e., the knowledge-base of the recommendation
system) and the current customer’s requirements. Note that the
knowledge-base of the recommender may be consistent with the cus-
tomer’s requirements (i.e., the customer’s query) and an appropriate
number of recommendations can be offered. In this case, the recom-
mendation system shows the recommendations to the customer and
no further algorithms have to be applied. Otherwise, if no solutions
to the recommendation problem were found, then the minimal set of
requirements, which determined the inconsistency with the knowl-
edge base, have to be identified and consequently offered to the user
as explanation for not finding any recommendation. The user can in
this case adapt the requirement(s) (relax it/them). Here we borrow the
idea from MBD and introduce abnormal modes for the given require-
ments, i.e., we use Ab predicates stating whether a requirement i is
should be assumed valid (¬Abi) or not (Abi) in a particular context.
The Ab values for the requirements are set by the model-based di-
agnosis algorithm so that the assumptions together with the require-
ments and the knowledge-base are consistent. In the following, we
define the inconsistent requirements problem and its solutions.

We start stating the inconsistent requirements problem:

Definition 1 (Inconsistent Requirements Problem) Given a tuple
(KB,REQ) where KB denotes the knowledge base of the recom-
mender system, i.e., the item catalog, and REQ denotes the cus-
tomer requirements. The Inconsistent Requirements Problem arises

27

4
when KB together with REQ is inconsistent. In this case we are
interested in identifying those requirements that are responsible for
the inconsistency.

For our example introduced in Section 2, there is a knowledge
base KB capturing the rows of the Table 1. This can be formalized
as follows: (name = Hotel 1 ∧ distance = med ∧ category =
5 − stars ∧ parking = false ∧ price = med) ∨ (name =
Hotel 2∧distance = med∧category = 5−stars∧parking =
true ∧ price = high) ∨ We have formalized knowledge stat-
ing equations, i.e., saying that distance cannot be short and med
at the same time, i.e., distance = short ∧ distance = med→ ⊥.
In addition, there are two requirements REQ = {R1, R2}, and for
each requirement a variable AbR1, AbR2 stating whether the require-
ment should be considered or not. The requirements R1, and R2
themselves can be defined using the following logical representation
AbR1 = 0 → (distance = short), and AbR2 = 0 → (price =
low) respectively. Obviously, when assuming all AbRi (for i = 1, 2)
to be 0, we obtain an inconsistency because there is no hotel match-
ing the requirements. Therefore, an explanation for such inconsisten-
cies is needed.

A solution or explanation to the inconsistent requirements prob-
lem can be easily formalized using the analogy with the definition of
diagnosis from Reiter [22]. We first introduce a modified representa-
tion of (KB,REQ) comprising (KBD, REQ) where KBD com-
prises KB together with rules of the form AbR for each requirement
R in REQ. The solution to the Inconsistent Requirements Problem
can now be defined using the modified representation as follows:

Definition 2 (Inconsistent Requirements) Given a modified rec-
ommendation model (KBD, REQ). A subset Γ ⊆ REQ is a valid
set of inconsistent requirements iff KBD∪{¬AbR|R ∈ REQ\Γ}∪
{AbR|R ∈ Γ} is satisfiable.

A set of inconsistent requirements Γ is minimal iff no other set
of inconsistent requirements Γ′ ⊂ Γ exists. A set of inconsistent
requirements Γ is minimal with respect to cardinality iff no other set
of inconsistent requirements Γ′ with |Γ′| < |Γ| exists. From here
on we assume minimal cardinality sets when using the term minimal
sets.

For our example, inconsistent requirements are {R1} and {R2}.
In both cases there are hotels available and we do not obtain an in-
consistency any more. In the following, we describe the algorithm
for providing recommendations in the context of chatbots.

Algorithm 1 EntRecom takes a knowledge base, a set of customer
requirements, and the maximum number of recommendations, and
computes all recommendations. Algorithm 1 is an iterative algorithm
that starts with deriving a constraint model CM from the knowl-
edge base KB and the customer requirements REQ. Such a con-
straint representation captures the semantics of the provided knowl-
edge base and requirements. Following the ideas presented in [20],
we use a constraint solver both to directly compute the recommenda-
tions and to determine the inconsistent requirements. Still, in contrast
to ConDiag, which guarantees to compute all the minimal diagnoses
up to a predefined cardinality, we are interested here only in the min-
imal cardinality diagnosis, that in our case translates to the minimal
set of inconsistent requirements.

Therefore, in Step 2, we check the consistency of our model by
calling CSolver, a constraint solver taking the set of constraints CM

Algorithm 1 EntRecom(KBD, REQ, n)

Input: A modified knowledge base KBD , a set of customer
requirements REQ and the maximum number of recommendations
n
Output: All recommendations S

1: Generate the constraint model CM from KBD and REQ
2: Call CSolver(CM) to check consistency and store the result

in S
3: if S = ∅ then
4: Call MI REQ(CM, |REQ|) and store the inconsistent re-

quirements in IncReqs
5: Call askUser(IncReqs) and store the answer in

AdaptedReqs
6: CM = KB ∪ (REQ \ IncReqs ∪AdaptedReqs)
7: go to Step 2
8: end if
9: while |S| > n do

10: Call GetBestEntrAttr(AS) and store the result in a
11: AS = AS \ a
12: Call askUser(a) and store the answer in va
13: S = R (S, va))
14: end while
15: return S

and returning the set of recommendations S. If no recommendation
was found (the empty set is returned), then we have to identify the
minimal set of inconsistent requirements. For this purpose, we call
algorithm 2 MI REQ(CM, |REQ|) . Algorithm 2 starts with as-
suming one faulty requirement (i = 1) and continues to search, if
necessary, up to the number of existing requirements. The constraint
solver is this time called restricting the solutions to the specific car-
dinality i (see Line 2). In Line 3, the function P is assumed to map
the output of the solver to a set of solutions. The termination criteria
before reaching |REQ| is given in Line 4, where a non-empty so-
lution obtained from the satisfiability check is returned as result. In
case no solution is found, the empty set is returned (Line 8).

Algorithm 2 MI REQ(CM, |REQ|)

Input: A constraint model CM and the cardinality of the require-
ments set |REQ|
Output: Minimal set of inconsistent requirements

1: for i = 1 to |REQ| do

2: M = CM ∪

{
|REQ|∑
j=0

abj = i

}
3: ∆S = P (CSolver(M))
4: if ∆S 6= ∅ then
5: return ∆S

6: end if
7: end for
8: return ∅

When being back into the EntRecom algorithm, we call the func-
tion askUser in order to adapt the inconsistent requirements ac-

28

5
cording to customer preferences. Afterward the constraint model is
updated, by mapping the new adapted requirements, and the solver
is called once again for checking consistency. In Step 9, the algo-
rithm checks repeatedly if the cardinality of the computed recom-
mendations is greater than the predefined maximum number of rec-
ommendations. Within this loop, we first determine the attribute with
the best entropy, by calling function GetBestEntrAttr and store
the result in a. Note that the entropy of each attribute is computed
considering the values from the current set of solutions S. Next, we
update the remaining set of attributes, then ask the user again about
the preferred values of attribute a, and store the answer in va. In Step
13, function R keeps only the recommendations where attribute a
takes values from va. Algorithm 1 obviously terminates, assuming
that CSolver terminates.

Algorithm 3 GetBestEntrAttr(AS)

Input: The set of attributes AS , containing the attributes and their
domains accessible using the function dom.
Output: ares the attribute with the highest entropy

1: ares = null, ent = −1
2: for a ∈ As do
3: e =

∑
x∈dom(a)−P (x) logP (x) compare Equation 1

4: if ent < e then
5: ent = e
6: ares = a
7: end if
8: end for
9: return ares

Algorithm 3 GetBestEntrAttr determines the first attribute hav-
ing the highest entropy. The algorithm uses the set AS providing the
the domain da for each attribute a ∈ AS . GetBestEntrAttr iterates
over the set of attributes. In every step it calculates the entropy for
the current attribute a. If this attribute has a higher entropy than the
entropies of the previously selected attributes, this value is stored in
ent. In addition, the attribute itself is stored in ares. After the end of
the iteration cycle, the attribute with the highest entropy value stored
in ares is given back as result. Obviously, the algorithm terminates
providing a finite set of attributes.

With the provide algorithms a chatbot for recommendations can
be build that is able to deal with inconsistent requirements as well as
missing requirements in a more or less straightforward way making
use of previously invented algorithms. We are currently implement-
ing the algorithms into a chatbot environment in order to provide a
solid experimental platform for carrying out different case studies.

4 Related Work

The use of model-based reasoning and model-based diagnosis in par-
ticular in the field of recommender systems is not novel. Papers like
[7, 14, 21] compute the minimal sets of faulty requirements, which
should be changed in order to find a solution. There the authors com-
pute the diagnosis for inconsistent requirements, relying on the ex-
istence of minimal conflict sets. In [7], an algorithm that calculates
personalized repairs for inconsistent requirements is presented.The

algorithm integrates concepts of MBD with ideas of collaborative
problem solving, thus improving the quality of repairs in terms of
prediction accuracy. [21] introduces the concept of representative ex-
planations, which follow the idea of generating diversity in alterna-
tive diagnoses informally, constraints that occur in conflicts should
as well be included in diagnoses presented to the user. Instead of
computing all minimal conflicts within the user requirements in ad-
vance, [14] proposes to determine preferred conflicts ”on demand”
and use a general-purpose and fast conflict detection algorithm for
this task.

Among the authors who integrate diagnosis and constraint solv-
ing more closely, we may mention [5] and later on [26, 27], who
proposed a diagnosis algorithm for tree-structured models. Since all
general constraint models can be converted into an equivalent tree-
structured model using decomposition methods, e.g., hyper tree de-
composition [10, 11], the approach is generally applicable. [28] pro-
vides more details regarding the coupling of decomposition methods
and the diagnosis algorithms for tree-structured models. Further on
[23] generalized the algorithms of [5] and [26]. In [18] the authors
also propose the use of constraints for diagnosis where conflicts are
used to drive the computation. In [9], which is maybe the earliest
work that describes the use of constraints for diagnosis, the authors
introduce the using constraints for computing conflicts under the cor-
rectness assumptions. For this purpose they developed the concept of
constraint propagation. Despite of the fact that all of these algorithms
use constraints for modeling, they mainly focus on the integration of
constraint solving for conflict generation, which is different to our
approach. For presenting recommendation tasks as constraint satis-
faction problem, we refer to [15].

Human-chatbot communication is a broad field. It includes the
technical aspect as well as psychological and human aspects. Pa-
pers like [12, 31] show several approaches of implementing chat-
bots in several domains. [31] shows an artificial intelligence natural
language robot (A.L.I.C.E.), as an extension to ELIZA [32], which
is based on an experiment by Alan M. Turing in 1950 [30]. This
work describes how to create a robot personality using AIML, an ar-
tificial intelligence modelling language, to pretend intelligence and
self-awareness. In [12] the authors demonstrate the usage of chat-
bots in the field of tracking food consumption. Sun et al. [29] intro-
duced a conversational recommendation system based on unsuper-
vised learning techniques. The bot was trained by successful order
conversations between user and real human agents.

Papers like [8, 13, 16, 33] address the topics user acceptance and
experience. In [33] a pre-study shows that users infer the authenticity
of a chat agent by two different categories of cues: agent-related cues
and conversational-related cues. To get an optimal conversational re-
sult the bot should provide a human-like interaction. Questions of
conversational UX design raised by [8] and [19] demonstrate also
the need to rethink user interaction at all. The topic of recommender
systems with conversational interfaces is shown in [17], where an
adaptive recommendation strategy was shown based on reinforce-
ment learning methods.

5 Conclusions

In this paper, we introduced and discussed a recommendation algo-
rithm based on the concepts of model-based diagnosis and Shannon’s

29

6
information entropy. The algorithm is intended to be used in a chatbot
environment for the tourism domain to handle the user responses via
a textual user interface. We presented the challenges to solve com-
mon problems in the decision process of a tourist who communi-
cates with such a chatbot. The identified challenges included the case
of too many offerings that are presented to the user during the rec-
ommendation process and the case of too less offerings, which are
caused by inconsistencies between the available knowledge of the
chatbot and the given user requirements obtained during a conversa-
tion session.

In the proposed approach, we use model-based diagnosis to re-
solve the inconsistent requirements problem and Shannon’s informa-
tion entropy for solving the issue of too large amounts of offerings
by presenting attributes and their values that can be chosen by the
user in order to restrict the number of recommendations. Both solu-
tions can be easily integrated within a chatbot environment guiding
the chatbot application during the recommendation process.

We are currently implementing the presented algorithms includ-
ing an integration with an existing chatbot environment dealing with
tourism recommender systems. The algorithm is purposed to be used
in several other industries and service domains as part of our future
work. In the future, we will use this implementation for carrying out
experiments and user studies with the objective to show that the ap-
proach can be effectively used in practical chatbot settings.

Acknowledgements
Research presented in this paper was carried out as part of the AS-
IT-IC project that is co-financed by the Cooperation Programme In-
terreg V-A Slovenia-Austria 2014-2020, European Union, European
Regional Development Fund.

REFERENCES
[1] Chatbot Market Size And Share Analysis, Industry Report,

2014 - 2025. https://www.grandviewresearch.com/
industry-analysis/chatbot-market. Accessed: 2018-05-
07.

[2] Gartner Top Strategic Predictions for 2018 and Beyond.
https://www.gartner.com/smarterwithgartner/
gartner-top-strategic-predictions-for-2018-and-
beyond. Accessed: 2018-05-07.

[3] Johan de Kleer and Brian C. Williams, ‘Diagnosing multiple faults’,
32(1), 97–130, (1987).

[4] Rina Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[5] Yousri El Fattah and Rina Dechter, ‘Diagnosing tree-decomposable cir-

cuits’, in Proceedings 14th International Joint Conf. on Artificial In-
telligence, pp. 1742 – 1748, (1995).

[6] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Stumptner, ‘Consistency-based diagnosis of configuration knowledge
bases’, 152, 213–234, (02 2004).

[7] Alexander Felfernig, Gerhard Friedrich, Monika Schubert, Monika
Mandl, Markus Mairitsch, and Erich Teppan. Plausible repairs for in-
consistent requirements., 01 2009.

[8] Asbjørn Følstad and Petter Bae Brandtzæg, ‘Chatbots and the new
world of hci’, interactions, 24(4), 38–42, (June 2017).

[9] Hector Geffner and Judea Pearl, ‘An Improved Constraint-Propagation
Algorithm for Diagnosis’, in Proceedings 10th International Joint
Conf. on Artificial Intelligence, pp. 1105–1111, (1987).

[10] Georg Gottlob, Nicola Leone, and Francesco Scarcello, ‘Hypertree De-
composition and Tractable Queries’, in Proc. 18th ACM SIGACT SIG-
MOD SIGART Symposium on Principles of Database Systems (PODS-
99), pp. 21–32, Philadelphia, PA, (1999).

[11] Georg Gottlob, Nicola Leone, and Francesco Scarcello, ‘A compari-
son of structural CSP decomposition methods’, Artificial Intelligence,
124(2), 243–282, (December 2000).

[12] B. Graf, M. Krüger, F. Müller, A. Ruhland, and A. Zech, ‘Nombot -
simplify food tracking’, volume 30-November-2015, pp. 360–363. As-
sociation for Computing Machinery, (2015). cited By 3.

[13] Jennifer Hill, W. Randolph Ford, and Ingrid G. Farreras, ‘Real con-
versations with artificial intelligence: A comparison between human-
human online conversations and human-chatbot conversations’, Com-
puters in Human Behavior, 49, 245 – 250, (2015).

[14] Dietmar Jannach. Finding preferred query relaxations in content-based
recommenders, 04 2008.

[15] Dietmar Jannach, Markus Zanker, and Matthias Fuchs, ‘Constraint-
based recommendation in tourism: A multiperspective case study’,
Journal of IT and Tourism, 11, 139–155, (2009).

[16] A. Khanna, M. Jain, T. Kumar, D. Singh, B. Pandey, and V. Jha,
‘Anatomy and utilities of an artificial intelligence conversational en-
tity’, pp. 594–597. Institute of Electrical and Electronics Engineers Inc.,
(2016). cited By 0.

[17] Tariq Mahmood, Francesco Ricci, and Adriano Venturini, ‘Learning
adaptive recommendation strategies for online travel planning’, Infor-
mation and Communication Technologies in Tourism 2009, 149–160,
(2009).

[18] Jakob Mauss and Martin Sachenbacher, ‘Conflict-driven diagnosis us-
ing relational aggregations’, in Working Papers of the 10th Interna-
tional Workshop on Principles of Diagnosis (DX-99), Loch Awe, Scot-
land, (1999).

[19] R.J. Moore, R. Arar, G.-J. Ren, and M.H. Szymanski, ‘Conversational
ux design’, volume Part F127655, pp. 492–497. Association for Com-
puting Machinery, (2017). cited By 1.

[20] Iulia D. Nica and Franz Wotawa, ‘ConDiag – Computing minimal diag-
noses using a constraint solver’, in Proc. 23rd International Workshop
on Principles of Diagnosis (DX), (2012).

[21] Barry O’Sullivan, Alexandre Papadopoulos, Boi Faltings, and Pearl
Pu, ‘Representative explanations for over-constrained problems’, 1, (07
2007).

[22] Raymond Reiter, ‘A Theory of Diagnosis from First Principles’, 32(1),
57–95, (1987).

[23] Martin Sachenbacher and Brian C. Williams, ‘Diagnosis as semiring-
based constraint optimization’, in European Conference on Artificial
Intelligence, pp. 873–877, (2004).

[24] C. E. Shannon, ‘A mathematical theory of communication’, Bell system
technical journal, 27, (1948).

[25] B. Abu Shawar and E. Atwell, ‘Using corpora in machine-learning chat-
bot systems’, in International Journal of Corpus Linguistics, vol. 10,
(2005).

[26] Markus Stumptner and Franz Wotawa, ‘Diagnosing Tree-Structured
Systems’, in Proceedings 15th International Joint Conf. on Artificial
Intelligence, Nagoya, Japan, (1997).

[27] Markus Stumptner and Franz Wotawa, ‘Diagnosing tree-structured sys-
tems’, Artificial Intelligence, 127(1), 1–29, (2001).

[28] Markus Stumptner and Franz Wotawa, ‘Coupling CSP decomposition
methods and diagnosis algorithms for tree-structured systems’, in Pro-
ceedings of the 18th International Joint Conference on Artificial Intel-
ligence (IJCAI-03), pp. 388–393, Acapulco, Mexico, (2003).

[29] Y. Sun, Y. Zhang, Y. Chen, and R. Jin, ‘Conversational recommenda-
tion system with unsupervised learning’, pp. 397–398. Association for
Computing Machinery, Inc, (2016). cited By 0.

[30] Alan M. Turing, Computing Machinery and Intelligence, 23–65,
Springer Netherlands, Dordrecht, 2009.

[31] R.S. Wallace, The anatomy of A.L.I.C.E., Springer Netherlands, 2009.
cited By 53.

[32] J. Weizenbaum, ‘Eliza-a computer program for the study of natural lan-
guage communication between man and machine’, Communications of
the ACM, 9(1), 36–45, (1966). cited By 1052.

[33] N.V. Wünderlich and S. Paluch, ‘A nice and friendly chat with a bot:
User perceptions of ai-based service agents’. Association for Informa-
tion Systems, (2018).

30

The Effect of Default Options on Consumer Decisions in
the Product Configuration Process

Yue Wang1* and Daniel Yiu-Wing Mo1

Abstract. 1 Product configurators have been accepted as an
important enabling toolkit to bridge customer needs and company
offerings. In the configuration process, customers choose from a
set of predefined attributes and their options. The combination of
choices forms the desired product configuration. It is observed that
some online configurators provide default options for each
attribute. Although previous studies show that the default option
significantly affects customers’ choices during the product
configuration process, it is not clear how other factors mediate this
impact. In this paper, we investigate how product types, number of
choices, customers’ degree of expertise, the importance of the
attributes and the configuring sequence affect consumers’ decisions
in the configuration process when default options are presented.
Based on a series of empirical experiments, we find that customers’
degree of expertise, the rating of the attribute importance, and the
number of attribute choices have a significant effect on customers’
choices for utilitarian products. For hedonic products, the
importance of the attributes and the configuring sequence are
significant factors.

Keywords: status quo effect, configurator, default option,
customisation

1 INTRODUCTION
Due to the rapid growth of the Internet and e-commerce over the
past ten years, online choice configurators have become an
important toolkit for customisation by customers. This configure-
to-order-based mechanism has been widely used in industry.
Successful cases include Dell computers, Adidas, and Nike. By
using configuration systems, firms can increase their profit through
better sales and higher flexibility. Greater customer involvement in
the choice configurator also increases customer satisfaction [1].
Thus, companies can improve their competitive advantage and
position by using these toolkits [2].

However, some challenges persist. One of the major challenges
is to provide a more user-friendly interface to facilitate choice
navigation and decision making in the configuration process. Some
effort has been devoted to this research direction. For example,
Wang et al. proposed information theory and game theory based
method to elicit customer needs adaptively [3] [4]. The
configuration sequence is also customised based on the active
customer’s previous specifications during the configuration
process. In this way, the customers’ choice navigation process is
more efficient and more user friendly. Customers can get what they

1 Department of Supply Chain and Information Management, School of
Decision Sciences, Hang Seng Management College, Hong Kong, China

*correspondence author, email: yuewang@hsmc.edu.hk

want quickly and with less burden of cognitive load. Studies have
proposed needs-based configuration systems facilitate consumer
decision making, particularly for customers without much domain
knowledge [5]. The needs-based configurators show a series of
product descriptions to customers. Customers then just need to
indicate importance or relevance of the descriptions and use
semantic words (e.g., ‘cheaper’ or ‘larger’) to modify an existing
reference product. This can greatly reduce the semantic gap
between customer needs and the company’s offerings, although the
needs in natural language is still not supported.

To help customers make easy decision, default options have
been provided in many commercial configurators since mid-1990.
Studies also found that the default could potentially help predict
customers input when using an interactive online platform [13].
Recently, it has been observed that some online B2C configurators
provide default options as well. If a customer makes no choice on
the attribute, the default option is selected in the final product, as
can be found in the Mini Cooper’s configurator in Figure 1.

Figure 1. Screenshot of the Mini Cooper’s online product configurator
with default choices (accessed May 2017)

In the study of economics and psychology, it has been
acknowledged that the current situation (status quo) is often
considered a reference point from the decision makers’ point of
view. Deviation from the status quo is considered a loss, a
phenomenon called ‘status quo bias’. According to Mandl and
Felfernig [6], status quo bias exists in product configurators,
meaning that consumers’ decisions are affected by the default
options.

Default options have also been studied in the marketing
literature. They are considered a type of decision-making heuristic
through which cognitive load can be significantly reduced [7][11].
Through empirical experiments, Johnson et al. also noticed that a
lack of cognitive attention leads customers to select default

3131

choices. Customers may be paying little or no attention when they
choose the default option [7][12]. This type of default is considered
an attention-based default.

Brown and Krishna argued that the default options can contain
information about the product and thus affect consumer decision
making, i.e., they can be considered information-based defaults [8].
For example, they found that low (less expensive) defaults
sometimes have more positive effects than high (more expensive)
defaults in the case of information-based defaults. In addition, they
may create negative effects when customers already know that the
default option is the best choice. In this case, customers may be
less likely to choose the default choice than the non-default choice.

Compared with expert customers, novice customers more easily
accept the default options [9]. Because the complexity of custom
decision-making tasks decreases the willingness of customers to
participate and reduces the perceived value of the products, novice
customers are more affected. This means that when customers are
less familiar or have little knowledge of the product, the default
options have a greater impact [10].

Although default options have been studied in marketing
science research, it is not clear how the default options affect
consumers’ decisions or which factors are significant in the
selection of default choices, particularly in the context of product
configuration. Therefore, this paper addresses these questions
through empirical experiments. This content is organised as
follows. The factors which potentially mediate consumers’
decision making under default option setting are introduced in
section 2. Section 3 elaborate the design of the empirical
experiment. Experimental results and discussion are in section 4.
Section 5 concludes the whole paper.

2 POTENTIALLY SIGNIFICANT
FACTORS

In response to the research question, we conduct empirical
experiments to identify the significant factors in customer
decisions when default options are presented. The literature
suggests that default options affect customers’ decisions. However,
the process and context of product configuration are different from
the product selection process studied in previous research. More
factors are involved in the configuration process.

Product type - Products can be classified into two categories:
utilitarian products and hedonic products [14]. For utilitarian
products, customer choices are based purely on the functional
requirements. A certain domain knowledge or expertise is needed
to finish the configuring task. For hedonic products, customers’
choices are made based their subjective preferences. For example,
the corresponding attributes may be colour, shape or design.
Customers’ preferences for these attributes are subjective. In our
research, we ask whether product type mediates customers’
selection of default options.

Expertise - Experts have more experience and knowledge of the
product, and therefore they may not be affected by the default
option because they know what they want to purchase. Unlike
experts, novice customers have less knowledge about the product,
so they are easily affected by the default option.

Number of choices - it has been acknowledged that the number
of choices may also affect consumers’ decisions. For example, if
an attribute has a large number of choices, the cost of evaluating

them may be very high. In this case, customers may use the default
options to save effort in the configuring process.

Order of the attributes – Levav showed that the order of the
attributes also affects customers’ decisions in product
customisation [15]. In the present study, the order of the attributes
in configurators is considered as a potentially significant factor in
customers’ choices when they face flexible option configurators.

Concern about the attribute - if a customer cares more about one
particular attribute, he or she will be more motivated in the
information processing task [16]. Often, consumers do not have
enough mental capacity to evaluate all of the attribute levels for all
of the attributes offered [17]. Consumers usually start with the
most important attribute and proceed based on the order of the
attributes’ importance [18]. In the context of product configurators,
concern about each product attribute is potentially a significant
factor in customers’ choices.

3 EXPERIMENT DESIGN
We develop configurators for a watch and a laptop, which are a
hedonic product and a utilitarian product, respectively. Screenshots
of the watch and laptop configurators are shown in Figure 2. We
only include the components related to aesthetics to the watch
configurators. Thus, all of the attributes of the watch can be
considered hedonic attributes, meaning that customer choices are
based purely on their subjective preferences. No expertise in
watches is needed to finish the configuring task. For laptop, we
only include the functional components in the configurators. Thus,
the laptop’s attributes are utilitarian. The choices are determined by
customers’ functional requirements. A certain amount of
background knowledge is needed to finish the configuring task.
Because the purpose of this paper is to study which factors affect
customer decisions when default choices are presented and
customers’ satisfaction with the configured product and the
configuring process, the comparative study is conducted using a
traditional configurator. Thus, the four types of configurators used
in this paper are developed as shown in Table 1. For each product,
the base configurator is the normal version without default options.
This is the configurator used as the control group. For the other
versions, each attribute has a default option. To eliminate the effect
of option difference on customers’ choices, we randomly assign
the default options for each experiment participant. It means that
for difference customers, the default options encountered in the
configuration tasks are different as well. This configurator is used
to investigate consumers’ decision behaviour. The default option
for each attribute is also randomly selected for each experiment
subject. This could offset the influence of choice on consumers’
selections.

In the experiment, a participant is randomly assigned to one of
the four configurators. After the configuring task, the participant is
directed to another configurator with a different product type and
configurator type. For example, if the first randomly assigned
configurator is configurator III, which is a traditional watch
configurator, then the next configurator the participant encounters
is configurator II, which has different product type and
configurator type. Before each configuring task, the participant
completes a pre-experiment survey for each product. The pre-
experiment survey is used mainly to determine the relative
importance that customers concern about each attribute and their
degree of expertise with the utilitarian product. The detailed

3232

questions of the survey are shown in Figure 3. The experiment can
be summarised as in Figure 4.

Figure 2(a). Screenshot of the watch configurators, with default options

Figure 2 (b). Screenshot of the PC configurators, with default options

Table 1. Configurators used in the experiment.
Base
configurator w/o
default options

Configurator w/
default options

Laptop (utilitarian
product)

I II

Watch (hedonic
product)

III IV

Figure 3(a). Screenshot of the pre-experiment survey of watch
configurators

Figure 3(b). Screenshot of the pre-experiment survey (partial) of laptop
configurators to determine customers’ degree of expertise

Figure 4. Experiment process

4 EXPERIMENTAL RESULTS AND
DISCUSSION

4.1 Basic statistics
One hundred forty participants are recruited from a university in
Hong Kong. Each experiment subject receives 30 Hong Kong
dollars as compensation for his or her time and effort. We check
customers’ choice distribution with and without default choices.
The purpose is to see whether the default choices lead to a
significant difference in consumers’ behaviour.

The statistics on the choice distribution are shown in the
following table. If the default options have no effect on customers’
decisions, the distribution of customers’ choices should not be
significantly different for the two types of configurators, i.e., with
and without default choices. A chi-square test is used to check the
difference between the distributions. The p-value of the test result
is shown in the last column.

Table 2. Consumers’ choice distribution for watch attributes
Attribute Number

of
Attribute
choices

Attribute choice
distribution
(with default
option, 40
subjects)

Attribute choice
distribution
(w/o default
option, 52
subjects)

P-value
of chi-
square
test

Frame 3 (15, 14, 11) (21, 14, 17) 0.501

3333

Band 6 (3, 9, 3, 11, 4,
10)

(2, 6, 0, 21, 3,
20)

0.004

Calibre 2 (10, 30) (21, 31) 0.047

Outer 8 (8, 5, 6, 2, 8, 2,
5, 4)

(9, 9, 6, 2, 10, 8,
7, 1)

0.014

Arm 2 (19,21) (15, 37) 0.009

Table 3. Consumers’ choice distribution for laptop attributes
Attribute Number of

Attribute
choices

Attribute
choice
distribution
(with default
option, 49
subjects)

Attribute
choice
distribution
(w/o default
option, 47
subjects)

P-value of
chi-square
test

Monitor 5 (19, 19, 8, 2,
1)

(6, 27, 9, 5, 0) 0.000

Resolutio
n

3 (6, 35, 8) (8, 31, 8) 0.64

Screen 2 (12, 37) (20, 27) 0.011

Operating
System

4 (16,12, 13,
8)

(18, 5, 17, 7) 0.014

CPU 6 (4, 17, 16, 4,
5, 3)

(2, 7, 18, 12,
6, 2)

0.001

RAM 9 (4, 4, 10, 1,
10, 8, 2, 5,
5)

(3, 3, 8, 6, 10,
4, 8, 1, 4)

0.000

Graphics
Card

5 (11, 18, 13,
2, 5)

(8, 11, 20, 4,
4)

0.066

Hard disk 7 (7, 11, 4, 8,
8, 5, 6)

(7, 7, 10, 5, 8,
6, 4)

0.210

Battery 6 (5, 8, 12, 8,
5, 11)

(10, 4, 8, 11,
3, 11)

0.071

Based on the tables, we can see that for most attributes, the
distributions of customer choices are significantly different, as the
corresponding p-value is small. This means that default options
affect customers’ decisions during the configuring process. We
notice that only the watch frame in watch, screen resolution and
hard disk in laptop don’t have significant difference between the
base configurators and the default option-based configurators.
After further investigation, we found that the choices for these
three attributes either have very strong dominance relationship in
terms of customer preferences (screen resolution or hard disk), or
very heterogeneous customer preferences (watch frame, the
choices can be found in Figure 2). For the former case, customers
tend to choose the clearly superior choices regardless of the default
options. For the latter case, customers’ choices are purely
determined by the preferences. Default options can hardly change
their intrinsic preferences.

4.2 Which factors affect customers’ decisions?
Because we want to study the effects of different factors on the
selection of default options, it is natural to use a binary variable as
an indicator that indicates whether the participant selects the
default option in the configuring task for configurators II and IV,

as mentioned in the previous section. The independent variables
are the number of choices, the order of the attributes, the concern
about each attribute and the customers’ expertise (only for the
laptop, the utilitarian product). The numbers of choices for the two
types of products are shown in the second column of Tables 1 and
2. The relative importance that customers accord to each attribute
is elicited from the pre-experiment survey. We use the pre-test
survey to elicit information about the customers’ concern about
each attribute. A Likert scale ranging from 1 to 7 is used to allow
customers to specify their degree of concern. ‘1’ corresponds to the
least degree of concern, and a larger number means a higher degree
of concern. A sample question for the watch configurator is ‘How
concerned are you with the calibre compared to other parts of a
watch?’ Regarding expertise, we designed a basic knowledge test
for laptops containing 10 multiple-choice questions. The number of
correctly answered questions is used as the measure of the
customer’s degree of expertise.

Because the responses are binary variables, logistic regression is
used to identify the relationship between independent variables and
responses. The result is shown in Tables 3 and 4. For the laptop,
the utilitarian product, expertise is an independent variable. For the
watch, the hedonic product, the selection of attributes does not
depend on customers’ expertise; only subjective preferences
matter. Thus, expertise is not considered in the regression model of
the watch. Model 1 includes all of the independent variables and all
of the first-order interactions between independent variables. A
stepwise procedure is then conducted to remove the insignificant
factors one by one from the model according to the p-value in the
regression until only the significant variables remain.

Table 4. Relationship between response and different variables - laptop
Independent Variables Model 1 (logistic

regression)
Model 2 (logistic
regression, stepwise
result based on
model 1)

Expertise 0.693*
(0.384)

0.715**
(0.321)

Concern about attribute -0.339
(0.425)

-0.234***
(0.0802)

Sequence of
configurator

-0.353
(0.614)

Number of choices 0.198
(0.424)

0.402*
(0.227)

Expertise * Concern 0.0022
(0.0483)

Expertise * Sequence 0.0082
(0.0478)

Expertise * Number of
Choices

-0.1053**
(0.0515)

-0.1028**
(0.0504)

Concern * Sequence 0.0074
(0.0494)

Concern * Number of
Choices

0.0093
(0.0547)

Sequence * Number of
Choices

0.0613
(0.0991)

*: p-value<0.1; **: p-value<0.05; ***: p-value<0.01
Remark: the numbers represent the coefficients of the corresponding
independent variables in the logistics regression. The numbers in the
parentheses are the standard deviation of the corresponding coefficients.

Based on the result shown in Table 4, we find that the degree of
expertise is moderately significant in affecting customers’

3434

decisions about default choices. The interaction of degree of
expertise and number of choices is significant in affecting
customers decisions to choose the default options. Through a
stepwise procedure, we can eliminate the insignificant independent
variables one at a time. This leads to model 2, which consists only
of the significant independent variables. We find that the degree of
expertise, degree of concern about each attribute, and the
interaction between degree of expertise and number of choices are
significant in affecting customers’ decisions. In particular, the
coefficient of expertise is positive. This means that if a customer’s
expertise is greater, he or she is more likely to choose the default
options. This finding seems different from previous study in [9]. It
should be noted that we use logistic regression to identify the
relationship between the independent variables and the choice of
default options. In [9], the authors study the relationship between
the number of selected default options and the expertise degree.
Thus the research questions are different. This can explain the
difference of the experiment findings.

The sign of the coefficient of degree of concern is negative,
indicating that if a customer is more concerned with an attribute,
then he or she is less likely to choose the default options. The
coefficient of number of choice is positive, meaning that if an
attribute has more choices, customers are more likely to choose the
default option. It has been acknowledged that when more choices
are presented, the burden of choice is much higher. In this
situation, customers may stay with the default option to save time
and effort in product configuration.

Table 5. Relationship between response and different variables - watch
Independent
Variables

Model 1 (logistic
regression)

Model 2 (logistic
regression, stepwise
result based on model
1)

Concern about
attribute

0.17
(0.337)

-0.218*
(0.129)

Number of Choices 0.078
(0.145)

Sequence -0.333
(0.446)

-0.334***
(0.112)

Concern * Number of
Choices

-0.0182
(0.017)

-0.016***
(0.00422)

Concern * Sequence 0.021
(0.089)

Number of Choices *
Sequence

-0.0315
(0.053)

*: p-value<0.1; **: p-value<0.05; ***: p-value<0.01
Remark: the numbers represent the coefficients of the corresponding
independent variables in the logistics regression. The numbers in the
parentheses are the standard deviation of the corresponding coefficients.

For the watch configurator, the attributes are not technical. The
selection is based purely on appearance, and no knowledge is
required for the configuring task. Therefore, there is no individual
variable to quantify the degree of expertise. Based on model 1, we
find that none of the individual variables are significant. Through a
stepwise procedure, the original regression model can be modified
to model 2, in which all of the variables are significant. The degree
of concern is moderately significant. Configuring sequence and the
interaction of concern with number of choices are significant in
affecting customers’ decisions to choose the default options. We
also notice that all of the signs of the coefficients are negative.
Therefore, when customers are more concerned with the attribute,

they do not choose the default option. This finding is identical to
the case of the laptop. However, in contrast to the laptop
configurator, the sequence of the attribute in the configuring
process is significant. We think the reason is that for the laptop
configurator, the numbers of choices for different attributes are
quite similar. However, for the watch configurator, the number of
choices ranges from 2 to 24. Thus, the sequence is significant in
the customer’s decision. In addition, it is observed that customers
tend to choose the default options that are presented early. We also
find that the interaction between concern and number of choices is
also significant in affecting the choices.

5 CONCLUSION
Product configurator design has been widely studied in the area of
engineering. Very little work investigates the effect of default
options on consumer decision making during the configuring
process. This paper studies whether default options have a
significant effect on people’s decisions in the context of product
customisation. In the settings of product configurators, a default
choice is highlighted for each product attribute. During the
experiment, we find that some respondents accept the default
choices and others reject them. It is of primary interest to study
which kinds of products and what type of attributes are influenced
most by the default options. Through a set of empirical
experiments, we show that customers’ choices are significantly
influenced by default options. For utilitarian products, we also note
that expertise, concern for the product attribute, number of choices
and the interaction between expertise and number of choices
significantly mediate the default options’ effect on customers’
choices. However, for hedonic products, concern about the product
attribute, order of configuration and the interaction between
concern and number of choices are significant factors. From
companies’ perspective, customers are more likely to select the
default options. This could potentially benefit customisers and
improve the operations of the company.

This research still has some limitations. The number of subjects
can be larger and the subjects have similar background. Thus, only
lab experiment is used to conduct the research. To provide more
convincing research outcome, field experiment will be carried out.
In addition, the methods on quantifying the expertise degree of the
subjects is very sensitive to the discrimination of the questions in
the pre-survey test. In our future work, we plan to recruit more
participants and further polish the questionnaire to quantify the
degree of expertise more accurately. Furthermore, the order of
configuration may be a significant factor as well. In the future
study, we plan to randomise the configurating order for the
research.

ACKNOWLEDGEMENTS
This research is supported by Hong Kong Research Grants Council
(Project No. UGC/FDS14/E02/15, for data collection) and (Project
No. UGC/FDS14/E07/17, for data analysis).

REFERENCES
[1] E. Garbarino and S. M. Johnson, ‘The Different Roles of Satisfaction,

Trust, and Commitment in Customer Relationships’, Journal of
Marketing, 63(2), 70–87, (1999).

3535

[2] F. S. Fogliatto, G. J. Da Silveira and D. Borenstein, ‘The mass
customization decade: An updated review of the literature’,
International Journal of Production Economics 138(1), 14-25,
(2012).

[3] Y. Wang, and M. M. Tseng, ‘Attribute selection for product
configurator design based on Gini index’, International Journal of
Production Research, 52(20), 6136-6145, 2014.

[4] Y. Wang, and M. M. Tseng, ‘Adaptive Attribute Selection for
Configurator Design via Shapley Value’, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 25 (1), 189–199,
(2011).

[5] T. Randall, C. Terwiesch and K. T. Ulrich, ‘User Design of
Customized Products’, Marketing Science, 26(2), 268–280, 2007.

[6] M. Mandl, A. Felfernig, J. Tiihonen, and K. Isak, ‘Status Quo Bias in
Configuration Systems’, 24th International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems
(IEA/AIE 2010), Syracuse, New York, 105-114

[7] E. J. Johnson, S. Bellman, and G. L. Lohse, ‘Defaults, framing and
privacy: Why opting in-opting out’, Marketing Letters, 13, 5–15,
(2002).

[8] C. L. Brown, and A. Krishna, ‘The skeptical shopper: A
metacognitive account for the effects of default options on choice’,
Journal of Consumer Research, 31, 529–539, (2004).

[9] J. Wang, L. Cheng and W. Han, ‘The effect of default option on
customer decision behavior in product customization’, Proceedings of
10th International Conference on Service Systems and Service
Management, Hong Kong, 2013

[10] R. Thaler, and C. R. Sunstein, ‘Libertarian Paternalism’, American
Economic Review, 93 (2), 175-179, 2003.

[11] J. Park, and M. R. Banaji, ‘Mood and heuristics: The influence of
happy and sad states on sensitivity and bias in stereotyping’, Journal
of Personality and Social Psychology, 78, 1005–1023, (2000)..

[12] A. Tversky and D. Kahneman, ‘Judgment under Uncertainty:
Heuristics and Biases’, Science. 185(4157),1124-31, 1974.

[13] D. Jannach and L. Kalabis, ‘Incremental prediction of configurator
input values based on association rules - A case study’. In:
Proceedings of the International Workshop on Configuration
(ConfWS 2011 at IJCAI 2011). Barcelona, Spain, 2011

[14] R. Batra, O. T. Ahtola, ‘Measuring the hedonic and utilitarian sources
of consumer attitudes’, Marketing Letters 2(2), 159-170, (1991).

[15] J. Levav, M. Heitmann, A. Herrmann, and S. S. Iyengar, ‘Order in
Product Customization Decisions: Evidence from Field
Experiments’, Journal of Political Economy, 118(2), 274-299, 2010

[16] D. J. MacInnes, C. Moorman and B. J. Jaworski, ‘Enhancing and
measuring consumers’ motivation, opportunity and ability to process
brand information from ads’, Journal of Marketing, 55, 32-53, 1991.

[17] R. W. Olshavsky. ‘Towards a More Comprehensive Theory of
Choice’, in NA - Advances in Consumer Research Volume 12, eds.
Elizabeth C. Hirschman and Moris B. Holbrook, Provo, UT:
Association for Consumer Research, 465-470, (1985).

[18] A. Tversky. ‘Elimination by aspects: A theory of choice’,
Psychological Review, 79(4), 281-299, (1972).

3636

ياهو

Cost Benefit Analysis in Product Configuration Systems
Sara Shafiee1 and Alexander Felfernig and Lars Hvam and Poorang Piroozfar and Cipriano Forza

Abstract.1Companies’ reports indicate a mixture of success and
failure in Product Configuration Systems (PCS) projects.
Moreover, the attention paid to PCS across different industries is
increasing. Therefore, more studies are needed to analyze risks,
costs, and benefits of PCS. This paper uses real case projects to
demonstrate the cost-benefit analysis of PCSs in real industrial
setups. Hence, this article quantifies savings in terms of reduced
working hours, and the cost implications with reference to
development, implementation, and maintenance. The study fills the
gap in previous research by addressing what the influence of other
factors on gained cost-benefits from PCSs are likely to be. This
study aims to explain why some PCS projects are more cost-
effective than the others. While there are a number of factors
affecting the cost-benefit analysis in PCS, the focus of this study
remains mainly on the number of users and complexity of the
project. The comparison in the case studies revealed that both
factors have a positive direct correlation with the gained cost-
benefits from PCSs.

1 INTRODUCTION

Product Configuration Systems (PCS) enable companies to develop
product alternatives to facilitate sales and production processes [1].
This is achieved through incorporating information about product
features, product structure, production processes, costs and prices
[2]. PCSs support decision-making processes in the engineering
and sales phases of a product, which can determine the most
important decisions regarding product features and cost [3]. PCSs
affect the company’s ability to increase the accuracy of the cost
calculations in the sales phase and consequently increases the
products’ profitability in sales and engineering process [2].

PCSs can bring substantial benefits to companies such as,
shorter lead time for generating quotations, fewer errors, increased
ability to meet customers’ requirements regarding product
functionality, use of fewer resources, optimized product designs,
less routine work and improved on-time delivery [2], [4]–[6].
Although advantages of PCSs are evident, there are still some
difficulties associated with high cost [2], [7] and considerable
chances of failure [8] in their implementation projects.

The aim of this paper is to evaluate the influence of different
factors on the gained cost-benefits of PCS such as employees’
experiences and organizational culture [9][10]. More specifically,
the objective of the paper is to evaluate the influence of the two
factors on the cost-benefits gained from different PCS projects: (1)
number of users and (2) complexity. This study also sets out to find
out why some PCSs are more beneficial than the other PCS
projects and how the profitability of the PCS projects in the future

1 Mechanical Engineering Department, Technical University of Denmark,
Denmark, email: sashaf@dtu.dk

can be forecasted. Aiming to investigate these effects, the
following propositions were developed:

Proposition 1. The higher the number of users in PCSs, the
higher Return on Investment (ROI) and cost-benefits.
Proposition 2. The higher the complexity in PCSs, the higher
ROI and cost-benefits.
Firstly, we calculate the cost of three different projects during

their last four years. Secondly, we calculate the cost-benefits
during the last four years. In this research, we focus on the saved
man-hours in calculating the ROI on multiple case projects in one
case company, while investigating different factors influencing the
ROI. Then, the data related to the number of users in the last year
and the complexity of PCSs is retrieved. Finally, based on the
knowledge in the literature and our research propositions, we
demonstrate the results using graphs and discuss the findings.

2 LITERATURE STUDY
In this section, the relevant literatures for calculating the PCS cost-
benefits and PCS complexity are reviewed which will then be
utilized for calculating the ROI and PCS complexity in the cases of
this study.

2.1 Cost benefit analysis for PCS
The results from the literature review shows that by utilizing PCS
reduced man-hours and lead-time for generating the specifications
is acknowledged in numerous previous research [5], [11]–[28].
Forza et al. [17] demonstrate a reduction in man-hour from 5-6
days to only 1 day through using PCS. Haug et al. [18] elaborate on
how man-hours in the configuration process can be reduced by up
to 78.4%. Moreover, Hvam et al.’s [25] study indicates that after
utilization of PCS at the case company, the lead time required to
generate an offer was reduced by 94–99%. The reduction can be
traced to automation of routine tasks and elimination of the
iterative loops between domain experts, as PCS makes all product
knowledge available [29].

Several researches have quantified the benefits of PCS in terms
of reduced man-hours, lead-time and improved the quality of
product specifications. However, none of the researchers have
investigated the factors which are influencing the cost-benefit
analysis and why some of the PCS projects are more cost effective
than the others. In this research, we focus on the saved man-hours
which is a simple and quantified indicator to calculate the ROI to
fill a knowledge gap in the literature.

Discussions concerning the unpredicted costs of PCS projects
indicate that the rough estimates involved in cost analysis are
considered a challenge that needs more attention from academia
[30]. The financial benefits of PCS projects should be clear from

3737

ياهو

the beginning, and cost evaluation is important from the initiation
phase. Cost-benefit analysis is used to compare the expected costs
and benefits for different scenarios and the results from a variety of
actions [31]. ROI, which is commonly used as a cost-benefit ratio,
is a performance measure used to evaluate the efficiency of a
number of different investments [32], and has been used to
determine the profitability of PCS projects [10].

2.2 Complexity analysis for PCS
To measure the complexity of PCS, Brown et al. [33] categorize
them into three major components; 1) execution complexity, 2)
parameter complexity, and 3) memory complexity. Execution
complexity covers the complexity involved in performing the
configuration actions that make up the configuration procedure
while the memory complexity refers to the number of parameters
that system manager must remember. In this paper, the parameter
complexity is the most important category, as it measures the
complexity involved in the knowledge that domain expert provides
during the creation of the configuration model [33]. Therefore, we
assess the parameter complexity in terms of two major parameters
inside the PCS: attributes and constraints (Table 1).

Table 1. Complexity assessment in terms of parameters in PCS [34]
No. attributes No. constraints

Low complexity 500 - 1300 200-800
Medium complexity 1300-2000 800-1200

High complexity >2000 >1200

3 RESEARCH METHOD
The relevant literature was reviewed to clarify the present study’s
position in relation to existing research. This allowed us not only to
ascertain whether this research has the potential to add to the
existing knowledge but also to identify which parts of the available
knowledge are relevant to this study’s scope.

Cost-benefit analysis has been performed in different research
areas by calculating the saved man-hours, increased sales,
improved quality and reduction in errors and defects. To date, there
is no research to investigate the factors influencing cost-benefits in
PCSs and to answer why some of the PCS projects are significantly
more cost effective.

In the current research, the benefit per quote (in man-hours) and
the total cost of the projects is provided by the company. The
amount of saved man-hours before and after using the configurator
and the gained benefits based on the saved man-hours are
calculated. In this study, the total cost of each project is calculated
as the project cost, which includes the development,
implementation and the yearly running cost (such as licenses and
maintenance activities) for the last year.

In this research, we use multiple case studies to evaluate two
propositions in one ETO (Engineer To Order) company. The
company is a chemical company producing catalysts and process
plants and the selected three projects are three catalysts types. The
reason for choosing one case company is to provide the in-depth
data analysis and observed a trend between the selected factors
while all the other factors including organizational culture are
fixed. The criteria for choosing the three project (three catalyst
products) is the maximum similarities between these three PCS
projects to be able to keep other factors constant; the required

differences for the selected factors (number of users and
complexity); the similar users (engineers); Almost the same rate for
the using configurators (number of generated quotes); the same IT
team and the involvement of similar tasks during development and
maintenance; similar setup of the knowledge; similar software and
integrations.

The analysis has been performed during the last 4 years at the
case company which allows us to benefit from the strength of using
multiple case study method [35], [36]. Furthermore, case studies
provide researchers with a deeper understanding of the relations
among the variables and phenomena that are not fully examined or
understood thus far [37], for instance, the factors with an impact on
the cost-benefits from PCS projects. There are multiple data
sources such as archived documents and triangulated observations.

4 CASE STUDIES
The company selected as the case study produces highly
engineered products and technology. The market environment is
highly competitive, and thus delivery time and costs are critical.
The main motivation for implementing the PCS was to reduce the
time required to respond to customer inquiries in order to increase
the company’s overall competitiveness. Hence, in this study the
focus is on lead-time reduction that leads to reduction in resources
at the company and directly affects the cost implications.

Three selected projects from three different departments with
different number of users and complexities were selected. All three
projects are comparable as (1) they all are selected from one case
company, (2) they are highly engineered-to-order and complex
products, (3) they have been in use during the last 4 years to
support sales processes, (4) they have totally different cost-benefits
results, and (5) they have are different in terms of complexity and
numbers of users. Table 2 demonstrates the data related to three
selected sales (commercial) PCS projects. The number of users
refers to the sum of the personnel at the company who are using the
system (e.g. in Case 1, 50 users constantly use the system). The
complexity in this research is relatively studied and different
complexities in different projects is compared.

Table 2. Number of users and complexity per project

Case Studies Number of users
per PCS

Complexity of the configurator
(sum of attributes and

constraints)
Case 1 50 Medium/High = 3400
Case 2 13 Medium = 2100
Case 3 10 Low = 600

Table 3 illustrates all the figures related to the gained benefits
based on saved man-hours for each project during the last year.

Table 3. Calculation of the total benefits in DKK based on the saved man-
hours per year

C
as

e
St

ud
ie

s

N
um

be
r

of
qu

ot
es

pe
r

ye
ar

th
ro

ug
h

co
nf

ig
ur

at
or

B
en

ef
it

pe
r

qu
ot

e
in

ho
ur

s(
sa

ve
d

m
an

-
ho

ur
s)

T
ot

al
be

ne
fit

pe
r

ye
ar

(ju
st

ba
se

d
on

sa
ve

d
m

an
-h

ou
rs

)

T
ot

al
C

os
ts

(d
ev

el
op

m
en

t+
m

ai
nt

en
an

ce
+

lic
en

se
s)

pe
r

ye
ar

R
O

I

Case 1 240 10,3 987.840 527.000 90%
Case 2 295 1 118.000 157.000 25%
Case 3 270 0,6 65.000 110.000 -40%

3838

ياهو

5 DISCUSSIONS
The case study results demonstrate how the number of the users
and complexity of the configurators’ projects have an impact on
saved man-hours and cost-benefits in PCS projects.

Analyzing the correlation of the number of users to cost-
benefits, clarify the fact that if the department is larger and the
potential number of users are higher for one specific PCS, then the
expected benefit regarding saved man-hours from that configurator
is higher (Figure 1). The number of quotations generated for each
of the cases the year before are almost the same (Table 3) but Case
1 saves more man-hours which could be because the time and
number of the users for quotation process is higher compared to the
other cases.

Figure 1. The total cost benefits related to the number of users per PCS per
year

Analyzing the complexity related to the cost-benefit calculation
illustrates a trend in the benefits gained from PCS and their relative
complexity ratio. Figure 2 demonstrates a trend between the
complexity of the PCS project and cost-benefits implications.

The complexity is calculated based on the attributes and
constraints in each project and shows the size of the product as
well. The results demonstrate that if the company develops a PCS
for more complex product, the project cost will be higher (Table 3),
and the benefits will be higher conclusively.

Figure 2. The total cost benefits related to the PCS complexity PCS per
year

Figure 3 demonstrates the total cost-benefits, number of users and
complexity of each case project in one year. As discussed before,
there is a direct positive correlation between cost-benefit analysis
and both the number of users and the complexity of the project.

Figure 3. The total cost benefits, number of users, complexity per PCS per
year

6 CONCLUSION
The aim of this study was to measure the influence of the number
of users and the complexity of the PCS project on gained benefits
based on the same man-hours. The empirical data is gathered from
an ETO company based on the previous 4-year results and these
results confirmed the propositions. In detail, the gained benefit,
number of users, and the PCS complexity per year were measured.
The number of users’ data was available from the case company
and the complexity was calculated based on the number of
attributes and the number of constraints in PCS. The PCS
complexity illustrate the relative complexity in the product. In
order to be able to make the sales configurator for each of these
products, a specific number of input, outputs, and finally attributes,
constraints, and rules are required in PCS.

The analysis led to the conclusion that there is a positive
correlation between the number of users in one PCS and the level
of direct savings. The higher number of the employees indicates
that PCS can save more man-hours in that specific department. The
more complex the PCS project, the more time is needed for
developing the project which has been calculated as ROI.
However, it seems complex projects save more man-hours.
Complex PCS seem to compensate the development efforts and
maintenance hours since in such cases, more stakeholders’ time is
saved to deliver more complicated quotations.

This research is in the first step in exploring the impact of other
factors on the saved man-hours in PCS project. There are lists of
factors which can influence the PCS projects cost-benefit analysis
which can be explored in the future. These factors may be listed as
employees’ experiences and users’ expertise, level of details
included in the configurator, and organizational culture. This study
considers two specific factors as outstanding ones based on the
experience and verified two propositions. In this study, we
provided one case company and three projects with in-depth data
and we observed a trend between the selected factors. Therefore, it
requires further research and additional cases to analyze different
factors which may influence the gained benefits from PCS projects.
Further research is required to cover both the variety of companies
except the ETOs as well as a wide range of case studies.

REFERENCES
[1] A. Felfernig, S. Reiterer, F. Reinfrank, G. Ninaus, and M. Jeran,

3939

ياهو

“Conflict Detection and Diagnosis in Configuration,” in
Knowledge-Based Configuration: From Research to Business
Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds.
Morgan Kaufman, 2014, pp. 73–87.

[2] C. Forza and F. Salvador, Product information management for
mass customization: connecting customer, front-office and back-
office for fast and efficient customization. New York: Palgrave
Macmillan, 2007.

[3] L. Hvam, N. H. Mortensen, and J. Riis, Product customization.
Berlin Heidelberg: Springer, 2008.

[4] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-
Based Configuration From Research to Business Cases. Newnes:
Morgan Kaufman, 2014.

[5] C. Forza and F. Salvador, “Managing for variety in the order
acquisition and fulfilment process: The contribution of product
configuration systems,” International Journal of Production
Economics, vol. 76, no. 1, pp. 87–98, Mar. 2002.

[6] S. Shafiee, “Conceptual Modelling for Product Configuration
Systems,” Technical University of Denmark, 2017.

[7] A. Haug, L. Hvam, and N. H. Mortensen, “Definition and
evaluation of product configurator development strategies,”
Computers in Industry, vol. 63, no. 5, pp. 471–481, Jun. 2012.

[8] S. Shafiee, K. Kristjansdottir, and L. Hvam, “Business cases for
product configuration systems,” in 7th international conference
on mass customization and personalization in Central Europe,
2016.

[9] L. L. Zhang, “Product configuration: a review of the state-of-the-
art and future research,” International Journal of Production
Research, vol. 52, no. 21, pp. 6381–6398, Aug. 2014.

[10] K. Kristjansdottir, S. Shafiee, L. Hvam, M. Bonev, and A.
Myrodia, “Return on investment from the use of product
configuration systems – A case study,” Computers in Industry,
vol. 100, no. July 2017, pp. 57–69, 2018.

[11] M. Ariano and A. Dagnino, “An intelligent order entry and
dynamic bill of materials system for manufacturing customized
furniture,” Computers & Electrical Engineering, vol. 22, no. 1,
pp. 45–60, Jan. 1996.

[12] M. Aldanondo, S. Rougé, and M. Véron, “Expert configurator for
concurrent engineering: Cameleon software and model,” Journal
of Intelligent Manufacturing, vol. 11, no. 2, pp. 127–134, 2000.

[13] L. Ardissono et al., “A Framework for the Development of
Personalized, Distributed Web-Based Configuration Systems,” AI
Magazine, vol. 24, no. 3, p. 93, 2003.

[14] V. E. Barker, D. E. O’Connor, J. Bachant, and E. Soloway,
“Expert systems for configuration at Digital: XCON and
beyond,” Communications of the ACM, vol. 32, no. 3, pp. 298–
318, Mar. 1989.

[15] M. Gronalt, M. Posset, and T. Benna, “Standardized
Configuration in the Domain of Hinterland Container Terminals,”
Series on Business Informatics and Application Systems
Innovative Processes and Products for Mass Customization, vol.
3, pp. 105–120, 2007.

[16] C. Forza and F. Salvador, “Product configuration and inter-firm
coordination: An innovative solution from a small manufacturing
enterprise,” Computers in Industry, vol. 49, no. 1, pp. 37–46, Sep.
2002.

[17] C. Forza, A. Trentin, and F. Salvador, “Supporting product
configuration and form postponement by grouping components
into kits: the case of MarelliMotori,” International journal of
mass customisation, vol. 1, no. 4, pp. 427–444, 2006.

[18] A. Haug, L. Hvam, and N. H. Mortensen, “The impact of product
configurators on lead times in engineering-oriented companies,”
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, vol. 25, no. 2, pp. 197–206, Apr. 2011.

[19] M. Heiskala, J. Tiihonen, and K. Paloheimo, “Mass
customization of services: benefits and challenges of configurable
services,” in Frontiers of e-Business Research (FeBR 2005),

2005, pp. 206–221.
[20] M. Heiskala, K. Paloheimo, and J. Tiihonen, “Mass

customization with configurable products and configurators: a
review of benefits and challenges,” in Mass customization
information systems in business, no. C, Finland: IGI Global,
2007, pp. 75–106.

[21] J. Heatley, R. Agarwal, and M. Tanniru, “An evaluation of an
innovative information technology - the case of carrier expert,”
Journal of Strategic Information Systems, vol. 4, no. 3, pp. 255–
277, 1995.

[22] L. Hvam, M. Malis, B. Hansen, and J. Riis, “Reengineering of the
quotation process: application of knowledge based systems,”
Business Process Management Journal, vol. 10, no. 2, pp. 200–
213, 2004.

[23] L. Hvam, “Mass customisation in the electronics industry : based
on modular products and product configuration,” International
Journal of Mass Customisation, vol. 1, no. 4, pp. 410–426, 2006.

[24] L. Hvam, “Mass customisation of process plants,” International
Journal of Mass Customisation, vol. 1, no. 4, pp. 445–462, 2006.

[25] L. Hvam, A. Haug, N. H. Mortensen, and C. Thuesen, “Observed
benefits from product configuration systems,” International
Journal of Industrial Engineering: Theory, Applications and
Practice, vol. 20, no. 5–6. 2013.

[26] T. D. Petersen, “Product Configuration in ETO Companies,” in
Mass customization information systems in business, 2007, pp.
59–76.

[27] J. J. Sviokla, “An Examination of the Impact of Expert Systems
on the Firm: The Case of XCON,” MIS Quarterly, vol. 14, no. 2,
p. 127, 1990.

[28] M. Yoshioka, M. Oosaki, and T. Tomiyama, “An Application of
Quality Function Deployment to Functional Modeling in a
Knowledge Intensive Design Environment,” in Knowledge
Intensive CAD Vol 1, no. January, Springer US, 1996, pp. 300–
314.

[29] S. Shafiee, K. Kristjansdottir, L. Hvam, and C. Forza, “How to
scope configuration projects and manage the knowledge they
require,” Journal of Knowledge Management, vol. 22, no. 5, pp.
982–1014, 2018.

[30] S. Shafiee, L. Hvam, and M. Bonev, “Scoping a product
configuration project for engineer-to-order companies,”
International Journal of Industrial Engineering and
Management, vol. 5, no. 4, pp. 207–220, 2014.

[31] A. C. Haddix, S. M. Teutsch, and P. S. Corso, Prevention
effectiveness: a guide to decision analysis and economic
evaluation. Oxford University Press, 2003.

[32] P. A. Lemoine, H. C. Woodard, and M. D. Richardson, “Return
on Investment,” in Handbook of Improving Performance in the
Workplace, Volume Two: Selecting and Implementing
Performance Interventions, 2010, pp. 302–308.

[33] A. B. Brown, A. Keller, and J. L. Hellerstein, “A Model of
Configuration Complexity and its Application to a Change
Management System Aaron,” IEEE Transactions on Network and
Service Management, vol. 4, no. 1, pp. 13–27, Jun. 2007.

[34] S. Shafiee, L. Hvam, A. Haug, M. Dam, and K. Kristjansdottir,
“The documentation of product configuration systems: A
framework and an IT solution,” Advanced Engineering
Informatics, vol. 32, pp. 163–175, 2017.

[35] A. H. Van de Ven, “Nothing is quite so practical as a good
theory,” Academy of Management Review, vol. 14, no. 4, pp.
486–489, 1989.

[36] D. M. McCutcheon and J. R. Meredith, “Conducting case study
research in operations management,” Journal of Operations
Management, vol. 11, no. 3, pp. 239–256, Sep. 1993.

[37] J. Meredith, “Building operations management theory through
case and field research,” Journal of Operations Management, vol.
16, no. 4, pp. 441–454, 1998.

4040

Do You Read Me? On the Limits of Manufacturing Part
Numbers for Communicating Product Variety

Aleksander Lubarski1,2 and Frank Dylla2,3 and Holger Schultheis3 and Thorsten Krebs2

Abstract. Manufacturing part numbers (MPNs) are used to
communicate product variety both for internal purposes and for
external representation to customers. To simplify this
communication, MPNs have been originally developed as human-
readable abbreviations of those characteristics that uniquely identify
a product variant out of a modular system, thus acting both as an
identifier and a description. However, the increasing complexity of
customer requests forces component manufacturers to expand their
product portfolios, thus pushing the descriptive character of a classic
MPN to its limits. Ongoing digitalization drives product
identification towards fully-digital possibilities. Nevertheless, in
reality component manufacturers still rely on MPNs. Against this
background, the purpose of this paper is to analyze the cognitive and
systemic characteristics of the MPN with regard to the underlying
product structure (PS). As a result, we derive evaluation criteria for
the quality of mappings from PS to MPN and apply them to typical
business use cases. In doing so, we provide the first systematic
overview and discussion of factors that determine MPN’s utility and
usability as well as give practical guidelines for component
manufacturers regarding the selection of appropriate MPN types.123

1 INTRODUCTION
With the growing trend of customization and the overall direction
towards a lot size of one, manufacturers are facing new requirements
of representing their product portfolio in a clear and structured way,
as well as understanding their customers’ demands. This is a concern
particularly in the business-to-business (B2B) markets, where
complex machines (and even machine parts) consist of numerous
modular elements, thus offering almost unlimited configuration
possibilities to the customers. For example, compared to a BMW
series 7 who offer as many as 1017 possible variants [1], Lenze AG
claims to have up to 1030 configuration possibilities just for their
gear motor, each of which resulting into a separate identifier.
However, if not structured properly, an unnecessarily high product
variety can become counter-productive, since customers can get
confused about the differentiation among product variants [2]. In
this way, while a modular product structure promises a compromise
between customer-driven customization and manufacturer-
motivated standardization [3], the structuring and the
communication of “what’s possible and at what price” is a very
important, but also a challenging task.

1 Industrial Services Group, University of Bremen, lubarski@uni-bremen.de
2 encoway GmbH, {aleksander.lubarski, frank.dylla, krebs}@encoway.de
3 Bremen Spatial Cognition Center, University of Bremen,
{dylla, schulth}@informatik.uni-bremen.de

In this context, alphanumeric strings have been used to
communicate product variety both for internal purposes and for
external representation to customers [4]. For referring to these
strings various denominators are common practice, e.g., type code,
order code or ID, part ID or number. For reasons of simplicity, we
will use the term manufacturing part number (MPN, see Section 2.3)
throughout this paper. MPNs are codifications of product

characteristics or functions (e.g., information on its structure,
material composition, production process) and act as a distinct
identifier of a certain product combination (Figure 1). Typical use
cases for MPNs range from initial product search to reordering or
maintenance of a particular machine. Within this paper, we focus on
the appropriateness of such numbers for the purpose of
communicating product variety, i.e., visible features. In practice,
oftentimes the corresponding stakeholder is provided with relevant
supplementary documents that explain the structure and the logic of
the MPN and accelerate the process of “deciphering” its information
(e.g., tables, graphs, dictionaries). However, although originally
developed to be human-readable in order to simplify the customer-
supplier communication, we ask the following questions, since
many things have changed:

Is it still necessary and monetarily reasonable to use MPNs that
are human-readable4?
Where are the limits of different MPN types and what should
the selection of the appropriate MPN depend on?

In particular, there exist various reasons to switch to a completely
digital MPN. First, the descriptive character within any human
interaction works only as long as a certain length and complexity of
the MPN is not exceeded [5]. For products with a rich variety the
number of product characteristics and, consequently, configuration
possibilities, is very high. In this way, at some point, the MPN may
become too complex and confusing for involved stakeholders. In
case a customer is not able to fully understand how a specific MPN
relates to the corresponding product may result in delays or incorrect
orders, potentially damaging the customer-supplier relationship.

4 In this publication we define “human-readable” as the code feature to be
read and comprehended by the human, while “machine-readable” or
“digital” can be processed solely by a digital medium

Figure 1. Exemplary MPN structure for a rotor system (Lautner GmbH)

4141

Second, since B2B customers have to deal with dozens of such
structures a day from different suppliers, they are no longer willing
to invest their time in understanding the internal product structure of
each of their partners [6]. This leads to the overall decline of the
technical know-how in the market, thus making human-readable
MPNs containing these technical details rather obsolete. Third,
company mergers and acquisitions may result in inconsistencies and
redundancies in the data management5 [7]. On the one hand, both
companies could have similar nomenclatures (or even same serial
numbers for different products), thus causing confusion for the
future product handling. On the other hand, the customers of the
company would get an additional structure to deal with, thus
increasing the complexity of variant management and
communication.

Nevertheless, despite all advantages mentioned above, it would
be narrow-minded to claim that a digital (i.e., only machine-
readable) MPN is a universal solution for the efficient
communication of the product variety for every manufacturer. The
most obvious argument against the abolishment of human-readable
MPNs is the complete dependency on a digital device (e.g., QR code
reader, barcode scanner) to read and understand the MPN. Examples
of situations when this could be problematic include product
manufacturing, where a person using an MPN as a guideline for
assembly would have to interrupt the production process, or general
network coverage problems leading to the inability to use a central
referral database. As for other non-functional requirements, the
transition to the digital MPN would result in additional hardware-
related costs as well as general efforts for restructuring. Moreover,
such an initiative could also meet the opposition of the users
themselves, who are generally reluctant to any structural changes,
since they are used to the way the things are currently handled [8].
Finally, since a digital MPN has all the freedom regarding how much
information it can hold and thus communicate, product
manufacturers might get tempted to put too much information (if not
all of it) in one single digital ID, e.g., a QR-code, thus overwhelming
their customers, who would spend additional time for finding the
relevant information [9].

Overall, while digital identifiers such as RFID integrated into
ERP systems have been proposed more than a decade ago, the reality
shows that product and part manufacturers are still far away from
the best practice, which calls to find out why. Motivated by the
heterogeneity of the involved stakeholders and an overall specificity
of product configuration in the B2B markets, we believe that
different MPN structures are needed depending on respective
application scenarios. Therefore, by applying methods from
information theory and insights from cognitive science we analyze
relevant characteristics of MPN as well as define evaluation criteria
for how well the MPN can map the underlying product structure
(PS). By showing that there exist five typical business use cases and
thus no universal MPN we contribute to the theoretical discussion
on knowledge representation and pave the ground for further
research. In addition, as current pragmatic solutions of the
practitioners are rather narrow-minded without considering their
efficiency, we give practical guidelines for the selection of an
appropriate MPN.

The remainder of this paper is organized as follows. After giving
a short overview of the theoretical background in Section 2, the
aspects of MPN and PS, as well as evaluation criteria of the MPN-

5 Project experience of the authors shows that these kinds of problems may
arise even between units of the same company.

PS mapping are explained in Section 3. The evaluation criteria are
then applied to the typical business use cases in Section 4. The paper
concludes with a summary of the results, possible limitations as well
as future research opportunities.

2 THEORETICAL BACKGROUND

2.1 Code Function and Code Word
In general, a code is an agreement on sets of meaningful symbols for
the purpose of information exchange between a sender and single or
multiple recipients (e.g., [10], [11]). For this purpose, the sender
encodes the information, which needs to be decoded by the recipient
with the same coding schema. From a mathematical perspective, a
code is an injective mapping from a domain element () to an
element of an image set (). Furthermore, the resulting image
must not be empty: :
In the context of codes and are considered finite alphabets, i.e.
arbitrary sets of symbols with a limited number of elements. In
general, codes can be applied for abstracting or abbreviating
information and its dependencies. In that sense, not only the Morse
code or the internet acronym LOL (“laughing out loud”) is a code,
but also traffic lights.

From a communication perspective, a code is a translation from
the sender’s original information or message to some
communication means (encoding or encryption), e.g., digital
impulses, sound or flags. If the code function is known to the
recipient, the original information becomes easily decodable
(decoding). Otherwise, the recipient is not able to restore the
information at all (no decryption possible). Each code word (a
sequence of symbols), which is derivable by the code function, is
called a valid code word. Following these definitions, the transfer
from a product structure (PS), i.e., simplified a set of product
characteristics with certain values, to some part number, e.g. an
MPN. The code function is the schema which characteristics are
considered and how the corresponding values are represented in the
resulting code word, i.e., a product-specific MPN. In the remainder
of the paper, in general, we will not distinguish between the code
function and the resulting code word and use the term ‘code’
synonymously.

The application of codes is closely related to efficiency, which is
achieved by reducing complexity regarding the original information,
i.e. by abstraction, abbreviation, or compression. As it takes the
effort to design a code, a code gets more efficient the more often it
is used. Additionally, some codes use a modular architecture (i.e.
decomposition of a complex system in separate functional units) for
reasons of efficiency.

With this theoretical background in mind, we consider the
relation between code functions and MPN generation from a
psychological perspective in more detail in Section 3.

2.2 Variant Management
Due to a high level of heterogeneity and a tight customer
involvement both in the product design and manufacturing [12],

4242

B2B manufacturers are constantly searching for new ways of
standardization without diminishing their ability to go the last mile
for their customers [13]. In this context, the introduction of the
modular product design (i.e. building a complex system out of
exchangeable modules with a clear function and defined
connectivity interfaces) has led to a series of organization and
production changes, thus expanding configuration possibilities
almost exponentially [14]. This resulted in the introduction of such
manufacturing concepts as Mass Customization [15] and an overall
higher interdependence of the supply chain partners.

However, while a modular product structure promises a
compromise between customer-driven customization and
manufacturer-motivated standardization [16], the variant
management throughout the whole product lifecycle becomes
increasingly challenging. A good overview of the sources of
complexity in engineering design and manufacturing is given in [5],
where complexity is considered as a multi-faceted measurement that
is influenced both by endogenous and exogenous drivers.

ElMaraghy et al. [17] define variety as “a number or collection
of different things of a particular class of the same general kind”,
with a variant being an instance of a class that exhibits (slight)
differences from the common type. The overall goal of modular
product structures is the minimization of inner variety while
maximizing outer variety. In other words – to offer customers as
many individualized products as possible with as few parts in
production as possible [16]. Additionally, when talking about
variant management it is reasonable to differentiate between its two
levels – strategic and operative. While the strategic level
concentrates on “determining and mastering the variety of the
product portfolio in such a way that it is aligned with the competitive
and the product strategy”, the operative level implements and
secures the overall variant strategy [18]. This publication focuses on
the operative level since MPNs are used for the identification and
representation of a certain product instance or a category of product
combinations, thus supporting the actual implementation of variant
management. At this point, we assume that a modularization process
has already been conducted and a modular product structure is
already given as an input. More information on these steps can be
found in [16].

The challenge of operative variant management resulted in the
emergence of a specific market for so-called CPQ-systems [19],
which can be integrated into existing enterprise software. CPQ
software enables product configuration (C), its respective pricing (P)
and creation of a unified quote containing all necessary information
of the offer (Q). While these quotation documents contain all the
details about the desired machine or its component, MPNs are a
more compact information representation used for internal and
external communication of the product variants and variant
identification. As of today, both the topics of CPQ-systems and
MPNs have not been devoted enough academic attention, even
though they are used in practice on an everyday basis.

2.3 Product Identifiers
Since the topic of variant management and product identification
involves different research disciplines such as engineering,
marketing, information systems or even psychology, there exist no

6 For example, the manufacturing company SEW has a 15-page document
showing the structure of their MPN.

universal definitions or terminology. The challenge lies in the
applied nature of the topic and its historical development – not only
do the terms and labels differ between companies (especially across
different domains and fields of operation), but sometimes even
within the same company, depending on the department and the use
case. For example, the term “type code” is often used for the
description of product groups, even though this term has already
established itself in the context of digital storage media, e.g., DVD
and Blue-ray [20]. Other misleading terms for the same purpose
include “Product Key” or “Type Designation Key”, which are used
either when installing software programs or when describing
specifications and configurations of computer drives [21]. The fact
that there exists no standard (international) specification or central
point of reference makes it even more confusing for the
communication with partners and customers.

Irrespective of the use case, each product or service needs a
certain description for the purpose of identification and explanation,
containing compressed information in the form of characteristics.
Oxford Dictionary defines Identifier (ID) as a sequence of characters
used to identify or refer to an element, such as a variable set of data.
Such an ID can refer either to a unique class of objects with a certain
level of abstraction (i.e. products that are grouped based on a certain
set of characteristics while, possibly, ignoring further details), or be
used for an identification of a specific physical object. A typical
example of the object identification is a serial code or Serial Number
(SN), which is usually comprised of numerals even though other
typographical symbols are also possible. In most cases, the SN is
built with no particular logic or predefined structure, as it is assigned
incrementally or sequentially to an item in the production [22] and
thus cannot be read or interpreted by any of the stakeholders. On the
contrary, Manufacturer’s Model Number (MMN) is a solely
marketing-driven succinct and catchy description with the purpose
of evoking certain associations and interpretations when being
communicated to the customers. However, the inevitable problem
with the MMN is its necessary level of abstraction – driven by either
customer’s cognitive capacity (e.g., the ability to remember a certain
string) or system limitations (e.g., input fields of ERP systems are
often limited in length), the MMN has to concentrate only on the
most important product characteristics (e.g., iPhone SE 64 GB
black) thus neglecting other valuable product information [4].

Against this background, a compromise between production-
driven machine readability and marketing-driven human-readability
can be reached by using the term Manufacturer’s Part Number
(MPN) [23], which is the focus of our publication (Figure 2). While
also being an identifier for a unique class of objects just like MMN,
the MPN contains much more information and is historically built
upon a certain predefined structure, which is often sent directly to
the customer.6 Here, an SN is a particular instantiation of an MPN
acting as an identifier within a certain context. Therefore, an SN
alone cannot be used as a unique identifier (UID), i.e., guaranteed to
be unique among all identifiers used for those objects and for a
specific purpose, as companies may have identical serial number
systems for different products within their product portfolio. Instead,
a UID can be created by combining both the MPN and its particular
instantiation SN, e.g., “Model X” and “Serial Number 238912”.
From a mathematical point of view, an MPN is a code word, which

4343

is derived by a code function from the product structure taking a
subset of characteristics into account (cf. Section 2.1).

3 MPN-PS MAPPING EVALUATION

3.1 Methodology
For the purpose or transparency and traceability of our results, we
first give an overview of the methodology used in this paper (Figure
3). It consists of the metaphases Orientation and Application of the
MPN, each containing two consecutive steps along with the applied
technique (textual description) and preliminary results (rectangles).

Figure 3. Overall paper methodology

Due to the applied nature of our research, first, we contacted the
practitioners in order to identify current problems in variant
management and product configuration (Step 1). For this, we
cooperated with one German consulting company, which specializes
in CPQ-Software for complexity reduction and simplification of the
quotation process. By conducting semi-structured expert interviews
[24] with eight of its previous customers, we were able to gather first
insights on the challenges concerning MPN and confirm that
different use cases require different types of MPN (Result A).

As a second part of the orientation phase, we then conducted a
systematic literature review (Step 2). Sadly, despite its practical
importance, the topic of MPN structure and its deployment has not
received enough academic attention yet. Therefore, in order to place
our research within an ongoing theoretical discussion, we also
looked at the adjacent topics of variant management, complexity in
manufacturing, and production identifiers. In this way, we were able
to identify various MPN aspects, which are relevant for the
communication of the product variants (Result B).

The second phase dealt with the application of the MPN in the
real-life context. For instance, based on the results from the
orientation phase we were able to derive systemic and cognitive
evaluation criteria for the MPN-PS mapping in Step 3 (Result C).
Since this publication is meant to open a discussion on the topic, we
did not provide any specific metrics but remained merely on a
conceptual level. Finally, with the help of the conducted expert
interviews and based on our own experience from previous projects
in Step 4 we defined five business use cases for the MPN
deployment, including stakeholder description and requirements for

the MPN. In this way, it was possible to show that there exists no
universal MPN, but rather that its selection depends on certain
industrial, company, and customer characteristics (Result D).

3.2 Formal definition
While it may seem that an MPN is just a string of characters, it has
numerous systemic and cognitive aspects, which influence its
communication and variant management in general. In this context,
MPN generation can be seen as a specific mapping that is used
to represent a given (fixed) product structure in an understandable
way (cf. Section 2.1), aiming to be both complete and easy to use
(Figure 4). With different product structures and company’s
specificities, there are many ways to approach such a mapping,
ranging from a mere enumeration of all possibilities up to the
complex nested configurable structure, meaning that the quality of
the mapping can be evaluated for a specific context. We define such
an evaluation function of mapping with respect to a specific
need or application of the generated MPN, defined by a set of
evaluation criteria = [, … ,] and corresponding outcomes =[, … ,]: (,) = [0. .1]
Based on the insights from the expert interviews (Figure 3, Step 1)
and literature review (Figure 3, Step 2), in this publication, we
concentrate on the general mapping and the definition of the
corresponding evaluation criteria as well as their testing for different
use cases. The subsequent optimization problem, i.e. finding an
optimal MPN with respect to a given set of criteria, is beyond the
scope of the publication and is left for the future research.

3.3 Product and MPN structure
When talking about the evaluation of the MPN it is important to
differentiate between two different types of structure (Figure 4).

The Product Structure is a rigid arrangement of elements that is
used to depict product compositions and configuration possibilities.
Unlike the MPN structure, the actual product structure (i.e. what
elements a complex machine consists of, what possible
combinations are there, etc.) states the core of the value proposition
and thus cannot be changed. In this regard, the Number of Product
Characteristics shows which parts of a complex product can be
substituted or exchanged if desired. Similarly, such a modular
product composition and interface specifications determine the
Configurable Variety, thus enabling satisfaction of customer
heterogeneous requirements. However, as mentioned earlier, a

Figure 4. Depiction of the product structure with the use of MPN

Figure 2. Different identifiers and their interrelationship

4444

higher configurable variety does not necessarily mean a better
portfolio, since an excessively high variety can even be counter-
productive, as customers can get confused about the differentiation
among product variants. Finally, the actual Composition of the MPN
along with the sequential arrangement of the characteristics within
is influenced by the product structure. In other words, the
stakeholder is able to read and understand the information encoded
in the MPN only as long as he/she knows what symbol is responsible
for what characteristics.

The MPN structure, on the other hand, is flexible and can be
adjusted according to the company’s preferences. A cleverly picked
MPN can enhance human understanding and thus its overall
manageability and understandability, whereas a bad MPN may
confuse both the company employees as well as their customers.
This includes the Length of the MPN, which may sometimes be
challenging, since many ERP systems (e.g., SAP) have an integrated
limit on the string length, thus indirectly forcing product
manufacturers to use shorter codes [4]. Another important MPN
characteristic is an average Characteristics Richness showing how
many variants are encoded inside single characteristics. This aspect
is especially important if the MPN is human-readable and a person
operating it has to remember all the variants of every characteristic
by heart. Finally, the amount of configurable feasible solutions is
limited by the applicable logical rules (e.g., IF, XOR, AND), which
can be summarized by the aspect Dependency Density. Although
acting as a limitation to the possible solution space, dependency
density increases the complexity of the MPN and thus its
applicability by a human stakeholder. Looking at the long-term life-
cycle of products, another central aspect is the Extensibility of the
MPN. This is particularly important for products, which are still in
the development and it is foreseeable that new characteristics may
be added according to customer’s preferences or market’s
development, e.g., by adding functionality by software updates. The
level of extensibility can hereby range from practically impossible
(e.g., rules defining the MPN structure prohibit any further
extension) or cost-inefficient (e.g., requiring database connectivity)
to complete freedom (e.g., no limitations within a digital MPN).
Finally, the choice of MPN Representation type predefines how it
will be used between the involved actors. Three possible types of
MPN representation can be differentiated, each with its advantage
and limitation: (i) human understandable MPN that can be read and
assessed without any additional help, meaning that human operator
needs to know the MPN structure and characteristic meaning by
heart; (ii) human readable MPN that can be read and assessed using
a certain (analog or digital) code translator or additive requiring a
certain level of know-how of the user; (iii) machine-readable MPN
that can contain almost unlimited amount of coded information
within product characteristics, without any know-how requirements
for the user, but with a high dependency on a digital scanner.

3.4 Mapping evaluation criteria
Once an appropriate MPN and a clear mapping of the product
structure to the MPN is created, the question arises how well a
human can employ it, with or without any auxiliary means, i.e. how
complex the code function is w.r.t. human processing (cf. Section
2.1). If we abstract from specific company restrictions or personal

7 Due to its direct connection to the fuel type Diesel it is also considered as
“Turbocharged Diesel Injection”.

preferences, the human user should be able to map the MPN to a
corresponding product 1) quickly, 2) with acceptable accuracy, and
3) without extensive learning. A prerequisite for achieving this is
that the MPN and the mapping realized by it are conducive to the
way in which humans process information. For example, consider
the acronym "TDI" to characterize a property of car motors. If
confronted with this acronym in the context of cars, people may
already "know" that the car being under consideration has a diesel
motor with "Turbocharged Direct Injection".7 At this point, the
question arises: how or why do people know this? If observed
separately, these three letters "TDI" could also stand for something
else, e.g., "Total Dream Interior", thus describing some arbitrary
aspect of the car. The only source for this knowledge is the memory
of the person having to deal with the acronym. In other words – the
working and usability of MPNs for human users relies critically on
the memory capacity of the human user.

The human cognitive system is commonly conceived as
consisting of several different types of memory stores [25]. For
reasons explained in the following, the two types of stores most
relevant for our considerations with regard to MPNs are working
memory (WM) and long-term memory (LTM). Information recently
having or currently being processed resides in WM. As such, WM is
assumed to be limited in capacity as well as in the duration that
content will remain accessible. Although exact estimations vary it
seems clear that no more than 10 items of information can be
maintained simultaneously [26, 27]. If the information in WM is not
used, it will be lost within a few seconds [28]. Human LTM, on the
other hand, can store vast amounts of information (see [29] for
estimates) over very long time spans (just think of old people telling
stories from their childhood). In fact, depending on the usage
frequency, information from LTM can be retrieved into WM and
information residing in WM may be transferred to LTM for more
permanent storage. Going back to the "TDI" example, it seems most
likely that knowing that "TDI" signifies "Turbocharged Direct
Injection" is retrieved from LTM. If it was not the case, it would
have had to be maintained in WM since first learning what "TDI"
means. This may be the case when someone first tells you what
"TDI" means in the domain of car motors, but on later encounters, it
seems unlikely that the meaning of the acronym has been constantly
maintained in working memory for the whole time. Given that LTM
plays a central role in the human use of MPNs, it is instrumental to
consider some of the properties of how information is represented
and organized in LTM. Two properties seem particularly
noteworthy.

First, human LTM is associative [30]. Certain concepts/pieces
of information are associated with each other such as, for example,
the concept of "fire" is associated with the concept of "heat". In
particular, these associations are a major means of retrieving
information from LTM. If a current item in WM is sufficiently
strongly associated with some other piece of information in the
LTM, retrieval of this other information is greatly facilitated. If, for
instance, "TDI" is sufficiently strongly associated with
"Turbocharged Direct Injection" in the context of cars, seeing the
acronym will allow retrieving the desired information.

4545

Second, knowledge organization in human LTM is hierarchical
[31, 32]. This means that human LTM has a tendency to be
organized into categories, subcategories, and concrete instances. If
asked to enumerate properties/instances in a certain domain, people
will often enumerate aspects (sub)category after (sub)category. Vice
versa, if people are asked to memorize a (large) list of properties, the
ability to memorize the given information increases considerably, if
the material can be (and is) organized hierarchically. Having
expounded the crucial characteristics of human memory, we now
relate them to the readability, learnability, and processing speed of
MPNs.

3.4.1 Readability / Learnability

In the context of this publication, we consider an MPN readable, if
a human user can map each MPN to the corresponding product (a)
virtually without error and (b) without any supporting material (e.g.,
tables, software). Thus, the following requirements have to be met:

The MPN has to be short enough to be held in WM completely
or it has to consist of several meaningfully separable parts, each
of which is short enough to be held completely in WM.
The MPN or its meaningful parts have to be sufficiently
strongly associated in LTM with the product aspects they
represent.

The first requirement seems comparatively easy to achieve. A ten-
arity code using letters and ciphers is able to represent about 3510

different product variants. The second requirement is tightly related
to the learnability of the MPN, that is, to the feasibility of acquiring
all necessary associations and the speed with which they can be
acquired. As a result, the second requirement is much harder to
satisfy as soon as we are dealing with large-scale variant spaces.
There seems to be an upper limit of only around 5000 arbitrary
associations that human LTM can store, while learning a good 3000
arbitrary associations took a whole year (incremental training with
three sessions each day) [33]. If the human user is supposed to go
beyond such limitations, the code either needs to build on and reuse
existing associations or the code has to be organized hierarchically
or both. The simplest form of reuse is to employ non-arbitrary
mappings. For example, in the case of "TDI" the acronym is much
easier to memorize than arbitrary acronyms (e.g., "XYZ"), because
the letters in the acronym are the starting letters of the crucial words
in the product description and, thus, the letters are already associated
with the target words. More elaborate forms of reuse may involve
exploiting more domain-specific knowledge of the human users. A
hierarchical organization of the code would allow reducing the
number of associations that need to be stored at each level of the
hierarchy, while still allowing to cover a large variant space with the
MPN. For example, the first digit of the MPN may signify whether
the product is a car or a motorbike with the remainder of the key then
being specific to the type of vehicle (car or motorbike). The upper
limit of possible associations that can be stored when drawing on
existing knowledge and hierarchical organization is hard to predict
and will probably also depend on the individual user. Nevertheless,
it is clear that the readability/learnability of the MPN increases:

The more easily (parts of) the MPN can be maintained in
working memory,
The fewer associations have to be memorized,
The more previous knowledge can be drawn on, and
The clearer it can be structured hierarchically.

3.4.2 Processing speed

Processing speed can be assumed to be directly related to the length
and the complexity of the MPN: The shorter the MPN and the less
complex (i.e., the fewer associations) the faster the human user will
be able to map the MPN to the product. Direct mappings can be
assumed to be faster than hierarchical mappings, because each level
in the hierarchy requires a separate mapping, while a direct mapping
– once sufficiently learned – involves only a single mapping process.
If a hierarchical MPN is employed, the order in which MPN parts
signifying different (sub)categories appear in the MPN will have an
influence in processing speed. At least in western culture languages,
representing highest to lowest (sub)categories by MPN parts ordered
from left to right (the predominant reading direction) will likely lead
to faster MPN processing than other orderings. Consequently, the
processing speed of MPN increases

The shorter the MPN,
The fewer associations are involved,
The fewer hierarchical levels are involved, and
The more the ordering of the hierarchy levels in the MPN
corresponds to the reading direction.

4 USE CASES
Motivated by the diversity of the customer requirements and
specificity of product configuration in the B2B markets, we propose
five different application scenarios also referred to as “use cases” in
the context of business modeling [34]. The use cases are based on
the expert interviews and insights from the previous projects (Figure
3). To ensure comparability, we describe each of the use cases using
following characteristics: (i) role of the involved actor, (ii) his/her
aim and objective, (iii) current know-how level in the field, as well
as (iv) what is expected from the desired solution. Consequently,
with the help of the previously introduced evaluation criteria, we
derive individual MPN requirements for each of the use cases (Table
1). For simplicity reasons, the costs relating to the implementation
and maintenance of a specific type of MPN (e.g., establishing the
new MPN structure, employee training, structure maintenance) is
beyond the scope of this paper but should be considered in future
research.

Starting with the customer side, one particular type of users is a
Rare Guest, who is characterized by a low frequency of MPN use
and the need for a specific (one-time) solution. These customers
have little to none expert knowledge on the topic, either because of
the involvement in various supply chains or due to the overall
unwillingness to deal in detail with the product structure of the
particular manufacturer. Their expectation towards the
communication of product variety is a mere satisfaction of their
request with as little effort as possible. In this way, the rare guest
would not appreciate the efficiency of the MPN (e.g., through the
digitalization), but would be disappointed if standard functionalities
are not functioning properly. At the other end of the spectrum, there
is a Power User. Unlike the rare guest, the power user deals with the

4646

respective MPN on a regular basis. Due to the high level of know-
how both regarding the operating industry and the MPN structure,
the power user is interested in a fast interaction and comparability of
different variants within this particular manufacturer, in order to
attain the optimal solution for a specific situation. Typically, power
users are established via long-term cooperation between companies
and would be interested in a high learnability of the MPN. Moreover,
they personally would even get averse to switch to a purely machine-
readable MPN, since this would make their own know-how obsolete.

The last external stakeholder of the MPN we consider is the
Purchasing department, who already has a particular product
configuration in mind. Similar to the rare guest, the purchasing
department has little interest in the product itself (or its
configuration), but mostly focuses on getting the best price and most
suitable delivery time. In addition, due to the overall desire for
comparability across different manufacturers, the purchasing
department seeks understandability and simplicity of the MPN and,
if possible, the establishment of an industry-wide standard.

Apart from the customer-driven requirements towards the MPN,
manufacturer’s internal departments have their own, often
contradictory expectations. For example, the Sales department uses
MPN for selling, searching, and configuring product variants in a
simple and quick manner. Similar to the purchasing department of
the customer, the internal sales department seeks a practical and
catchy MPN structure, which can be used for the external
representation of a large quantity of (homogeneous) products. With
the level of know-how varying according to the position and the
seniority of the sales employees, the efficiency of the sales
department is dependent either on the learnability of the human-
readable MPN or on the increase of the processing speed due to its
digitalization.

Finally, the employees working in the internal Production
department of the company are looking for an MPN, which would
both contain information on the internal structure of the product and
have a high level of learnability. Their daily usage of the MPN
involves the identification of the required parts and their assembling
sequence. With a highly specific background knowledge and fast
production processes, production employees would appreciate a
digital MPN only if it can assure a low error rate and not obstruct or
slow them down in their daily activities.

5 CONCLUSION AND OUTLOOK
With the increasing customer demands for individualization and an
overall growing complexity of B2B products, part manufacturers are
facing new problems of communicating their product variety in a
transparent and efficient way. In this context, MPNs are used as
codifications of those characteristics that uniquely identify a product
variant out of a modular system, thus acting both as an identifier and
a description. While academia has not yet devoted enough attention
to the topic of MPN, we believe that a correct deployment of the
MPN is a key step to efficient variant management. Therefore, in
this publication, we analyzed the main systemic and cognitive
aspects of the MPN and derived evaluation criteria (i.e. readability,
learnability, and processing speed) for its mapping on the underlying
product structure. We then mapped these evaluation criteria on
various use cases of the internal and external stakeholders, thus
showing that there exists no ideal MPN, but instead it should be
created depending on the respective application scenario.

This publication also highlights important topics for future
research endeavors. First, despite a detailed analysis of the existing
literature on manufacturing complexity combined with personal
project experience of the authors, we believe that there exist
additional aspects of the MPN and the product structure. Similarly,

Table 1. Various use cases regarding the deployment of MPNs
External Internal

U
se

 c
as

e
de

sc
ri

pt
io

n

Role Rare Guest Power User Purchasing Sales Production / Logistics
Goal Identification,

searching,
configuration

Identification,
searching,

configuration

Acquisition,
reorder

Sale, searching,
configuration

Overview of the
internal structure

Use Case Solution of an
application

problem

Finding an optimal
variant for a

specific situation

Best price and
delivery time

Suitable product,
possible large

quantity

Fast identification of
the required parts and
their assembling. Low

error rate
Know-
How

Low background
knowledge

High background
knowledge

Little interest in the
product

Diverse (internal
vs. external sales,

seniority)

High background
knowledge (highly

specific)
Desired
Solution

Description of the
problem, not

technical detail

Fast interaction,
comparability of

the variants

Comparability
across different
manufacturers

Same description
of the homogenous

products

Fast transfer (e.g.,
location of a product

part)

M
PN

 re
qu

ir
em

en
ts

Read-
ability

No preferences, as
long as it

functions right

Human-understan-
dable (without any
auxiliary means)

Type of readability
that enables

supplier
comparability

Catchy type and
structure that can

be used for
marketing

Human-understandable
(without any auxiliary

means)

Learn-
ability

Not needed, since
no intentions for

reuse

High expectations
towards the logic of
the MPN structure

Not needed, since
no intentions for

reuse

High expectations
towards the logic

of the MPN
structure

High expectations
towards the logic of
the MPN structure

Process-
ing speed

No preferences, as
long as it

functions right

Crucial to the
efficiency of their

everyday work

Preference
direction machine-

readable MPN

Preference
direction machine-

readable MPN

Crucial to the
efficiency of their

everyday work

4747

future work should differentiate between industries or company-
specific characteristics.

Altogether, our publication has no claims to completeness but is
intended to serve as a starting point of an academic discussion on the
MPN and the communication of the product variety in general.
Future research should focus more on the differentiation between
different layers of the company, in particular, the production and the
sales layer, which may even lead to different MPNs. Another
research direction is the operationalization of the above-mentioned
mapping by introducing a maturity model [35] or some other
decision-support framework. This may also include the task on how
to find optimal MPN for a specific set of criteria. A good opportunity
for creating such a model would be by following an action research,
where the transformation of the company’s MPN structure (e.g.,
towards a digital one) is supervised and documented. Finally, the
monetary aspects and the area of cost efficiency in general (e.g.,
calculation of the possible cost savings, if a certain MPN is
introduced), which were not considered in this publication, would
make a major contribution, especially for the practitioners.

REFERENCES
[1] S. J. Hu, X. Zhu, H. Wang, and Y. Koren, „Product variety and

manufacturing complexity in assembly systems and supply chains“,
CIRP Ann.-Manuf. Technol., Bd. 57, Nr. 1, S. 45–48, 2008.

[2] C. Huffman and B. E. Kahn, „Variety for sale: Mass customization or
mass confusion?“, J. Retail., Bd. 74, Nr. 4, S. 491–513, 1998.

[3] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of
Modularity Volume 1. Cambridge, MA, USA: MIT Press, 1999.

[4] T. Blecker, N. Abdelkafi, B. Kaluza, G. Kreutler, „Mass customization
vs. complexity: a Gordian knot?", Munich Personal RePEc Archive,
890-903, 2004.

[5] W. ElMaraghy, H. ElMaraghy, T. Tomiyama, and L. Monostori,
„Complexity in engineering design and manufacturing“, CIRP Ann.,
Bd. 61, Nr. 2, S. 793–814, 2012.

[6] C. Forza and F. Salvador, „Managing for variety in the order
acquisition and fulfilment process: The contribution of product
configuration systems“, Int. J. Prod. Econ., Bd. 76, Nr. 1, S. 87–98,
März 2002.

[7] P. Mishra and T. Chandra, „Mergers, Acquisitions and Firms
Performance: Experience of Indian Pharmaceutical Industry“,
Eurasian J. Bus. Econ., Bd. 3, Nr. 5, S. 111–126, 2010.

[8] V. Venkatesh and F. D. Davis, „A theoretical extension of the
technology acceptance model: Four longitudinal field studies“, Manag.
Sci., Bd. 46, Nr. 2, S. 186–204, 2000.

[9] F. Piller, M. Koch, K. Moeslein, and P. Schubert, „Managing high
variety: how to overcome the mass confusion phenomenon of customer
co-design“, in Proceedings of the Proc. 3rd Annual Conf. of the
European Academy of Management (EURAM 2003), Milan, Italy,
2003.

[10] D. W. Hoffmann, Einführung in die Informations-und
Codierungstheorie. Springer, 2014.

[11] W. Heise und P. Quattrocchi, Informations-und Codierungstheorie:
mathematische Grundlagen der Daten-Kompression und-Sicherung in
diskreten Kommunikationssystemen. Springer-Verlag, 2013.

[12] F. Piller and C. Berger, „Customers as co-designers“, Manuf. Eng., Bd.
82, Nr. 4, S. 42–45, Aug. 2003.

[13] A. Bask, M. Lipponen, M. Rajahonka, und M. Tinnilä, „The concept
of modularity: diffusion from manufacturing to service production“, J.
Manuf. Technol. Manag., Bd. 21, Nr. 3, S. 355–375, 2010.

[14] C. Y. Baldwin and K. B. Clark, Design rules: The power of modularity,
Bd. 1. MIT press, 2000.

[15] B. J. Pine, Mass customization: the new frontier in business
competition. Harvard Business Press, 1999.

[16] A. Lubarski und J. Poeppelbuss, „Methods for Service
Modularization–A Systematization Framework“, in Proceedings of the
Pacific Asia conference on information systems (PACIS), Chiayi,
Taiwan, 2016.

[17] H. ElMaraghy u. a., „Product variety management“, CIRP Ann., Bd.
62, Nr. 2, S. 629–652, 2013.

[18] B. Avak, „Variant management of modular product families in the
market phase“, ETH Zurich, 2006.

[19] Gartner IT Glossary, „Configure, Price, Quote (CPQ) Application
Suites“. 16-Apr-2018.

[20] S. Tsukatani, T. Inokuchi, and H. Ito, „Multi-session disc-shaped for
recording audio and computer data having disc type code area located
in each session for recording common and particular disc type code“,
Juli-1998.

[21] D. E. Denning and D. K. Branstad, „A taxonomy for key escrow
encryption systems“, Commun. ACM, Bd. 39, Nr. 3, S. 34–40, 1996.

[22] R. Elz, „Serial number arithmetic“, 1996.
[23] J. Schickler, „Parts search system“, Aug-2004.
[24] R. K. Yin, Case study research and applications: Design and methods.

Sage publications, 2017.
[25] B. J. Baars and N. M. Gage, Fundamentals of cognitive neuroscience:

a beginner’s guide. Academic Press, 2013.
[26] N. Cowan, „The magical number 4 in short-term memory: A

reconsideration of mental storage capacity“, Behav. Brain Sci., Bd. 24,
Nr. 1, S. 87–114, Feb. 2001.

[27] G. A. Miller, „The magical number seven, plus or minus two: Some
limits on our capacity for processing information.“, Psychol. Rev., Bd.
63, Nr. 2, S. 81, 1956.

[28] A. Baddeley, „Working memory: theories, models, and controversies“,
Annu. Rev. Psychol., Bd. 63, S. 1–29, 2012.

[29] Y. Dudai, „How big is human memory, or on being just useful
enough.“, Learn. Mem., Bd. 3, Nr. 5, S. 341–365, 1997.

[30] J. R. Anderson, Cognitive psychology and its implications. Macmillan,
2005.

[31] T. P. McNamara, „Mental representations of spatial relations“, Cognit.
Psychol., Bd. 18, Nr. 1, S. 87–121, 1986.

[32] A. M. Collins and M. R. Quillian, „Retrieval time from semantic
memory“, J. Verbal Learn. Verbal Behav., Bd. 8, Nr. 2, S. 240–247,
1969.

[33] J. L. Voss, „Long-term associative memory capacity in man“, Psychon.
Bull. Rev., Bd. 16, Nr. 6, S. 1076–1081, 2009.

[34] H.-E. Eriksson and M. Penker, „Business modeling with UML“, N. Y.,
S. 1–12, 2000.

[35] M. C. Paulk, The capability maturity model: Guidelines for improving
the software process. Addison-Wesley Professional, 1995.

4848

ياهو

Behavior-Driven Development in Product Configuration Systems
Sara Shafiee1 and Lars Hvam and Anders Haug and Yves Wautelet

Abstract.1 Product Configuration Systems (PCS) are increasingly
used by companies to automate the performance of the sales and
engineering processes. Since the benefits from such projects have
huge variations, it is crucial to make the right decisions when
scoping and developing PCSs. The development of PCS is
influenced by both business interests and technical insights.
Developers of PCS face various challenges while working in team,
including different stakeholders such as business owners,
developers, project managers, and product experts. The more
diverse the team is, the more significant are the challenges. This
paper suggests that Behavior-driven Development (BDD) may
provide configuration teams with a specific structure to express
scenarios (and thus constraints) on PCS in natural language. BDD
may yield benefits such as a better expression of PCS constraints,
more efficient communication of requirements and incorporation of
the expressed rules in a software transformation process. In other
words, applying BDD may eliminate unnecessary tasks when
gathering knowledge, developing, and testing PCS projects. In this
paper, we present a novel approach from an ongoing project on
how to relate BDD to the development process of PCS while using
Scrum-based methods.

1 INTRODUCTION
Product Configuration Systems (PCS) are expert systems that can
support and facilitate the sales and engineering processes [1] by
incorporating information about product features, product
structure, production processes, costs and prices [2]. Thereby,
configurators can support decision-making processes in the sales
and engineering phases of a product [3]. Configurators enable
companies to develop product alternatives to facilitate sales and
production processes [4]. However, the companies that have
managed to implement and utilize configurators also face various
challenges [1], [5].

Even though advantages of PCS are evident, there are still some
difficulties associated with high costs [2], [6] and considerable
chances of failure [2], [7] in their implementation projects. This is
because companies must overcome various challenges to
implement and utilize configurators. For example, the development
of a PCS often requires highly complex technical or commercial
knowledge, which domain experts often have a hard time
communicating to configuration experts [8]. Furthermore, the
knowledge base that contains this knowledge has to be adapted
continuously because of the changing components and
configuration constraints [9], [10]. The difficulty of acquiring and
modeling the required technical or commercial knowledge depends
on whether it is available in a clear and formal form [11] which in
turns may be contingent to company size [12], product complexity

1 Mechanical engineering department, Technical University of Denmark,
Denmark, email: sashaf@dtu.dk

[13], degree of customization [14], or other factors such as
knowledge management and scoping process [8]. The challenges to
manage technical and commercial knowledge when implementing
and maintaining a PCS may highly influence PCS costs and
development time, as well as its lasting effectiveness.

The complexity in the development of PCSs comes from that it
involves highly complex technical knowledge from domain
experts, [9], [10]. Hence, Scrum and agile methods attracted
attention in PCS development. The main reasons that can be
mentioned as their ease of use, the constant communication with
the stakeholders and the team and fast development time [10], [15],
[16]. In spite of the potential benefits of Scrum, many
organizations are reluctant to throw their conventional methods
away and jump into agile methods. This to some extent may be
attributed some of the issues experienced with the use of Scrum,
including significant reduction of documentation, insufficient
testing for mission/safety-critical projects, inadequate support for
highly stable projects, only successful with talented individuals
who favor large degrees of freedom, and inappropriate for large-
scale projects [17].

As the discussion above indicates, it is very challenging to
specify a PCS at analysis stage. In Scrum-based development this
is traditionally done using user stories [18]. The latter nevertheless
do present some drawbacks because their narrative alone is not
enough to express the constraints related to PCS. This is precisely
where BDD could offers complementary representation abilities
destined to address user stories limitations. Because of the use of
BDD next to user stories narrative, the PCS can be expressed
without any other requirements representation artifact (traditionally
the Product Variant Master is used for this [3]). Other positive
aspects of the use of BDD to further describe user stories are their
expression in (structured) natural language making them easy to
understand by non-technical stakeholders. They thus present
advantages for communication. Finally their dynamic and process
oriented nature can be used in a systematic transformation process
for the configurator design [19]. All of these elements bring
potential positive contributions with the use of BDD and needs to
be more formally studied. This paper presents a first attempt
towards such a research.

2 LITERATURE STUDY

2.1 Agile and Scrum
Scrum is an agile software development methodology. The

Agile Manifesto outlines the values and principles that should be
supported by the various agile processes applied in software
development. Agile principles emphasize customer satisfaction,
change and collaboration between domain experts and developers

4949

ياهو

[20]. Rubin [21] highlighted that with an agile approach, the team
starts by creating a product backlog, which is a prioritized list of
the features and other capabilities that need to be developed.
Guided by the product backlog, team members address the most
important or highest priority items first; priority is based on various
factors, but delivered business value is most often the first priority.
Scrum is an agile approach for developing innovative products and
services [21].

Scrum facilitates cross-team coordination and collaboration
[22]. Vlietland et al. (2016) determined that Scrum improves
coordination through additional events, such as interteam sprint
planning meetings, interteam daily Scrums, interteam product
refinements and interteam sprint reviews. A Scrum development
life cycle normally consists of short iterations of two to four weeks,
an approach that enables swift feedback from software users and
related stakeholders regarding the developed solution [19], [23].

2.2 Behavior-driven Development
In the movement of agile development, Test-Driven Development
(TDD) has been around for a long time and can be traced back to
eXtreme Programming practices developed in the late 1990s [24].
In particular, TDD employs so-called acceptance tests as the
starting point for the development process to address some of the
challenges related to Scrum. Following [25], these TDD relies on
two simple principles:

 Don’t write any code until you’ve written a failing test that
demonstrates why you need this code.

 Refactor regularly to avoid duplication and keep the code
quality high.

Behavior Driven Development (BDD) has been proposed as a
result of the problems that arose with TDD when applying agile
software practices [26]. It should be noticed that the language used
for describing the tests, i.e. class names and operation names, plays
an important role both for writing test cases and for finding bugs in
case of a failed test. Inspired by [27], for this purpose BDD uses
natural language as a ubiquitous communication mean to describe
the acceptance tests by means of scenarios.

The cornerstone of TDD is the idea of writing a unit test before
writing the corresponding code. However, BDD is much more than
ensuring that every user story has a corresponding set of unit tests;
BDD is also about writing specifications, as opposed to tests. In
BDD, as an agile software development technique, acceptance tests
are written in natural language in order to ensure a common
understanding between all members of the project [28].
Consequently, as the first step, the sentences are mapped to actual
source code [28].

The shift from TDD to BDD is subtle but significant. Instead of
thinking in terms of verification of a unit of code, the focus is on
specifying how that code should behave, i.e., what it should do
[25]. In order to be sure that of building code that matters, there is
a need for specifications that describe what the code should do and
how to relate it directly to the business requirements.

Figure 1 shows an example of the BDD flow as it is employed
in a specific tool [26].

Figure 1. Behavior Driven Development flow

In BDD, as compared to TDD, the task is to write a specification of
system behavior that is precise enough for it to be executed as code
[29]. More specifically, the whole point of BDD is to ensure that
the real business objectives of stakeholders are met by the software
we deliver. If stakeholders are not involved, if discussions are not
taking place, BDD is not going to work. BDD yields benefits
across many important areas such as: (1) Building the right thing,
(2) Reducing the risks, (3) Evolving the design [29].

The first Phase in BDD is to understand the business goals and
defining features [25]. Vision statement templates make it possible
to have a well-defined set of business goals. For a good product
vision statement, Moore at al. [30] propose the following contents
of a template:

 For (Who will benefit from this product?)
 Who (What do they need?)
 The (What sort of thing are you proposing?)
 That (What makes it so cool?)
 Unlike (What are you competing against?)
 Our product (Why customer prefer your solution?)
Secondly, the features have to be illustrated in natural language

to execute the specifications. Consequently, the scenario has the
structure [25]:

 Given [context, initial conditions]
 When [event occurs]
 Then [outcome]

There are several studies investigating how to automate all these
scenarios such as Cucumber or Jbehave [25].

2.3 Requirement artifacts in traditional PCS
projects: the Product Variant Master

Generic product structures can be illustrated using the so-called
“product variant master” (PVM) notation, which in many cases has
functioned as a common language between different product,
process and IT experts [3]. Different definitions of the PVM
notation have been proposed, and among them the definition of the
PVM notation by Haug [11] is one of the most extensive and
formalized. A principal example of the PVM technique used to
model a toy car solution space is shown in Figure 2. On the left
side of a PVM model, part-of-structure is shown, and on the right
side, kind-of structure is shown. Classes (typically components and
assemblies) are represented by circles and may include attributes
and constraints (or rules).

	

Figure	2.	Product	variant	master	(ToyCar	example)	

5050

ياهو

3 PROBLEM STATEMENT
Using Scrum for PCS development introduces both potential

benefits and challenges (as for general IT projects in Table 1). One
of the challenges is the level of knowledge complexity in PCS that
has to be communicated clearly to all Scrum team members in
terms of all attributes, constraints and acceptance criteria. An
additional challenge from Scrum concerns the lack of visualization
(modelling techniques [3]) for product structure. BDD supports
Scrum with vision statements [30] to be able to demonstrate the
product details and even user interface step by step. Another
related challenge is the testing of the PCS as assessing PCSs
implies to assess system features with respect to the many possible
data and system outputs that might occur when a user is interacting
with them. Testing PCSs is an arduous testing activity due to the
wide range of user tasks and the different combinations of testing
data. BDD, as an add-on of user stories, supports the testers with
the detailed defined acceptance criteria.

In short, these concerns bring us three main guidelines for using
Scrum methods in PCS projects:

 Formalize user requirements in such a way to provide
testability in an ever-changing environment;

 Guarantee consistency between user requirements and their
representation in multiple artefacts during development
phase; and

 Lay on a validation approach that could be reused to ensure
such a consistency for the artefacts along the project.

4 RESEARCH METHOD
The aim of this paper is to test the application of BDD in PCS
projects in real case projects and gather the data regarding the BDD
application. Firstly, we review the literature of BDD to gain deeper
understanding of its definition and steps. Secondly, we would
apply the findings from literature regarding BDD to the Scrum
management in PCS. The authors’ ultimate goal is to outline what
the contribution of BDD to PCS can be and discuss its importance
in promoting the collaboration and communication of knowledge
within the organization.

Based on the mentioned challenges in PCS projects, BDD can
be an effective solution to improve the definitions of different
features and testing the codes in PCS projects next to the user
stories. Hence, we posit the following three propositions:

Proposition 1: (expressiveness) BDD allows expressing all of
the necessary constraints required for documenting a
Configurator using Scenarios.
Proposition 2: (performance) BDD represents an effective
approach for communicating the product specifications when
implementing PCS as a replacement for PVM.
Proposition 3: (acceptance) BDD represents an effective and
practical approach (requirements artifacts comparison) for unit
testing of the implemented features in development and testing
phases of PCS projects.
We use a qualitative exploratory design based on multiple data

sources: requirements artifacts, workshops, interviews and
participant observation [31], [32]. The study is ongoing in one case
company using Scrum method for developing PCS for more than 4
years. Workshops are conducted to train the team for BDD to be
implemented as part of the Scrum. Finally, feedback meetings are
held as semi-structured interviews to collect knowledge about the

team’s satisfaction with BDD. Table 1 summarizes some of the
details of the case projects.

Table 1. Scrum practice and defined roles and activities in Cases 3 and 4

5 OUTLOOK
It is yet an open question, how much BDD can contribute in the
development phase of PCS projects. As PCS projects own their
specific challenges, there is a need for further studies to test BDD
influence specifically for PCS projects. The results from case
studies and interviews will serve to verify or falsify the mentioned
hypothesis when the study is accomplished. The structure of a user
story presented to the case projects is demonstrated bellow:

Figure 3. BDD structure of a user story presented for PCS projects in the
workshops (Car example from Figure 1)

Concerning the adoption next to user stories narrative as a
replacement for PVM and the vocabulary proposed in the ontology,
an advantage is that requirements and tests in user stories are kept
in a natural and high-level language. Based on Figure 3, the team
should be able to demonstrate the prototype for user interface. The

Projects Case 1 Case 2 Case 3
Time frame (months) 11 8 9
Number of iterations
during the project 10 9 9

Roles

 Product owner: the stakeholders’ manager
 Project manager
 Scrum master
 Development team, including: 1 application

manager, 1 project manager, 2 configuration
engineers, 2 developers, 1 tester

 End users

Activities

 Backlog grooming
 Sprint planning
 Sprint backlog
 Daily Scrum
 Sprint review

Artefacts (main
specifications)

 Product goals and product backlog item (story)
 Product backlog and stakeholders’ requirements

(list of user stories)
 Testing (acceptance criteria in user stories)

Planning approach

 Daily Scrum
 Sprint planning
 Sprint review
 Feedback meetings

Specific roles of
meeting participants

 Same as the project roles, plus:
 Product owner: 1
 Scrum master: 1
 Tester: 1

5151

ياهو

evaluation criteria of using BDD approach in the team can be
considered as:
1. To support enterprise modeling within agile (user centric)

methods
2. To estimate different scenarios, architecture and integration
3. Correct evaluation of available attributes and constraints for the

product
4. To support the analysis of requirements communication
5. To analyze the compatibility with business modelling
6. To prototype the desired user interface

REFERENCES
[1] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-

Based Configuration From Research to Business Cases. Newnes:
Morgan Kaufman, 2014.

[2] C. Forza and F. Salvador, Product information management for
mass customization: connecting customer, front-office and back-
office for fast and efficient customization. New York: Palgrave
Macmillan, 2007.

[3] L. Hvam, N. H. Mortensen, and J. Riis, Product customization.
Berlin Heidelberg: Springer, 2008.

[4] A. Felfernig, S. Reiterer, F. Reinfrank, G. Ninaus, and M. Jeran,
“Conflict Detection and Diagnosis in Configuration,” in
Knowledge-Based Configuration: From Research to Business
Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds.
Morgan Kaufman, 2014, pp. 73–87.

[5] L. L. Zhang, “Product configuration: a review of the state-of-the-
art and future research,” International Journal of Production
Research, vol. 52, no. 21, pp. 6381–6398, Aug. 2014.

[6] A. Haug, L. Hvam, and N. H. Mortensen, “Definition and
evaluation of product configurator development strategies,”
Computers in Industry, vol. 63, no. 5, pp. 471–481, Jun. 2012.

[7] S. Shafiee, K. Kristjansdottir, and L. Hvam, “Business cases for
product configuration systems,” in 7th international conference
on mass customization and personalization in Central Europe,
2016.

[8] S. Shafiee, K. Kristjansdottir, L. Hvam, and C. Forza, “How to
scope configuration projects and manage the knowledge they
require,” Journal of Knowledge Management, vol. 22, no. 5, pp.
982–1014, 2018.

[9] A. Felfernig, G. E. Friedrich, and D. Jannach, “UML as domain
specific language for the construction of knowledge-based
configuration systems,” International Journal of Software
Engineering and Knowledge Engineering, vol. 10, no. 4, pp. 449–
469, 2000.

[10] S. Shafiee, L. Hvam, A. Haug, M. Dam, and K. Kristjansdottir,
“The documentation of product configuration systems: A
framework and an IT solution,” Advanced Engineering
Informatics, vol. 32, pp. 163–175, 2017.

[11] A. Haug, “The illusion of tacit knowledge as the great problem in
the development of product configurators,” Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, vol. 26, no.
1, pp. 25–37, Dec. 2010.

[12] C. Forza and F. Salvador, “Product configuration and inter-firm
coordination: An innovative solution from a small manufacturing
enterprise,” Computers in Industry, vol. 49, no. 1, pp. 37–46, Sep.
2002.

[13] A. Myrodia, K. Kristjansdottir, S. Shafiee, and L. Hvam,
“Product configuration system and its impact on product’s life
cycle complexity,” in 2016 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM),
2016, pp. 670–674.

[14] E. Sandrin, “An empirical study of the external environmental
factors influencing the degree of product customization An

Empirical Study of the External Environmental Factors
Influencing the Degree of Product Customization,” no. December
2016, 2017.

[15] B. Selic, “Agile Documentation, Anyone?,” IEEE software, vol.
26, no. 6, 2009.

[16] S. Ambler, Agile modeling: effective practices for extreme
programming and the unified process. John Wiley & Sons, 2002.

[17] J. Cho, “A Hybrid Software Development Method for Large-
Scale Projects: Rational Unified Process with Scrum,” Issues in
Information Systems, vol. 10, no. 2, pp. 340–348, 2009.

[18] Y. Wautelet, S. Heng, M. Kolp, and I. Mirbel, “Unifying and
extending user story models,” in International Conference on
Advanced Information Systems Engineering, 2014, pp. 211–225.

[19] Y. Wautelet, S. Heng, S. Kiv, and M. Kolp, “User-story driven
development of multi-agent systems: A process fragment for
agile methods,” Computer Languages, Systems and Structures,
vol. 50, pp. 159–176, 2017.

[20] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements
engineering and agile software development,” Proceedings.
Twelfth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
2003., pp. 308–313, 2003.

[21] K. S. Rubin, Essential Scrum: A practical guide to the most
popular Agile process. Addison-Wesley, 2012.

[22] K. Vlaanderen, S. Jansen, S. Brinkkemper, and E. Jaspers, “The
agile requirements refinery: Applying SCRUM principles to
software product management,” Information and Software
Technology, vol. 53, no. 1, pp. 58–70, 2011.

[23] J. Vlietland, R. Van Solingen, and H. Van Vliet, “Aligning
codependent Scrum teams to enable fast business value delivery:
A governance framework and set of intervention actions,”
Journal of Systems and Software, vol. 113, pp. 418–429, 2016.

[24] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[25] S. J. Ferguson, BDD in Action: Behavior-driven development for
the whole software lifecycle. Manning, 2015.

[26] D. North, “Behavior Modification: The evolution of behavior-
driven development,” Better Software, vol. 8, no. 3, 2006.

[27] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, 2003.

[28] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven
development using natural language processing,” in International
Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 2012.

[29] S. Nelson-Smith, Test-Driven Infrastructure with Chef: Bring
Behavior-Driven Development to Infrastructure as Code.
O’Reilly Media, Inc., 2013.

[30] G. A. Moore and R. McKenna, Crossing the Chasm: Marketing
and Selling High-Tech Products to Mainstream Customers.
HarperBusiness, 2014.

[31] A. H. Van de Ven, “Nothing is quite so practical as a good
theory,” Academy of Management Review, vol. 14, no. 4, pp.
486–489, 1989.

[32] D. M. McCutcheon and J. R. Meredith, “Conducting case study
research in operations management,” Journal of Operations
Management, vol. 11, no. 3, pp. 239–256, Sep. 1993.

5252

Integrating Semantic Web Technologies and ASP for
Product Configuration

Stefan Bischof1 and Gottfried Schenner1 and Simon Steyskal1 and Richard Taupe1,2

Abstract. Currently there is no single dominating technol-
ogy for building product configurator systems. While research
often focuses on a single technology/paradigm, building an
industrial-scale product configurator system will almost al-
ways require the combination of various technologies for dif-
ferent aspects of the system (knowledge representation, rea-
soning, solving, user interface, etc.) This paper demonstrates
how to build such a hybrid system and how to integrate var-
ious technologies and leverage their respective strengths.

Due to the increasing popularity of the industrial knowledge
graph we utilize Semantic Web technologies (RDF, OWL and
the Shapes Constraint Language (SHACL)) for knowledge
representation and integrate it with Answer Set Programming
(ASP), a well-established solving paradigm for product con-
figuration.

1 INTRODUCTION
The way large organizations manage their data is subject to
trends. Currently the (industrial) knowledge graph is gaining
popularity [13]. The term “knowledge graph” was coined by
Google [20] in the context of search engines. This was adopted
by the industry to describe a system that manages the data
of a company with a graph-based formalism like RDF and
combines it with reasoning (e.g. OWL) and machine learning
[3]. Having all internal data of the company accessible in one
format solves the problem of isolated data silos often found in
large corporations and allows the combination of internal data
with external data e.g. from the Linked Open Data cloud [4].

Knowledge graphs rely heavily on methods and technolo-
gies developed by the Semantic Web community. Given the
current acceptance in the industry for these technologies it is
a good time for the product configuration community to re-
visit these technologies. In this paper we demonstrate how to
use Semantic Web technologies for product configuration and
how to integrate them with established solving technologies
for product configuration like Answer Set Programming.

Why is the use of open standards and technologies like the
Semantic Web technology stack so important? In our experi-
ence using a configurator with a vendor-specific language for
specifying product configuration problems is the equivalent of
a data silo in data management. It is very hard to switch from
one configurator vendor to another, if both systems use their

1 Siemens AG Österreich, Corporate Technology, Vienna, Austria
bischof.stefan@siemens.com, gottfried.schenner@siemens.com,
simon.steyskal@siemens.com, richard.taupe@siemens.com
Author names are given in alphabetical order.

2 Alpen-Adria-Universität, Klagenfurt, Austria

own proprietary specification language. Also in the product
configuration community there is currently no standard way
to specify product configuration problems although the topic
of ontologies and product configuration is over 20 years old
(cf. [21]) and pre-dates the Semantic Web.

In Section 2 we describe the technologies used for this pa-
per. In Section 3 we show how to define a product configurator
knowledge base with RDF and SHACL, that allows checking
of constraints and interactive solving.

For solving product configuration problems, RDF and
SHACL are combined with Answer Set Programming in Sec-
tion 4. In Section 5 we illustrate how reasoning with OWL
can help to integrate the product configuration solutions into
the knowledge graph and facilitate reuse of ontologies.

In Section 6 we give a brief overview of the systems used
for the examples and in Section 7 we conclude.

2 PRELIMINARIES

The proposed approach builds heavily on Semantic Web stan-
dards and technologies. Instance data is represented as RDF
triples, domain models are mapped to domain-dependent on-
tologies/vocabularies and queries are formulated in SPARQL
[19].

2.1 RDF+SHACL

The Resource Description Framework (RDF) [6] is a both
human-readable and machine-processable framework for de-
scribing and representing information about resources. In
RDF every resource is identified by an IRI, and informa-
tion about resources is represented in form of triples with
I ∪B× I× I ∪B ∪L, where I, B, L denote IRIs, blank nodes
(nodes that do not have a corresponding IRI and which are
mainly used to describe special types of resources without ex-
plicitly naming them) and RDF literals (e.g., strings, integers,
etc.) respectively.

The Shapes Constraint Language (SHACL) [9] – a W3C
Recommendation since 2017 – is a language for validating
RDF graphs against a set of constraints. Its validation pro-
cess is built around the notion of Data Graphs (RDF graphs
that contain the data that has to be validated), and Shapes
Graphs (RDF graphs containing shape definitions and other
information that is used to perform the validation of the Data
Graphs).

5353

2.2 Ontologies

The OWL 2 Web Ontology Language (OWL) [12] is a declara-
tive knowledge representation formalism standardized by the
W3C in 2012. OWL is a language to represent ontologies and
is based on description logics.

An ontology describes things (individuals), sets of individ-
uals (classes), relations between individuals (object proper-
ties) and attributes of individuals (data properties). Based on
these, OWL provides class and property constructors to de-
fine complex classes and properties, e.g., intersection or union
of classes. Eventually, with OWL axioms, we can define how
classes (and properties) are related to each other, e.g., sub-
classes, equivalent classes, or disjoint classes.

OWL ontologies can be serialized in one of several syntaxes.
In this paper we use Turtle [2] syntax for serializing both OWL
and SHACL.

2.3 Validation vs. Inference

In the Semantic Web, the tasks of (i) constraint validation
and (ii) reasoning are grounded on different semantics. While
the latter usually operates under the Open World Assump-
tion (OWA) (i.e., a statement cannot be assumed to be false
if it cannot be proven to be true [16]) and the Non-Unique
Name Assumption (nUNA) (i.e., the same resource can have
multiple names), validation adheres to the Closed World As-
sumption (CWA) (i.e., a statement is assumed to be false if it
cannot be proven to be true) and requires that different names
identify different objects (i.e., it makes the Unique Name As-
sumption (UNA)).

Those differences are illustrated in Figure 1 where OWL is
used for specifying a cardinality constraint for individuals of
type :ElementA allowing them to refer to exactly one module
of type :ModuleI only.

ex:ElementA ex:ModuleI

ex:elemA

ex:moduleA

ex:moduleB

ex:requiredModule exactly 1 ex:ModuleI

owl:equivalentClass

ex:requiredModule

ex:requiredModule

rdf:type
rdf:type

rdf:type

Figure 1. ex:elemA violates its cardinality constraint only under
UNA/CWA, but not under nUNA/OWA where it could be inferred
that ex:moduleA and ex:moduleB represent the same resource, thus
not violating the cardinality constraint.

Class ex:ElementA is defined to be equal to an anony-
mous class having exactly one ex:ModuleI associated
via ex:requiredModule, hence every individual of type
ex:ElementA is only allowed to refer to one specific mod-
ule. Even though ex:elemA is violating its cardinality con-
straint (because it is associated to more than one module
via ex:requiredModule) an OWL reasoner would not be able
to detect a violation, but instead infers that ex:moduleA and
ex:moduleB are representing the same thing.

2.4 ASP

Answer Set Programming (ASP) is a declarative program-
ming paradigm. Instead of specifying how to find a solution
to a problem in terms of an imperative algorithm, in ASP the
problem itself is specified in the form of a logic program. We
restrict our introduction to ASP to core concepts needed to
understand this paper and refer to [5,10,11] for more details.

A program P is a finite set of rules of the form

h :- b1, . . ., bm, not bm+1, . . ., not bn.

where h and b1, . . . , bm are positive literals (i.e. atoms) and
not bm+1, . . . , not bn are negative literals. An atom is either
a classical atom or a cardinality atom. A classical atom is
an expression p(t1, . . . , tn) where p is an n-ary predicate and
t1, . . . , tn are terms. A term is either a variable (whose name
starts with an upper-case character or an underscore) or a
constant (which can be a number or a string). A literal is ei-
ther an atom α or its default negation not α. Default negation
refers to the absence of information, i.e. an atom is assumed
to be false as long as it is not proven to be true. Thus, ASP
makes the Closed World Assumption.

A cardinality atom is of the form

l ≺l { a1 : l 11 , . . . , l 1m ; . . . ; an : l n1 , . . . , l no } ≺u u

where each structure ai : li1 , . . . , lim is a conditional literal
in which ai (the head of the conditional literal) and all lij
are classical literals, and l and u are terms representing non-
negative integers indicating lower and upper bound. If one
or both of the bounds are not given, their defaults are used,
which are 0 for l (and ≤ for ≺l) and ∞ for u (and ≤ for ≺u).

H (r) = {h} is called the head of the rule, and B(r) =
{b1, . . . , bm, not bm+1, . . . , not bn} is called the body of the
rule. A rule with empty head is a constraint and is used to
filter out invalid solutions. A rule with empty body is called
fact, its head holds unconditionally in a satisfiable program.

There are several ways to define the semantics of an answer-
set program, i.e. to define the set of answer sets AS(P) of an
answer-set program P . An overview is provided by [11]. In-
formally, an answer set A of a program P is a subset-minimal
model of P (i.e. a set of atoms interpreted as true) which sat-
isfies the following conditions: All rules in P are satisfied by
A; and all atoms in A are “derivable” by rules in P . A rule
is satisfied if its head is satisfied or its body is not. A cardi-
nality atom is satisfied if l ≺l |C| ≺u u holds, where C is the
set of head atoms in the cardinality literal whose conditions
(e.g. li1 , . . . , lim for ai) are satisfied and which are satisfied
themselves.

Most ASP systems split the solving process into grounding
and solving. The former part produces the grounding of a pro-
gram, i.e. its variable-free equivalent. Thereby, the variables
in each rule of the program are substituted by constants. The
latter part then solves this propositional encoding.

To briefly illustrate ASP by means of a small example, con-
sider the following program:

triple("ex:ElementA", "rdfs:subClassOf", "ex:Element").
rdfs_subClassOf(Sub ,Sup) :-
triple(Sub , "rdfs:subClassOf", Sup).

class(Sub) :- rdfs_subClassOf(Sub ,Sup).
class(Sup) :- rdfs_subClassOf(Sub ,Sup).
n_element_types(N) :-
N = { rdfs_subClassOf(Sub ,"ex:Element") : class(Sub) }.

5454

This program contains one fact representing an RDF triple3

and two rules that derive new atoms from it. The single answer
set of this program is:
{
triple("ex:ElementA","rdfs:subClassOf","ex:Element"),
rdfs_subClassOf("ex:ElementA","ex:Element"),
class("ex:ElementA"), class("ex:Element"),
n_element_types (1)

}

3 PRODUCT CONFIGURATION WITH
SHACL

The following describes the product configuration terminol-
ogy from [8] adapted to RDF + SHACL.

Definition 1 (Configuration Model) The (SHACL) configu-
ration model CONFMODEL = (SHAPEGRAPH, RDF) con-
sists of a SHACL shapes graph and an ontology/RDFS schema
defining all the used classes and properties in the configuration
model.

Definition 2 (User requirements) The (SHACL) user re-
quirements USERREQ = (SHACLCONSTRAINTS, SUB-
GRAPH) consists of additional SHACL constraints and an
initial RDF subgraph.

Definition 3 (Configuration Task) The configuration task
CONFIGTASK = (CONFMODEL, USERREQ) represents
the input of one concrete configuration problem.

Definition 4 (Configuration) A configuration (solution) of
a configuration task CONFIGTASK is an RDF graph,
which satisfies the SHACL constraints of CONFMODEL and
USERREQ and contains SUBGRAPH of USERREQ as a sub
graph.

The configuration model defines the constraints that all
configurations must satisfy. The ontology is used to identify
the classes and properties relevant for the current configu-
ration task. In a large knowledge graph (RDF store/graph
database) there can be thousands of concepts and proper-
ties and typically only a small subset is relevant for product
configuration. Even within the classes relevant for product
configuration not all will be relevant in the current config-
uration task as the configuration task of large artefacts is
typically split into smaller configuration tasks like hardware
configuration and software configuration. Although the tasks
are separated, the resulting configurations will reside in the
same knowledge graph and will be linked, e.g., a hardware
component will be related to the required software driver.

In the following we will illustrate the product configuration
concepts by means of an example.

3.1 Running example

For ease of comparison we use the example of [18] as a running
example. This is an abstract example of a typical hardware

3 For conciseness, we use RDF prefixes also when we present ASP
encodings in this paper, even though the real encodings contain
full IRIs. For example, the string "rdfs:subClassOf" stands for
"http://www.w3.org/2000/01/rdf-schema#subClassOf".

configuration problem found in industry with some key fea-
tures like a component taxonomy, cardinality restrictions for
relations between component types, etc.

In our example domain there may be different types of ele-
ments, which are controlled by hardware modules. Each hard-
ware module must be in a frame and a frame must be mounted
on a rack. More specifically, the constraints of the domain are:

• There are four disjoint types of elements (ElementA-
ElementD).

• There are five disjoint types of modules (ModuleI-
ModuleV).

• There are two disjoint types of racks (RackSingle, Rack-
Double).

• An ElementA/B/C/D requires exactly one/two/three/four
ModuleI/II/III/IV respectively, i.e., an ElementB must
have only and exactly two ModuleIIs associated via the
requiredModule property.

• A ModuleV cannot have an element, all other modules must
be required by an element (via the requiredModule prop-
erty).

• A RackSingle must contain exactly four frames, a Rack-
Double must contain exactly eight frames.

• A frame must be mounted on a rack.
• A frame can contain up to six modules.
• A module must be mounted on a frame.
• Whenever a frame contains a module of type ModuleII, it

must also contain one of type ModuleV.

The ontology of our running example is illustrated in Fig. 2.

Legend

rdfs:subClassOf

ex:Module

ex:Element

ex:requiredModule

ex:ElementC

ex:ElementD

ex:ModuleI

ex:ModuleII

ex:ModuleIII

ex:ModuleIV

ex:ModuleV

ex:ElementA

ex:ElementB

ex:RackSingle

ex:Rackex:Frame ex:frame

ex:RackDouble

ex:module

Figure 2. Racks ontology RDF graph

The following shows an excerpt of the ontology in turtle
format:
ex:ElementA rdfs:subClassOf ex:Element .
ex:ElementB rdfs:subClassOf ex:Element .
ex:ElementC rdfs:subClassOf ex:Element .
ex:ElementD rdfs:subClassOf ex:Element .

5555

ex:ModuleI rdfs:subClassOf ex:Module .
ex:ModuleII rdfs:subClassOf ex:Module .
ex:ModuleIII rdfs:subClassOf ex:Module .
ex:ModuleIV rdfs:subClassOf ex:Module .
ex:ModuleV rdfs:subClassOf ex:Module .

defines the objectproperty relating elements
to their required modules
the cardinality constraints for the objectproperty
are defined with SHACL constraints
:requiredModule rdf:type owl:ObjectProperty ;

rdfs:domain :Element ;
rdfs:range :Module .

3.2 SHACL constraints

In the subsequent paragraphs, we illustrate some types of con-
straints supported by SHACL that are relevant in the config-
uration domain and refer to [9] for a full account of SHACL
constraints.

Cardinality constraints A typical class of constraints for
industrial product configuration problems are cardinality con-
straints. Whereas in customer product configuration prob-
lems simple yes/no or mandatory/optional constraints be-
tween components/features are often sufficient, complex car-
dinality constraints are common in industrial configuration
problems, e.g., in our example each element class requires a
different number and type of attached module. In SHACL
these restrictions can be expressed with qualified cardinality
constraints. For example the constraint that each instance of
ex:ElementB requires exactly 2 ex:ModuleII can be expressed
like this:
ex:ElementBRequiredModuleShape

a sh:NodeShape ;
sh:targetClass ex:ElementB ;
sh:property [

sh:path ex:requiredModule ;
sh:minCount 2 ;
sh:maxCount 2 ;
sh:class ex:ModuleII ;

] .

Cardinality constraints are a powerful mechanism of prod-
uct configuration models. With them it is possible to ex-
press mandatory/optional, requires, and part/subpart rela-
tionships. Almost all the constraints of our running example
can be expressed with cardinality constraints.

Completeness of Taxonomy Typically in a configura-
tion model it is required that every object of a configuration
must be an instance of a leaf class in the taxonomy, e.g., if a
configuration contains a rack, it must be known whether it is
a RackSingle or a RackDouble. In SHACL this constraint can
be expressed as:
subclass inheritance disjoint and complete
ex:RackSubclassShape

a sh:NodeShape ;
sh:targetClass ex:Rack ;
sh:message

"A Rack must be either of
type ex:RackSingle or ex:RackDouble" ;

sh:xone (
[sh:class ex:RackSingle]
[sh:class ex:RackDouble]

) .

The reason for requiring completeness is that a configura-
tion should be a complete description of all components the

configured artefact contains. If the exact type of a component
is not known, the solution may be underspecified.

There are some scenarios like ETO (engineer to order)
where this restriction does not apply. In these cases some
parts of the configured artefact are deliberately left unspec-
ified because it is the task of the engineering department to
come up with a solution, e.g., in our example we could add as
a SHACL constraint that every rack needs a power supply but
let the exact type of power supply unspecified. It is then the
task of the engineering department to find a suitable power
supply for the given configuration.

3.3 Checking constraints
Once we have defined the SHACL configuration model we can
use it to check if a given RDF graph is a valid configuration.
For example checking the RDF graph consisting of the single
triple ex:EB a ex:ElementB . against previously introduced
SHACL constraints produces the following validation result:
[

a sh:ValidationResult ;
sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent

sh:MinCountConstraintComponent ;
sh:sourceShape _:n236 ;
sh:focusNode ex:EB ;
sh:resultPath ex:requiredModule ;
sh:resultMessage "Less than 2 values" ;

] .

3.4 Interactive solving
In an interactive setting the user of the configurator will start
with a non-empty subgraph and the system will indicate all
currently violated SHACL constraints. The following shows a
(fictional) session between user and configurator (conf), where
the user asserts additional triples and the configurator reports
constraint violations:
user: ex:E1 a ex:Element .
conf: ex:E1 must be oneof {ElementA , ..., ElementD}
user: ex:E1 a ex:ElementA .
conf: ex:E1 requires one ModuleI
user: ex:E1 ex:requiredModule ex:M1 .
user: ex:M1 a ex:ModuleI .
conf: ex:M1 requires a Frame
user: ex:F1 ex:module ex:M1 .
user: ex:F1 a ex:Frame .
conf: ex:F1 requires a Rack
user: ex:R1 ex:frame ex:F1 .
user: ex:R1 a ex:RackSingle .
conf: ex:R1 requires 4 frames
user: ex:R1 ex:frame ex:F2; ex:F3; ex:F4 .
user: ex:F2 a ex:Frame .
user: ex:F3 a ex:Frame .
user: ex:F4 a ex:Frame .
conf: No constraints violated

The resulting configuration of this configuration task is
shown in Fig. 3 .

Although that kind of interaction might be sufficient for
a domain expert, it is clear that the interactive configura-
tion task shown above can be improved. There are only two
points in the configuration task where a decision by the user
is required. The first decision is to create an ElementA and
the second decision is to choose between an RackSingle and
a RackDouble. All other statements could be automatically
derived by a reasoner.

Some simple statements can be derived with an RDFS rea-
soner. For example, ex:F2 a ex:Frame . follows from the

5656

ex:E1

ex:M1

ex:requiredModule

ex:F1

ex:module

ex:R1

ex:frame

ex:F2

ex:frame

ex:F3

ex:frame

ex:F4

ex:frame

Figure 3. Racks configuration example

fact that ex:F2 is an object in an ex:frame property and this
property is defined to have the range ex:Frame.

Other SHACL constraints cannot be repaired by a typical
Semantic Web reasoner because they require the creation of
new entities. For these cases SHACL rules can be applied.
The following example illustrates how SHACL rules could be
utilized to "repair" a SHACL constraint violation. This rule
creates frames for a rack until the required number of frames
was created.
ex:RackRuleShape

a sh:NodeShape ;
sh:targetClass ex:RackSingle ;
sh:rule [

a sh:SPARQLRule ;
sh:prefixes ex: ;
sh:construct """

PREFIX ex: <http :// example.org/confws2018#>
CONSTRUCT {

this ex:frame _:new .
_:new a ex:Frame .

}
WHERE { }

""" ;
sh:condition [sh:not ex:RackSingleFrameShape] ;

] .

4 SOLVING SHACL CONFIGURATIONS
WITH ASP

Unfortunately, SHACL rules are a relatively new concept and
there are no rule engines that support backtracking. Therefore
one must revert to more established solving techniques for
product configuration. For this paper we decided to use ASP.

As a basic proof of concept, we demonstrate the generic
translation of SHACL constraints to ASP for concepts needed
in the example illustrated in Section 3.1. As such, this demon-
stration includes only a subset of the SHACL Core Valida-
tors [9, Appendix D]. Most of the other validators can be
expressed in ASP as well4.

4.1 General Concepts
We represent RDF triples in ASP as instances of the ternary
predicate triple, whose arguments are Subject, Predicate,
and Object. For convenience, triples of certain RDF predicates
are mapped to smaller ASP atoms by a set of projection rules:
rdfs_subClassOf(Sub ,Sup) :-
triple(Sub ,"rdfs:subClassOf",Sup).

a(Instance ,Class) :-
triple(Instance ,"rdf:type",Class).

sh_target_class(S, C) :- triple(S, "sh:targetClass", C).

4 Validators that rely on string operations or data types are difficult
to encode in ASP.

sh_node_property(NS , PS) :- triple(NS, "sh:property", PS).
sh_property_shape(PS) :- triple(NS, "sh:property", PS).
sh_property_shape(PS) :-
triple(PS, "rdf:type", "sh: PropertyShape").

sh_property_minCount(PS , Min) :-
triple(PS, "sh:minCount", Min).

sh_property_maxCount(PS , Max) :-
triple(PS, "sh:maxCount", Max).

sh_xone(S, List) :-
triple(S, "sh:xone", List).

To enable the reasoning component to not only rule out
invalid solutions but also explain inconsistencies, we use
shacl_constraint_violated atoms in the head of constraints
together with SHACL messages to encode explanations in the
form of shacl_constraint_violation_message atoms in an-
swer sets:
sh_message(S,Msg) :-

triple(S,"sh:message",Msg).
shacl_constraint_violation_message(I,S,Msg) :-

shacl_constraint_violated(I,S), sh_message(S,Msg).

4.2 Property Shapes
Property shapes specify constraints that need to be fulfilled
by nodes that are reached on a SHACL property path, which
can be defined in various ways [9, Section 2.3]. These con-
straints and paths need to be mapped to ASP concepts to
enable mapping of ASP constraints to the intended targets of
a SHACL property. A subset of these paths is handled by the
following encoding:
sh_property_path(PS , P) :-
triple(PS, "sh:path", P), not sh_path_is_inverse(P).

sh_path_is_inverse(P) :- triple(P, "sh:inversePath", _).
sh_property_path_inv(PS , InvP) :-
triple(PS, "sh:path", P),
triple(P, "sh:inversePath", InvP).

shacl_property_target(PS, Trgt) :-
sh_property_target_inst(PS, Inst , Trgt).

sh_property_target_inst(PS , Inst , Trgt) :-
sh_property_shape(PS), sh_node_property(NS , PS),
sh_property_path(PS, P), sh_targetClass(NS, Class),
a(Inst , Class), triple(Inst , P, Trgt).

sh_property_target_inst(PS , Inst , Trgt) :-
sh_property_shape(PS), sh_node_property(NS , PS),
sh_property_path_inv(PS , InvP), sh_targetClass(NS , Class),
a(Inst , Class), triple(Trgt , InvP , Inst).

4.3 Class Membership
As an example for a simple SHACL constraint, we provide
an encoding for the condition that a value node must be a
SHACL instance of a given type (cf. [9, Section 4.1.1]):
shape_constraint(S, class , C) :-
triple(S, "sh:class", C).

shape_constraint_satisfied_inst(I, S, class , C) :-
shape_constraint(S, class , C), a(I, C).

4.4 Cardinality Constraints
Based on the encoding fragments presented so far we are now
able to encode detection of cardinality constraint violations
(cf. [9, Section 4.2]):
shacl_constraint_violated(I,PS) :-
sh_property_shape(PS), sh_node_property(NS ,PS),
sh_target_class(NS ,C), a(I,C), sh_property_minCount(PS ,Min),
not Min { sh_property_target_inst(PS ,I,T) }.

shacl_constraint_violated(I,PS) :-
sh_property_shape(PS), sh_node_property(NS ,PS),
sh_target_class(NS ,C), a(I,C), sh_property_maxCount(PS ,Max),
not { sh_property_target_inst(PS,I,T) } Max.

5757

4.5 Logic Constraints

Logic constraints like xone (cf. [9, Section 4.6]) can also be
mapped to cardinality constraints:
sh_xone_inst(Inst , List) :- sh_xone(S, List),
sh_target_class(S, Class), a(Inst , Class).

shacl_constraint_violated(Inst , S) :-
sh_xone(S, List), sh_xone_inst(Inst , List),
not 1 {
shape_constraint_satisfied_inst(
Inst , List , Constraint , Value

) : shape_constraint(List , Constraint , Value)
} 1.

4.6 Solving

Given a translation of the SHACL constraints into ASP we
can check if the given RDF graph is a valid configuration, i.e.,
ASP acts as an implementation of the SHACL validator. To
enable solving, an additional generative program is needed.
This generative program must be capable of enumerating all
possible solutions within a certain scope. The generative pro-
gram together with the translated SHACL constraints enables
us to find a valid configuration, if one exists within the given
scope. The following listing shows a generative program capa-
ble of enumerating all configurations consisting of racks and
frames. The scope is controlled by blank nodes (e.g., _:b1).
Every blank node can become a new component within the
configuration.
bnode("_:b1").
bnode("_:b2").
bnode("_:b3").
bnode("_:b4").
bnode("_:b5").
bnode("_:b6").

configobj(O) :-
triple(O,"a",C),
configclass(C).

0 { triple(BNODE , "a", "ex:RackSingle") } 1 :-
bnode(BNODE).

0 { triple(BNODE , "a", "ex:RackDouble") } 1 :-
bnode(BNODE).

0 { triple(BNODE , "a", "ex:Frame") } 1 :-
bnode(BNODE).

0 { triple(O1, "ex:frame", O2)} 1 :-
configobject(O1),
configobject(O2).

% answer set found
triple("_:b1","a","ex:Rack").
triple("_:b1","a","ex:RackSingle").
triple("_:b2","a","ex:Frame").
triple("_:b3","a","ex:Frame").
triple("_:b4","a","ex:Frame").
triple("_:b5","a","ex:Frame").
triple("_:b1","ex:frame","ex:b2").
triple("_:b1","ex:frame","ex:b3").
triple("_:b1","ex:frame","ex:b4").
triple("_:b1","ex:frame","ex:b5").

After an answer set has been found due to the triple no-
tation it can be directly translated back to an RDF graph.
This RDF graph is a solution of the configuration task and
satisfies all SHACL constraints.

5 COMBINING SHACL/RDF WITH
OWL REASONING

So far we have concentrated on closed world reasoning and
the unique name assumption for checking and finding config-
urations. In practice there are applications for CWA/OWA

xsd:int

HardwarePart

weight

subpart

Figure 4. Hardware part Ontology (:hw)

and UNA/nUNA. As a use case for open world reasoning we
will demonstrate how to reuse an existing ontology for our
running example.

5.1 Semantic differences of SHACL and
OWL reasoning

Consider the constraint that a single rack has four frames.
Due to closed world reasoning the SHACL constraint is vio-
lated in the example below. For a OWL reasoner the example
is consistent, because OWL adheres to the open world as-
sumption and thus an OWL reasoner would not be able to
decide if there is another frame.
ex:R1 a ex:RackSingle .
ex:R1 ex:frame ex:F1 .
ex:R1 ex:frame ex:F2 .
ex:R1 ex:frame ex:F3 .

In the next example again a SHACL constraint will be vio-
lated, because there are 5 frames associated with a Rack and
under the Unique Name Assumption they are all considered
different entities. In OWL this example is consistent, because
the unique name assumption is not applied and there is no
statement indicating that, e.g., ex:F1 and ex:F2 are different
entities.
ex:R1 a ex:RackSingle .
ex:R1 ex:frame ex:F1 .
ex:R1 ex:frame ex:F2 .
ex:R1 ex:frame ex:F3 .
ex:R1 ex:frame ex:F4 .
ex:R1 ex:frame other:FA .

5.2 Reusing ontologies with OWL
reasoning

Modeling subpart relations can be surprisingly complicated
(cf. [7]), but is necessary in many knowledge representation
systems. For presentational reasons we opt for a simplistic
ontology: there exist hardware parts which can have subparts
which are also hardware parts. The subpart relation is in-
tentionally not defined as transitive and thus expresses only
direct subparts. Additionally each hardware part must have a
weight (see Fig. 4). Having hardware parts modeled along this
ontology, allows us to (recursively) compute the total weight
of a hardware part by adding the weight of the part itself with
the sum of the total weights of all (direct) subparts. However,
recursion is not needed, and so we will instead compute the to-
tal weight of a hardware part by adding its own weight to the
weight to all (transitively reachable) subparts. The following
SPARQL query performs this computation for all hardware
parts (naturally the variable ?part in the WHERE clause could
be replaced by the URI of some hardware part):

5858

ex:R1

hw:HardwarePart

a

ex:F1hw:subpart

ex:F2hw:subpart

ex:F3

hw:subpart

ex:F4

hw:subpart

a

ex:M1hw:subpart

a

a

a

a

Figure 5. Configuration example mapped to hardware part on-
tology

SELECT ?part (SUM(? weight) as ?totalweight)
WHERE {

?part p:subpart */p:weight ?weight .
} GROUP BY ?part

But before we can do that, we have to map the config-
uration created previously to this Hardware Part ontology.
The mapping can be expressed by SHACL rules or a mapping
ontology. Taking the latter approach we can hold off on the
decision for a concrete implementation strategy. In our ex-
ample we only have to define the object properties ex:frame
and ex:module as subproperties of p:subpart in the mapping
ontology. Taking all the ontologies (example, subpart, and
mapping) and the racks configuration data into account, an
OWL reasoner would (also) entail the subpart relationships
depicted in Fig. 5. Depending on the OWL reasoner imple-
mentation these entailments are materialised or only inferred
for relevant queries. Assuming the weights of the hardware
parts themselves are also available (for example through a
similar mapping to a product catalogue) we now have all the
necessary parts to compute the total weight of all the hard-
ware parts with the above SPARQL query.

Alternatively we could use a similar query to materialise
the total weights in the RDF graph:

INSERT { ?part p:totalweight ?totalweight }
WHERE { {

SELECT ?part (SUM(? weight) as ?totalweight)
WHERE {

?part p:subpart */p:weight ?weight .
} GROUP BY ?part

} }

Using this mapping approach we can transparently map our
instance data with relevant data from other (legacy) informa-
tion systems via a knowledge graph and thus create a more
complete knowledge base. We therefore are able to reuse on-
tologies like the Hardware Part ontology and the associated
SPARQL queries in a modular manner.

6 EVALUATION

All the example RDF files, ontologies, ASP and Java programs
are available in our open-source git repository5. For manipu-
lating RDF the Apache Jena library version 3.5.06 was used.
For checking SHACL constraints we relied on the TopBraid
SHACL API version 1.1.07. The SHACL examples can also

5 https://github.com/siemens/ProductConfigurationWithSHACL
6 https://jena.apache.org/
7 https://github.com/TopQuadrant/shacl

be checked online interactively by using the SHACL play-
ground8. The SHACL rule example has been implemented
in Java. The translation of the SHACL example to ASP is
also implemented in Java. For running the ASP programs we
used the ASP solver clingo version 5.2.09. The OWL ontolo-
gies were edited with the Protégé ontology editor10 version
5.2. The classification example of 5 was verified with the inte-
grated HermiT reasoner. The example was also executed with
StarDog version 5.3.011 by using a SPARQL query with acti-
vated OWL reasoning. StarDog is a knowledge graph platform
for the enterprise.

7 CONCLUSION
We have used Semantic Web technologies in the past, but
only for specific purposes like data integration [17]. Product
configuration knowledge bases require closed world reason-
ing and the default open world reasoning of OWL made it
cumbersome to be used for that task in our experience. We
found that SHACL closes this gap and have demonstrated
in this paper how to define a configurator knowledge base
just with RDF+SHACL. Together with constraint validation
such a system can be the basis of a simple interactive con-
figurator. SHACL rules can enhance the user experience by
deriving additional knowledge. We do not expect SHACL to
be the language for specifying product configuration problems
in combination with ontologies but it is a step into the right
direction.

Because of the lack of backtracking SHACL rule engines,
SHACL rules can currently not be used to solve configurations
except for trivial examples. A solver for product configuration
problems finds a model for the product configuration model.
This is not a reasoning task supported by a typical Semantic
Web reasoner. The main task for a Semantic Web reasoner is
classification and determining consistency12.

Therefore we resorted to ASP for solving the configuration
problem. To demonstrate the feasibility of the approach we
translated the subset of SHACL required to solve our simple
example domain. We will continue to evaluate our approach
on more sophisticated domains e.g. by adding arithmetic con-
straints. Because the semantic of SHACL can be defined by
SPARQL and the expressive power of SPARQL [1] is suffi-
cient for typical product configuration domains we expect no
conceptual difficulties.

The main challenge will be the automatic translation of the
SHACL constraints into ASP. In the future we want to adopt
a more generic approach by building on the work already done
for SPARQL and ASP [14,15]. Of course such a translational
approach is not restricted to ASP. The same could be ap-
plied to SAT, CSP or any other solving paradigm for product
configuration.

An important topic for the future will be how to identify the
relevant information for product configuration in the knowl-
edge graph. This includes how to (semi-)automatically iden-
tify the parts that are currently available for configuring a
8 http://shacl.org/playground/
9 https://potassco.org/
10 https://protege.stanford.edu/
11 https://www.stardog.com/
12 A Semantic Web reasoner might eventually produce a model

internally for proving consistency, but this is normally not avail-
able to the caller of the reasoner.

5959

product, how to relate the product configuration ontologies
to other relevant ontologies for product line management, en-
terprise resource planning etc.

ACKNOWLEDGEMENTS

This work was partially conducted within the scope of Dy-
naCon (FFG-PNr.: 861263), which is funded by the Aus-
trian Federal Ministry of Transport, Innovation and Tech-
nology (BMVIT) under the program “ICT of the Future”
between November 2017 and April 2020. More information:
https://iktderzukunft.at/en/

REFERENCES
[1] Renzo Angles and Claudio Gutierrez, ‘The expressive power of

sparql’, in The Semantic Web - ISWC 2008, eds., Amit Sheth,
Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard,
Timothy Finin, and Krishnaprasad Thirunarayan, pp. 114–
129, Berlin, Heidelberg, (2008). Springer Berlin Heidelberg.

[2] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and
Gavin Carothers, ‘RDF 1.1 Turtle – terse RDF triple lan-
guage’, Recommendation, W3C, (February 2014).

[3] Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and
Emanuel Sallinger, ‘Swift logic for big data and knowledge
graphs’, in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, ed., Carles Sierra, pp.
2–10. ijcai.org, (2017).

[4] Christian Bizer, Tom Heath, and Tim Berners-Lee, ‘Linked
data - the story so far’, Int. J. Semantic Web Inf. Syst., 5(3),
1–22, (2009).

[5] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński,
‘Answer set programming at a glance’, Communications of
the ACM, 54(12), 92–103, (2011).

[6] Richard Cyganiak, David Wood, and Markus Lanthaler,
‘Resource Description Framework (RDF)’, Recommendation,
W3C, (February 2014). Available at https://www.w3.org/TR/
rdf11-concepts/.

[7] Mariano Fernández-López, Asunción Gómez-Pérez, and
Mari Carmen Suárez-Figueroa, ‘Selecting and customizing a
mereology ontology for its reuse in a pharmaceutical product
ontology’, in Proceedings of the 2008 Conference on Formal
Ontology in Information Systems: Proceedings of the Fifth
International Conference (FOIS 2008), pp. 181–194, Amster-
dam, The Netherlands, The Netherlands, (2008). IOS Press.

[8] Lothar Hotz, Alexander Felfernig, Markus Stumptner, Anna
Ryabokon, Claire Bagley, and Katharina Wolter, ‘Chapter
6 - configuration knowledge representation and reasoning’,
in Knowledge-Based Configuration, eds., Alexander Felfernig,
Lothar Hotz, Claire Bagley, and Juha Tiihonen, 41–72, Mor-
gan Kaufmann, Boston, (2014).

[9] Holger Knublauch and Dimitris Kontokostas, ‘Shapes Con-
straint Language (SHACL)’, Recommendation, W3C, (July
2017). Available at https://www.w3.org/TR/shacl/.

[10] Vladimir Lifschitz, ‘What Is Answer Set Programming?’, in
Twenty-Third AAAI Conference on Artificial Intelligence,
(2008).

[11] Vladimir Lifschitz, ‘Thirteen Definitions of a Stable Model’,
in Fields of Logic and Computation, eds., Andreas Blass,
Nachum Dershowitz, and Wolfgang Reisig, volume 6300
of Lecture Notes in Computer Science, 488–503, Springer,
Berlin, Heidelberg, (2010).

[12] W3C OWL Working Group, ‘Owl 2 web ontology language:
Document overview’, Recommendation, W3C, (October
2009). Available at http://www.w3.org/TR/owl2-overview/.

[13] Exploiting Linked Data and Knowledge Graphs in Large Or-
ganisations, eds., Jeff Z. Pan, Guido Vetere, José Manuél
Gómez-Pérez, and Honghan Wu, Springer, 2017.

[14] Axel Polleres, ‘From SPARQL to rules (and back)’, in Pro-
ceedings of the 16th International Conference on World Wide

Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007,
eds., Carey L. Williamson, Mary Ellen Zurko, Peter F.
Patel-Schneider, and Prashant J. Shenoy, pp. 787–796. ACM,
(2007).

[15] Axel Polleres and Johannes Peter Wallner, ‘On the relation
between sparql1. 1 and answer set programming’, Journal of
Applied Non-Classical Logics, 23(1-2), 159–212, (2013).

[16] Raymond Reiter, ‘On closed world data bases’, in Logic and
Data Bases, eds., Hervé Gallaire and Jack Minker, 55–76,
Springer, (1978).

[17] Gottfried Schenner, Stefan Bischof, Axel Polleres, and Simon
Steyskal, ‘Integrating distributed configurations with RDFS
and SPARQL’, in Configuration Workshop, volume 1220, pp.
9–15, (2014).

[18] Gottfried Schenner and Richard Taupe, ‘Techniques for solv-
ing large-scale product configuration problems with ASP’, in
Proceedings of the 19th International Configuration Work-
shop, eds., Linda L. Zhang and Albert Haag, pp. 12–19, La
Défense, France, (2017).

[19] Andy Seaborne and Steven Harris, ‘SPARQL 1.1 Query Lan-
guage’, Recommendation, W3C, (March 2013). Available at
https://www.w3.org/TR/sparql11-query/.

[20] Amit Singhal, ‘Introducing the knowledge graph:
things, not strings’, Official Google Blog, (2012).
Available at https://www.blog.google/products/search/
introducing-knowledge-graph-things-not.

[21] Timo Soininen, Juha Tiihonen, Tomi Männistö, and Reijo
Sulonen, ‘Towards a general ontology of configuration’, AI
EDAM, 12(4), 357–372, (1998).

6060

Measuring the Complexity of Product Configuration
Systems

Amartya Ghosh and Katrin Kristjansdottir and Lars Hvam1 and Élise Vareilles2

Abstract.1 The complexity of product configuration systems is an
important indicator of both development and maintenance effort of
the systems. Existing literature proposes a couple of effort
estimation approaches for configurator projects. However, these
approaches do not address the issues of comprehensibility and
modifiability of a configuration model. Therefore, this article
proposes a metric to measure the total cognitive complexity of the
configuration model corresponding to a product configuration
system, expressed in the form of an UML class diagram. This
metric takes into account the number and the type of attributes,
constraints and the relationships between classes in an UML class
diagram. The proposed metric can be used to compare two
configuration models, in terms of their cognitive complexity.
Moreover, a relation between development time for a PCS project
and the total cognitive complexity of the corresponding
configuration model is established using linear regression. To
validate the proposed approach a case study is conducted where the
cognitive complexity is calculated for two configuration models.

1 Introduction
Information technology tools, such as product configuration
systems (PCSs), are widely used to handle the increased amount of
information shared amongst customers, sales and production
departments at companies, arising out of an increase in the demand
of product customization [1]. PCSs are knowledge-based IT
systems which fulfil a configuration task. A configuration task is a
special type of design activity [2] facilitated by a number of
components, their corresponding properties and ports, and
constraints which restrict the number of feasible combinations
associated with the components [3].

PCSs contain detailed information about the companies’
offerings. The information included in the configuration models
depend on the type of the configuration system and usually include
different components, attributes and rules of how the different
components can be combined. Generally, the PCSs are not
standalone IT systems. These systems are linked to existing IT
systems within the companies (e.g., ERP, CAD, PLM, PDM, and
calculation systems) either through integrations and/or interfaces.
Coupled with the inherent complexity of the product knowledge
modelled into the system, the integrations to other IT systems will
render these configuration systems to be highly complex.

Practitioners in the industry are interested in metrics for
comparing different PCS [5] and predicting the resource
consumption required for developing, maintaining and extending
the systems [6], [7]. The approach proposed in [6] defines a load

1 Engineering Management Department, Technical University of Denmark,
email: amgho@dtu.dk, katkr@dtu.dk, lahv@dtu.dk
2 Toulouse University, email: elise.vareilles@mines-albi.fr

estimation function that takes into account the impact of the
industry and the organization on the project and the size and
complexity of the product under consideration. The activities
associated with the PCS development project include modelling the
product structure and programming this model into a configuration
software. However, this approach does not explicitly take into the
consideration the complexity of the configuration model, while
estimating the load required. Another approach to estimating the
costs associated with PCS projects is to calculate the functional
size of the UML class diagram of the configuration knowledge
base using the IFPUG Function Point Analysis (FPA) technique
[7]. This approach, however, is subjective in nature with regards to
the definition of internal and external logical files (ILFs and ELFs).
Moreover, the function point approach does not clarify the
definition of one unit of function point [8]. The parametric
complexity approach proposed in [5] involves calculating a metric
on the basis of the number of business rules and the number of
attributes, across two categories: field of engineering (sales,
engineering and/or both) and the integration to other IT systems.
However, the parametric complexity approach fails to take into
account the complexity associated with the manner in which the
configuration problem has been modelled into a PCS. A method to
analyse the complexity of PCS is, therefore, needed.

This paper proposes a complexity metric that captures the
different aspects associated with the PCS by focusing on the
cognitive complexity of the configuration model. The metric can
be used to effectively compare different PCS both developed on
the same configuration software platforms or on different
platforms. Also, the metric can be used to identify the impact of the
complexity on the resource consumption for the development and
maintenance activities associated with the PCS. Given that
resources required for these activities are valuable and have limited
availability, it is imperative that practitioners in the field have some
metrics for predicting the extent of resource consumption required.

The proposed complexity metrics build on the approaches
proposed in Felfernig (2004) and Kristjansdottir et al. (2017) by
ascertaining the cognitive complexity of the UML class diagram
associated with a given configuration problem. The proposed
metric takes into account the effort required to understand and
modify the way in which the PCS has been modelled, in terms of
generalizations and aggregation structures, and the number and the
type of business rules and attributes present in the configuration
model.

The remainder of the paper is structured as follows. In Section 2
the concept of cognitive complexity known of software systems is
introduced. The research methodology employed to carry out the
analysis is explained in Section 3. Section 4 provides an overview
of the mapping of the cognitive complexity metric of software

61

mailto:lahv@dtu.dk

systems to configuration models. Section 5 then presents the
findings from applying the method in a case company. Finally,
Section 6 discusses the results and provide guidance for further
studies.

2 Theoretical Background
This section presents the theoretical background for the proposed
complexity metric for configuration models. It provides an
overview of the existing literature on the topic of cognitive
complexity of software systems.

Cognitive complexity is a measure of the functional complexity
associated with designing and understanding a software system,
based on the basic control structures (BCSs) existing in the system
[9]. BCSs are considered to the building blocks of any software
system. They are a collection of fundamental flow control
mechanisms which are necessary for constructing the logical
architecture of a software system [8]. Initially, Hoare et al. [10]
identified three types of primitive commands (SKIP, ABORT and
Assignment) and five types of more complex commands
(sequential composition, non-determinism, conditional, iteration
and recursion) in programming languages. Later, two further BCSs
(function call, interrupt) were identified in system modelling by
Wang [11]. Considering the sequential BCS as being representative
of a unit BCS, a different cognitive weight is assigned to each
BCS. The cognitive weight of a BCS is considered to be
proportional to the effort required by a user in understanding the
functionality and the semantics of the BCS, relative to the
sequential BCS. Table 1 summarizes the BCSs and the
corresponding cognitive weights:

Table 1: Cognitive weights of basic control structures (Adapted from

Wang, 2006 [9]
Category of BCS BCS Cognitive Weight

Sequential Sequence (SEQ) 1

Branch If-Then-
Else (I-T-E)

2

Case 3

Iteration For-do 3

Repeat-until 3

While-do 3

Embedded Function Call (FC) 2

Recursion (REC) 3

Concurrency Parallel (PAR) 4

Interrupt (INT) 4

Existing literature proposes several approaches for calculating

the cognitive complexity of programs written in object-oriented
programming languages, based on the cognitive weights of the
BCSs. Object-oriented programs comprise a number of classes,
each of which consist of a number of attributes and methods, and
are linked to other classes through aggregation, generalization or
association structures. The overall complexity of object-oriented
programs is obtained by calculating the cognitive complexity of the
constituent classes based on the relationships between the classes.
The class complexity (CC) is calculated by taking into
consideration the cognitive complexity of the individual methods,

which in turn are made up of the blocks of BCSs, and the
constituent attributes [12]. Therefore, the cognitive complexity of a
method comprising q linear blocks of m layers of nesting BCSs
with n linear BCSs in each layer, is calculated using the following
equation (1):

 (1)

Where,
MC: total cognitive weight of the method
𝑤𝑤𝑐𝑐(𝑗𝑗, 𝑘𝑘, 𝑖𝑖): cognitive weights of individual BCSs

Moreover, the attributes of a class are assigned cognitive
weights according to a categorization of the cognitive phenomena
associated with their datatypes [13]. The cognitive weights for the
attribute categories are summarized in Table 2. The attribute
complexity (AC) of a class is calculated by multiplying the number
of attributes belonging to a particular datatype category and its
corresponding cognitive weight.

Table 2: Cognitive weights assigned to attributes (Adapted from

Arockiam and Aloysius [13])
Attribute
Datatype

Associated Cognitive
Phenomena

Cognitive Weight

Primary Sub-concious cognitive
function

1

Derived Meta cognitive function 2

User-defined Higher cognitive function 3

Therefore, for a class containing ‘m’ number of methods, with the
i-th method having a complexity of MCi, and having an attribute
complexity, AC, equation (2) shows the cognitive complexity of
the class (CC).

 (2)

The reusability of software code in object-oriented
programming languages is facilitated through the concept of
inheritance. However, the use of several levels of inheritance
often has an adverse impact on the maintainability and
comprehensibility of software systems [14], [15]. Therefore, a
number of cognitive complexity metrics have been proposed to
penalise the use of inheritance structures in OOPs [14], [16].

At the class level, the cognitive complexity of a class, CCi,
takes into account the number and complexity of the inherited
classes, as shown in the following equation (3) [14][17]:

 (3)
Where,

: cognitive complexity of the i-th class due to inheritance
: cognitive complexity of an inherited class of class i

𝑘𝑘: the number of inherited classes of class i
𝑙𝑙: the number of constituent methods in class i

: the cognitive complexity of the j-th method of class i

Another approach to account for the presence of inheritance
structures involves changing the way in which the total cognitive
complexity of the program is calculated, depending on the level of
inheritance of individual classes [16]. In this case, if the classes
are on the same level of inheritance, their cognitive complexity

62

values are added together. However, if the classes are children of
parent classes, then their values are multiplied. This is shown in
the following equation (4) :

 (4)
Where,
𝑇𝑇C: cognitive complexity of the program
WCC𝑗𝑗𝑘𝑘: cognitive complexity of k-th class at level j of inheritance.

The cognitive complexity approach has been applied to
empirically calculate the complexity of UML class diagrams. The
cognitive complexity of UML class diagrams has been shown to
be correlated to the generalization and association structures, with
an increase in the number of classes and attributes leading to an
increase in the cognitive complexity and also the time required to
understand and modify the class diagrams [18]. This implies that,
given the UML class diagram of a configuration model and,
consequently, the cognitive complexity of the configuration
model, the required man-hours for developing and maintaining
the PCS can be estimated. In turn, this will make it possible for
better resource planning for PCS projects, allowing more accurate
business cases to be developed, prior to the initiation of projects.

3 Methodology
The authors have adopted the case study research method to
calculate the complexity of a configuration model and,
subsequently, propose a relation, which expresses the development
time in terms of the proposed complexity metric.

The case company is a world leader in catalysts and surface
science. It offers a variety of catalysts and a complete range of
proprietary equipment, spare parts, and consumables. The company
first launched a PCS in 2013 and has since then been building up
the configuration area at the company. Currently the company uses
five PCSs in the company, while two configurators are under
development. The PCSs used by the company support the sales
process of both catalysts and equipment at the company and where
the first PCS supporting the engineering process, or the detail
design of an equipment is being tested. The complexity of the
PCSs used at the company has quite variations but the lack of
method for analysing the complexity makes it difficult both to
predict maintenance effort for the different PCS in utilization at the
company and development effort required for new PCS. Thus, the
company’s challenges were aligned with the research focus of the
article.

In this study, the authors have analysed the configuration
models pertaining to two PCSs. For each PCS, the following
dataset was extracted from the configuration platform and used in
the analysis:

• Model properties and statistics

o Number of business rules
o Number of attributes
o Number of classes

• Documentation of the configuration model
o Class structure
o The attributes and their domains for each class
o The business rules for each class

These parameters are utilized to calculate the cognitive complexity
metric for each configuration model.

Moreover, the information regarding the development time and
maintenance time for both the PCSs were also collected, in order to
establish a relation between the cognitive complexity metric and
the development time and maintenance time. However, the time
registrations for these PCSs are not accurately maintained by the
company, thereby requiring an assessment of the reliability of the
data. After an initial analysis of the data, coupled with discussions
with the members of the configuration team at the case company,
the authors decided to analyse the two PCSs for which the time
registrations were accurate and reliable. The relation between the
development time for the PCSs, the cognitive complexity metrics
and the unknown time constants were framed in the form of an
objective function. The objective functions were solved to obtain
the values for the time constants, by means of linear regression.

4 Proposed Cognitive Complexity Metric for
Configuration Models

As addressed earlier, existing literature proposes a number of
approaches for measuring the cognitive complexity of OOPs.
However, the application of this concept to UML class diagrams of
product configuration models presents an important deviation from
those pertaining to OOPs. As PCSs are knowledge-based systems,
the complexity of business rules (BRs) have a vital impact on the
development and maintenance efforts of these systems [7]. In order
to account for the impact of the BRs, the authors have assumed that
each BR corresponds to a single method with a single block of
layered BCS. Each constituent BCS of a BR has been assigned a
cognitive weight, based on the classification proposed by Wang
[8]. Table 3 summarises the cognitive weights for BCSs for each
BR.

Table 3: Cognitive weight of BCS for BR

Category of BCS BCS Cognitive Weight
Assignment Assignment (ASS) 1

Branch If-Then-Else (I-TE)
or implication

2

Iteration Iteration 3

Embedded User Function Call
(UFC)

2

Standard Function
Call (SFC)

1

Thus, the cognitive complexity of a BR (BRC), consisting of m

layers of nesting BCSs with nj linear BCSs in each layer, can be
calculated using the following equation (5):

 (5)
Where,
𝑤𝑤𝑐𝑐(𝑗𝑗, 𝑖𝑖): cognitive weight of the i-th BCS in the j-th layer of a
nesting BCS pertaining to a BR.
nj: number of BCS in the j-th layer of a nesting BCS pertaining to
a BR

Another feature of UML class diagrams specific to

configuration models is the cardinality of the classes representing
the aggregation structure. This particular feature is accounted for

63

by the presence of the iteration BCS. A nested BR containing an
iteration BCS would only be invoked in cases wherein more than a
single instance of a particular class is required to be created.

As mentioned earlier, the cognitive complexity of a class also
comprises the cognitive complexity of the attributes. Table 4 shows
the possible attribute domains present in the configuration platform
used at the case company categorised according to the datatype
categories mentioned in Table 2.

Table 4: Cognitive Weights of Attribute Datatypes
 Datatype Category Attribute Domain Cognitive Weight

Primary Integer, Float,
Boolean

1

Derived Named Domain 2

User-defined Function, Class 3

Therefore, given a configuration model, the cognitive
complexity of a constituent class (CCi), comprising ‘m’ methods,
‘n’ attributes and ‘p’ business rules, is calculated by adding the
cognitive complexities of the methods (MCj), attributes (AC) and
the business rules (BRCk), as shown in equation (6):

 (6)

However, as the source codes of the configuration platforms
(such as Tacton, Configit, SAP Configurator and so on) are
generally confidential in nature and not available publicly, the
authors decided to consider only the attribute complexity and the
complexity of the business rules. Therefore, the final form of the
cognitive complexity metric for a class used in the analysis is
shown in equation (7).

 (7)

As an example to illustrate the various calculations, an excerpt
of an UML class diagram, depicting the configuration model
pertaining to a bicycle, is presented in Figure 1. The model
comprises three classes (class Frame, class Suspension and class
Fork). The model comprises two aggregation relationships
(wherein class Suspension and class Fork are “parts of” the class
Frame) but no inheritance structures. The corresponding
cardinalities, attributes and business rules are also shown in the
figure.

Figure 1: Descriptive example of bicycle

In case of the class Frame in Figure 1, the calculation for the
attribute complexity is shown below in Table 5.

Table 5: Descriptive example of bicycle: Calculation of attribute
complexity

Attribute
Name

Domain Datatype
category

Cognitive
Weight

Attribute
Complexity
(AC)

Size Integer Primary 1
1+2 = 3 Material Named

Domain
Derived 2

For calculating the BRC for the class Frame, the nature of the BRs
are established and the component BCSs are assigned their
cognitive weights based on the categorization of BCSs.

BR_1 comprises of a single layer of nesting BCS (if statement)
consisting of a single assignment BCS within it. Therefore, the
BRCBR_1 is calculated using equation (5) as shown below:

BRCBR_1 = (Cognitive weight of if statement) * (Cognitive weight
of assignment statement)
BRCBR_1 = 2*1 = 2

BR_2, on the other hand, is categorized as a standard function in
the PCS software which has been used to model the configuration
problem. Therefore, the business rule complexity of BR_2,
BRCBR_2, is assigned the cognitive weight of 1. Therefore, the
cognitive complexity of the class Frame, CCFrame, is calculated as
shown below, according to the equation (7).

CCFrame = ACFrame + (BRCBR_1 + BRCBR_2) = 3+(2+1) = 6

Table 6 summarizes the results for the remainder of the classes
shown in Figure 1.

Table 6: Descriptive example of bicycle: Calculation of class complexity
Class Name BRC AC CC
Frame 3 3 6

Suspension 0 3 3

Fork 1 4 5

Depending on the inheritance structure, the total complexity of
the configuration model (TC) can be calculated by a combination
of the cognitive complexities of the constituent classes, as shown in
equation (8).

 (8)

Where,
CC𝑗𝑗𝑘𝑘: cognitive complexity of the k-th class at the j-th level of
inheritance.

Therefore, the total complexity of the configuration model

shown in Figure 1 is given by: TC = 6+3+5 = 14. Given the value
of the total cognitive complexity metric, TC, for a particular
configuration model, the authors propose a relation, as shown by
equation (9), to estimate the development time (XTime) and the
maintenance time for the model in man-hours.

𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇e = 𝑎𝑎 + 𝑏𝑏. 𝑇𝑇C (9)

64

Where,
𝑎𝑎: development time constant (in man-hours)
𝑏𝑏: development time constant (in man-hours) associated with a
configuration model having a cognitive complexity of 1.

Taking into consideration the development times and the

cognitive complexities of the two configuration models for which
the time registration is available and accurate, the values of the
time constants, a and b, are calculated, using linear regression.

However, as the value of TC is often not readily available
before a configuration model has been fully developed, an
estimated development time, 𝑋𝑋𝑋𝑋𝑇𝑇, can be calculated for a
particular configuration model if the number of constraints and the
number of attributes, as shown in equation (10), or the number of
classes, as shown in equation (11), are known.

 𝑋𝑋𝑋𝑋𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏. ({#𝑎𝑎ttribute. AC𝑎𝑎v + #BR. BRC𝑎𝑎v}) (10)

 𝑋𝑋𝑋𝑋𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏. (#class. CC𝑎𝑎vg) (11)

The following section presents the results obtained from the
application of the proposed metrics on two configuration models at
the case company.

5 Results from the Case Study
As explained earlier, the authors have only considered two PCSs,
for which reliable and accurate time registration data was available,
for their analysis. To calculate the cognitive complexity metric of
the corresponding configuration models, the following data was
extracted from the configuration platform used at the case
company:

• The UML class diagrams
• The attributes and their datatypes for each class
• The business rules associated with each class
• Statistics pertaining to the overall configuration model:

o Number of classes in the UML class diagram
o Total number of attributes in the UML class diagram
o Total number of constraints in the UML class diagram

Based on this data, the total complexity, TC, of the two PCSs
were calculated. The results, along with the input data are
summarised in Table 7.

Table 7: Complexity calculations and statistics for the two PCSs analysed

Model #Classes #Attributes #Rules
Parametric
complexity

Cognitive
complexity

PCS_1 82 1462 940 2402 9731

PCS_2 27 334 262 596 1637

Table 5 shows considerable differences in both the parametric

and the total cognitive complexities (TC) of the analysed PCSs.
This result is aligned with the initial scoping of the research of
selecting PCSs representing both high complexity values and low
complexity values. Moreover, three additional metrics were also
defined for each model, as shown in Table 8. These metrics include
the average values of the attribute complexity (ACavg), business
rule complexity (BRCavg) and the class complexity (CCavg).

Table 8: Additional metrics representing the complexity of the
PCS

Model ACavg BRavg CCavg
PCS_1 2.24 6.87 118.67

PCS_2 1.71 4.08 60.63

Overall average for any PCS 1.97 5.48 89.65

The values for ACavg and BRavg for each of the models do not take
into consideration the class structure for the configuration models.
Based on these three metrics, the estimated average attribute
complexity, average business rule complexity and average class
complexity values for a configuration model developed at the case
company are 1.97, 5.48 and 89.65 respectively. However, the
results also show that there is a great variation of the complexity
metrics calculated for the two systems, thus, the average
complexity might not be provide us with the best possible estimates
for the complexity of configuration models at the case company.
Moving forward, more PCSs at the case company will have to be
analysed to obtain results that are more indicative of the average
PCS complexity at the company.

For the calculation of the time constants, a and b, pertaining to
the relation between the cognitive complexity of the two
configuration models and the development time for the
corresponding PCSs, as expressed in Equation (9), the development
times (in man-hours) are noted in Table 9.

Table 9: Development time in man-hours for the analysed PCS in the case

company
Model Development Time (in man-hours)
PCS_1 2219
PCS_2 380

Therefore, given the value of the total cognitive complexity of a
configuration model, TC, the estimated development time of a PCS
at the case company can be calculated as:

𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇e = 8.065 + 0.227𝑇𝑇C (12)

The ACavg, BRCavg and CCavg are obtained from the data for the
PCSs that have been analysed in this paper. Therefore, the final
form of the equations (10) and (11) to estimate the development
time of PCSs in man-hours at the case company, given the
expected number of attributes and business rules or the expected
number of classes, are presented in equations (13) and (14)
respectively:

𝑋𝑋𝑋𝑋𝑇𝑇 = 8.065 + 0.227({#attribute × (1.97) + #BR × (5.48)}) (13)
𝑋𝑋𝑋𝑋𝑇𝑇 = 8.065 + 0.227({#𝑐𝑐lass × (89.65)}) (14)

Therefore, the following parameters of the configuration model
are the pre-requisites for calculating an estimated development
time for the PCS:

• The estimated number of classes, or
• The estimated number of business rules and attributes.

Moreover, based on the hours used for development the required

hours for maintenance can be calculated. Based on interviews in
the company it is estimated that 30% of the total development
hours are required on a yearly base for the maintenance activities.

65

6 Discussions and Conclusions
This paper proposes a metric for evaluating the complexity of a
PCS, by taking into the consideration the UML class diagram of
the corresponding configuration model. The proposed cognitive
complexity metric takes into the account the effort required to
understand and modify the way in which the configuration problem
has been modelled. Furthermore, the authors also investigate the
relation between the effort in man-hours required for the
development of a new PCS and the proposed complexity metric.
The results obtained in the present article aim to contribute to the
field of PCS complexity and the impact of PCS complexity on the
effort estimation associated with the development and maintenance
of PCS projects.

The proposed metric for calculating the cognitive complexity of
a configuration model builds on research in the fields of the
cognitive complexity of object-oriented software systems [8], [9],
[12], [13], complexity of PCS [5]–[7] and the cognitive complexity
of UML diagrams [18]. The presence of business rules and a lack
of material on the source codes of commercial configuration
platforms render the direct application of existing cognitive
complexity metrics to configuration models unviable.

By having a more standardized way of analysing the complexity
of a configuration model should enable both more accurate
resource estimations and allow for a comparison of different
configuration models. The authors adopted a structured approach to
analyze the cognitive complexity of a configuration model and
relating it to the development and maintenance efforts. First, an
UML class diagram is analysed, which should give information
regarding total complexity of a configuration model (based on
number of classes, the number and type of attributes, number and
type of business rules). Second, the average values of the attribute
complexity (ACavg), business rule complexity (BRCavg) and the
class complexity (CCavg) are calculated. Third, linear regression is
used to analyse man-hours for already developed systems to predict
the future workload for new PCS.

The proposed method is validated in a case company where two
different PCS were selected. The two PCS represent both PCSs
with high and low parametric complexity. The proposed metric for
analysing the cognitive complexity of the PCS confirmed the
variation in the complexity. Further, by analysing the man-hours
used for developing the systems, a function of total complexity and
man-hours is used to predict the workload for a new PCS. The
testing of the proposed method confirmed its usability. Further,
testing is planned with in the case company where all the PCSs will
be analysed in more detail, in order to verify the accuracy of the
estimated development effort in man-hours when starting new PCS
projects.

There are a few limitations to the research presented in this
article. The proposed cognitive complexity metric primarily
addresses only those configuration models which can be presented
in form of an UML diagram. Further research will have to
conducted in order to investigate the viability of applying cognitive
complexity concepts to declaratively modeled products. Moreover,
in case of declarative BRs, the authors have used their discretion to
assign cognitive weights to such BRs. In certain cases, the
procedural equivalent of the declarative BR is assigned the
corresponding cognitive weight, whilst in others, the authors have
considered the declarative BR to be either a standard function of
the PCS or a user defined function.

This study focuses on the complexity of the configuration
model. This means that the complexity resulting from integrations
to other IT systems are not considered. Also, complexity for
generating user interfaces and output documents are not taken into
the account in the present study. Future work will, therefore, focus
on including these parameters to better capture the overall
complexity associated with a PCS and not only the complexity of
the configuration model.

7 REFERENCES
[1] C. Forza and F. Salvador, “Managing for variety in the

order acquisition and fulfilment process: The contribution
of product configuration systems,” Int. J.
Prod. Econ., vol. 76, no. 1, pp. 87–98, 2002.

[2] S. Mittal and F. Frayman, “Towards a generic model of
configuration tasks,” Proc. Elev. Int. Jt. Conf. Artif. Intell.,
vol. 2, pp. 1395–1401, 1989.

[3] A. Felfernig, G. E. Friedrich, and D. Jannach, “UML as
domain specific language for the construction of
knowledge-based configuration systems,” Int. J. Softw.
Eng. Knowl. Eng., vol. 10, no. 4, pp. 449–469, 2000.

[4] K. R. Ladeby and J. L. Pedersen, “Applying Product
Configuration Systems in Engineering Companies :
Motivations and Barriers for Configuration Projects,”
DTU, 2009.

[5] K. Kristjansdottir, S. Shafiee, L. Battistello, L. Hvam, and
C. Forza, “Complexity of Configurators Relative to
Integrations and Field of Application,” 19th Int. Config.
Work., 2017.

[6] M. Aldanondo and G. Moynard, “Deployment of
Configurator in Industry: Towards a Load Estimation,”
ECAI 2002 Work. Config., pp. 125–130, 2002.

[7] A. Felfernig, “Effort Estimation for Knowledge-based
Configuration Systems.,” SEKE, pp. 148–154, 2004.

[8] Y. Wang, “Cognitive Complexity of Software and its
Measurement,” Proc. 5th IEEE Int. Conf. Cogn.
Informatics, vol. 1, pp. 226–235, 2006.

[9] J. Shao and Y. Wang, “A new measure of software
complexity based on cognitive weights,” in Canadian
Conference on Electrical and Computer Engineering,
2003, vol. 2, pp. 1333–1338.

[10] C. A. R. Hoare et al., “Laws of programming,” Commun.
ACM, vol. 30, no. 8, pp. 672–686, Aug. 1987.

[11] Y. Wang, “The Real-Time Process Algebra (RTPA),”
Ann. Softw. Eng., vol. 14, no. 1–4, pp. 235–274, 2002.

[12] S. Misra, M. Koyuncu, M. Crasso, C. Mateos, and A.
Zunino, “A Suite of Cognitive Complexity Metrics,” in
International Conference on Computational Science and
Its Applications -2012, 2012, pp. 234–247.

[13] L. Arockiam and A. Aloysius, “Attribute Weighted
Class Complexity : A New Metric for Measuring
Cognitive Complexity of OO Systems,” World Acad.
Sci. Eng. Technol. Int. J. Comput. Electr. Autom.
Control Inf. Eng., vol. 5, no. 10, pp. 1151–1156, 2011.

[14] D. Mishra and A. Mishra, “Object-oriented inheritance
metrics in the context of cognitive complexity,” Fundam.
Informaticae, vol. 111, no. 1, pp. 91–117, 2011.

[15] R. Harrison, S. Counsell, and R. Nithi, “Experimental
assessment of the effect of inheritance on the
maintainability of object-oriented systems,” J. Syst.
Softw., vol. 52, no. 2–3, pp. 173–179, 2000.

66

[16] S. Misra, M. Koyuncu, M. Crasso, C. Mateos, and A.
Zunino, “A Suite of Cognitive Complexity Metrics,” Int.
Conf. Comput. Sci. Its Appl. - ICCSA 2012, vol. 7336, pp.
234–247, 2012.

[17] H. Li, “Dynamic analysis of Object-Oriented software
complexity,” 2012 2nd Int. Conf. Consum. Electron.
Commun. Networks, CECNet 2012 - Proc., pp. 1791–
1794, 2012.

[18] M. Esperanza Manso, J. A. Cruz-Lemus, M. Genero, and
M. Piattini, “Empirical Validation of Measures for UML
Class Diagrams: A Meta-Analysis Study,” LNCS, vol.
5421, pp. 303–313, 2009.

67

6868

Generating Configuration Models
from Requirements to Assist in Product Management –

Dependency Engine and its Performance Assessment
Juha Tiihonen1 and Iivo Raitahila1 and Mikko Raatikainen1 and Alexander Felfernig2 and

Tomi Männistö1

Abstract. Requirements engineering is often, especially in the con-

text of major open source software projects, performed with issue

tracking systems such as Jira or Bugzilla. Issues include require-

ments expressed as bug reports, feature requests, etc. Such systems

are at their best at managing individual requirements life-cycle. The

management of dependencies between issues and holistic analysis

of the whole product or a release plan is usually scantly supported.

Feature modeling is an established way to represent dependencies

between individual features, especially in the context of Software

Product Lines — well-researched feature model analysis and con-

figuration techniques exist. We developed a proof-of-concept depen-

dency engine for holistically managing requirements. It is based on

automatically mapping requirements and their dependencies into a

variant of feature models, enabling utilization of existing research.

The feature models are further mapped into a constraint satisfaction

problem. The user can experiment with different configurations of

requirements. The system maintains the consistency of dependencies

and resource constraints. To evaluate the feasibility of the system, we

measure the performance of the system both with some real and gen-

erated requirements. Despite some remaining performance issues, it

seems that the approach can scale into managing the requirements of

large software projects.

1 INTRODUCTION
There are various kinds of requirement management systems (RMS)

applied in requirements engineering [10]. In particular, different is-

sue tracker systems, in which requirements are captured as issues,

are becoming increasingly popular, especially in large-scale, glob-

ally distributed open source projects, such as in the cases of Bugzilla

for Linux Kernel, Github tracker for Homebrew, and Jira for Qt. An

issue tracker can contain tens of thousands requirements, bugs and

other items that are different ways interdependent from each other.

Issue tracker systems as RMSs provide primarily with support

for individual requirements throughout various requirements engi-

neering activities, such as requirements documentation, analysis, and

management as well as tracking the status of a requirement over its

life cycle. Even though individual dependencies, including more ad-

vanced constraints, can be expressed in the case of an individual re-

quirement, more advanced analysis over all requirements of a system

taking into account the dependencies and properties of the require-

ments is not well supported. For example, deciding a set of require-

1 University of Helsinki, Finland, first.last@helsinki.fi
2 Graz University of Technology, Austria, alexander.felfernig@ist.tugraz.at

ments to be implemented simultaneously might need to follow all

dependencies transitively, which is not readily supported by the is-

sue trackers. The issue trackers are not either necessarily optimal for

the concerns of product or release management that need to deal with

different requirement options, alternatives and constraints, as well as

their dependency consequences when deciding what to do or not to

do. However, dependencies in general are found to be one of the key

concerns that need to be taken into account, e.g., in requirements pri-

oritization [1, 9, 18] and release planning [2, 17]. In fact, the above

concerns are not at the core of issue trackers’ support for the require-

ments engineering activity. Rather, issue trackers focus more on a

single issue, its properties, and its life cycle. The situation is not nec-

essarily specific only for issue trackers, but it exists also in other

kinds of RMS.

In the context of a Horizon 2020 project called OpenReq, we de-

veloped a proof-of-concept Dependency Engine for holistically man-

aging requirements as a single model. It is based on automatically

mapping requirements and their existing isolated dependencies into

the Kumbang [3] variant of feature models, enabling utilization ex-

isting research. A feature model is further mapped into a constraint

satisfaction problem. The user can experiment with different config-

urations of requirements. The system maintains the consistency of

dependencies and resource constraints.

This paper outlines the principle of the Dependency Engine and

addresses its feasibility in terms of performance. We measure the

performance of the system both with some real and generated re-

quirements. Responsive performance is important for interactive us-

age, e.g., what-if analysis of requirements to include in a release.

Furthermore, it is important that decisions are based on current in-

formation; either relatively fast model generation or a way to update

models ’on-the-fly’ are required.

The rest of the paper is organized as follows. Section 2 outlines

the concept of a feature model. Section 3 presents the research ques-

tions, general idea of the Dependency Engine, applied data and tests.

Section 4 presents the results, Section 5 provides analysis and dis-

cussion. Finally, Section 6 concludes.

2 BACKGROUND: FEATURE MODELING

The notion of a feature model, similarly as a requirement, is not un-

ambiguous. A feature of a feature model is defined, e.g., as a char-

acteristic of a system that is visible to the end user [12], or a system

property that is relevant to some stakeholder and is used to capture

commonalities or discriminate among product variants [8]. A feature

6969

model is a model of features typically organized in a tree-structure.

One feature is the root feature and all other features are then the

subfeatures of the root or another feature. Additional relationships

are expressed by cross-branch constraints of different types, such as

requires or excludes. Feature model dialects are not always precise

about their semantics, such as whether the tree constitutes a part-of

or an is-a structure [19]. Despite this, feature models have also been

provided with various formalizations [8, 16] including a mapping to

constraint programming [5, 6].

Specifically, we apply the Kumbang feature model conceptualiza-

tion [3] as the basis. It has a textual feature modeling language and

it has been provided with formal semantics. Kumbang specifies sub-
features as part-of relations and allows defining separate is-a hier-

archies. Kumbang supports feature attributes and its constraint lan-
guage can be used to express cross-branch relationships.

A feature model is a variability model roughly meaning that there

are optional and alternative features to be selected, and attribute val-

ues to be set that are limited by predefined rules or constraints. When

variability is resolved, i.e., a product is derived or configured, the

result is a configuration. Variability is resolved by making configura-

tion selections such as an optional feature is selected to be included,

or one of alternatives is selected. A consistent configuration is a con-

figuration in which a set of selections have been made, and none of

the rules have been violated. A complete configuration is a consistent

configuration in which all necessary selections are made.

Feature modeling has become a well-researched method to man-

age variability and has been provided with several different analyses

to assist in system management [4].

3 METHODS AND DATA
We follow Design Science in the sense that the aim is to innovate

a novel intervention and bring it into a new environment so that the

results have value in the environment in practice [11]. Dependency

engine is the artifact of the intervention and this paper focuses on its

quality attributes. The specific research questions are:

• RQ1: Can the OpenReq Dependency Engine scale to real-world

projects?

• RQ2: How can the performance of the Dependency Engine be

improved?

3.1 Approach and architecture
To facilitate requirement management via a feature-based approach,

we make each requirement correspond to exactly one feature. The

properties of a requirement correspond to the attributes of a feature.

The dependencies of individual requirements are mapped to hierar-

chies and constraints of a feature model. We currently rely only on

the dependencies explicitly expressed in requirements although we

will aim to extract missing dependencies with NLP technologies. In

order to make such a mapping, we need a feature model dialect that

is conceptually relatively expressive supporting feature typing and

attributes. Kumbang was selected for this purpose.

The Dependency Engine currently consists of three stand-alone

software components with specific responsibilities: Milla, Mulperi
and SpringCaaS, see Figure 1. There are two different workflows:

creating a model from requirements data and making subsequently

queries against the model. These three components operate as REST-

type services and are implemented using the Java Spring framework3.

3 https://spring.io/

Figure 1. Workflows of the Dependency Engine

Milla is a front-end that is used to access requirement data via

volatile or case-dependent interfaces. For example, it extracts re-

quirements via the API of Jira. It outputs MulSON, a JSON based

intermediate transfer format understood by Mulperi.

Mulperi converts from a small number of stable requirement in-

put formats such as MulSON into the Kumbang feature modeling

language. It can generate a number of queries to SpringCaaS.

SpringCaaS takes as input Kumbang feature models and converts

them into a corresponding Constraint Satisfaction Problem (CSP).

Choco Open-Source Java library for Constraint Programming [15]

was selected because it is Java-based, popular, and has good per-

formance and a permissive license. The Kumbang model and corre-

sponding the data structures are saved for subsequent use.

3.2 Potential bottlenecks and related tests
Network and external system bottlenecks Jira integration

fetches requirements from the RMS one requirement at a time

over network, which can potentially create performance bottlenecks.

These bottlenecks are outside the scope of this paper4.

Requirement model generation Milla generates feature models

from requirements data fetched from Jira. Effectively, relevant data,

such as IDs, dependencies and the attributes that are needed in infer-

ence, are extracted and a MulSON presentation is generated.

Feature model generation A requirement model expressed in

MulSON is sent to Mulperi. Mulperi generates a feature model ex-

pressed in the Kumbang feature modeling language. Mulperi’s func-

4 Bottlenecks were identified and solved by adding parallel connections.

7070

tionality is largely based on data structure manipulation - JSON input

and Kumbang output. The transformation is straightforward. Mulperi

also saves the results into an in-memory database. This model is then

sent to SpringCaaS in a single message.

Feature model to CSP A feature model expressed in Kumbang is

parsed. Kumbang syntax resembles many programming languages.

Therefore parsing is potentially heavy.

Based on the data structures representing the feature model, a cor-

responding Constraint Satisfaction Problem (CSP) is generated. Ba-

sically, a set of Boolean CSP variables represents instances of indi-

vidual feature types. Each of these is related to corresponding integer

CSP variables that represent attribute values of these individual fea-

tures. Enumerated strings are mapped to integers. Choco constraints

are created based on the dependencies; the constraints can access the

presence of a feature, and relationships between attribute values of

features. The current implementation supports only binary relation-

ships (requires, excludes).

In addition, it is possible to specify global resource (sum) con-

straints over specific attributes. For example, the sum of efforts of

included features can be constrained. To facilitate this, the imple-

mentation reserves attribute value 0 to attribute values of features

that are NOT in configuration.

CSP solving The prime suspect for performance bottlenecks is

solving the CSP representing a model of requirements. There are a

number of tasks to accomplish based on a constructed model.

• check a configuration of features for consistency

• complete a configuration of features

• determine the consequences of feature selections

The selection of search strategy often has significant effect on

solvability and quality of solutions [15].

3.3 Data
The performance evaluations are based both on real data from the Qt

company and synthetic data.

3.3.1 Real requirements

Qt is a software development kit that consists of a software frame-

work and its supporting tools that are targeted especially for cross-

platform mobile application, graphical user interface, and embedded

application development. All requirements and bugs of Qt are man-

aged in the Qt’s Jira5 that is publicly accessible. Jira6 is a widely used

issue tracker that can contain many issue types and has a lot of func-

tionality for the management of issues. Issues and bugs can be con-

sidered as requirements and they have dependencies and attributes

with constant values, such as priority and status. Thus, known re-

quirements and their dependencies have already been identified and

entered into Jira. Qt’s Jira contains 18 different projects and although

some of the projects are quite small and discontinued, QT-BUG as

the largest project contains currently (April 2018) 66,709 issues.

For empirical evaluation with real data, a set of issues was gath-

ered from Qt’s Jira and processed through the whole pipeline. Only

well-documented requirements having dependencies were selected

to the dataset JiraData that contains 282 requirements.

5 https://bugreports.qt.io
6 https://www.atlassian.com/software/jira

3.3.2 Synthetic data

The synthetic datasets were created and run using automated scripts.

SynData1 dataset contains a total of 450 models with permutations

of the amounts of requirements (from 100 to 2000), a ’requires’ de-

pendency (from 0 to 75% of the requirements), an optional subfea-

ture with one allowed feature (from 0 to 75% of the requirements)

and a number of attributes (from 0 to 5 per requirement); each at-

tribute has two possible values, e.g., 10 and 20.

A smaller dataset (60 test cases), SynData2, was used for opti-

mization tests with sum constraints, see Section 3.4.5. SynData2
contains models with permutations of the amounts of require-

ments (from 100 to 2000), a ’requires’ dependency (from 0 to

75% of the requirements), no further subfeatures and 1 or 2 at-

tributes with a fixed random value from 1 to 100. An example of

a SynData2requirement in MULSON format:

{
"requirementId": "R4",
"relationships": [
{
"targetId": "R25",
"type": "requires"
}
],
"attributes": [
{
"name": "attribute1",
"values": ["9"],
"defaultValue": "9"
},{
"name": "attribute2",
"values": ["22"],
"defaultValue": "22"
}
],
"name": "Synthetic requirement nro 4"
}

3.4 Empirical tests
3.4.1 Test setup

Measurements should be conducted when the software’s behaviour is

typical[13]. Since there is currently no production environment, the

tests are conducted on a development environment that closely re-

sembles the possible production environment. Furthermore, we aim

to perform tests that could correspond to real usage scenarios.

The test machine is an Intel Core i5-4300U 1.9GHz dual core lap-

top with 16GB of RAM and an SSD disk, running Ubuntu Linux

16.04 and a 64-bit version of Oracle Java 1.8.0. All software compo-

nents except for Jira are run on the same machine.

The examined software components log execution times to files

that are collected after each automated test run. A timeout was set to

limit the solving of Choco in SpringCaaS.

Although SpringCaaS is a single component, we often report the

execution time in two parts: Choco Solver and the rest of Spring-

CaaS. This is because often Choco’s solve operation takes the most

time, but the initial tests showed that the Kumbang parser becomes a

bottleneck in specific situations.

3.4.2 Initial trials and initial search strategy

Initial testing was performed with the goal to complete a configura-

tion of requirements with a minimal number of additional require-

ments. The pareto optimizer of Choco was applied to provide alter-

native solutions7. All features were included in the pareto front. By

default, Choco uses the domOverWDeg search strategy for interger

and Boolean variables [15]. Table 3 describes the search strategies

7 Pareto optimizer dynamically adds constraints: a solution must be strictly
better than all previous solutions w.r.t. at least one objective variable [15].

7171

applied. In our domain and way of modeling, the strategy effectively

leads to selection of excessive number of features. This is contrary to

the initial goal. As results in the beginning of Section 4 will show, an

alternative search strategy was required to achieve satisfactory per-

formance. The Search Strategy was changed to minDomLBSearch; it

is used in the rest of the tests unless otherwise mentioned.

3.4.3 Requirement model generation

JiraData and SynData1 Datasets were applied to run the whole

pipeline from gathered requirements to a Kumbang textual model

and a serialized feature model. The process is illustrated at the left

hand side of Figure 1. The different steps were timed.

In the case of SynData1 dataset, Milla was bypassed because the

test cases were expressed directly in MULSON. Note that model gen-

eration includes finding a consistent configuration of features; this

search is performed as a form of a model sanity check.

3.4.4 Requirement configuration

Autocompletion of configurations was performed with the

JiraData dataset. A run was performed with a sum calcula-

tion constraint. Here, each requirement has a numerical priority

attribute. The query instructed SpringCaaS to give a configuration

where the sum of these priority attributes was greater than 100.

More substantially, requirement configuration was also performed

with the SynData1 dataset to analyse the performance under vary-

ing number of requirements and their properties (attributes, depen-

dencies), and user-specified requirements. This test applies optimiza-

tion to find a (close to) minimum configuration that includes pre-

selected features, if any. Effectively, the configuration of require-

ments is completed. This is presumably one of the computationally

most intensive operations. The configuration phase is tested in ten it-

erations: first selecting only one requirement and then increasing the

number of selected requirements by 10% so that the tenth iteration

has 1 + 90% requirements selected.

3.4.5 Optimised release configuration under resource
constraint

We performed a number of resource-constrained optimization tests.

Here, we applied global sum (resource) constraints specified in Ta-

ble 1 to constrain the allowed solutions. SynData2 Dataset contains

test cases with 1 or 2 attributes per requirement (see Section 3.3.2).

Effectively, the combination of number of attributes and the applied

constraint correspond to usage scenarios presented in Table 2. Fi-

nally, we applied the bestBound(minDomLBSearch()) search

strategy, after we had experimented with different alternatives, see

Section 3.4.6 and corresponding results.

We run the tests with 60s, 10s and 3s timeout values to see the

effect of allowed time on the solvability and to get an impression on

the quality of solutions. In addition, we developed and experimented

with a custom algorithm that (roughly) first ’filled’ effort bounds with

’big’ features and used ’small’ ones to meet the bound.

3.4.6 Determining search strategy

We tested a set of different search strategies for performance,

utilizing the 2000 requirement test cases of the SynData2
dataset. The experimented basic search strategies included

activityBasedSearch, Choco default domOverWDeg, and

minDomLBSearch, see Table 3. These were augmented with

bestBound, lastConflict or both; e.g., bestBound adds directs

search based on the objective function and a strict consistency check.

Table 1. Resource constraints for optimization tests

Constraint# Constraint
0

∑
attribute1 > 1000

1
∑

attribute1 = 1000

2
∑

attribute1 < 1000

3
∑

attribute1 > 1000 ∧
∑

attribute1 < 2000

4
∑

attribute1 > 1000 ∧
∑

attribute2 < 2000

Table 2. Constraints, number of attributes and usage scenarios

Constraint# #attributes Optimization goal
0, 1, 3 1 Simulate achieving desired utility with a

minimal number of requirements to imple-
ment. Minimizes the number of require-
ments.

2 1 Check the consistency of a given partial
configuration with respect to maximum ef-
fort and complete the configuration with
as few requirements as possible. Minimizes
the number of requirements. In the case of
SynData2, the test is redundant, only the
root feature will be included.

4 1 (Not relevant, 2 attributes in constraint, 1 in
model)

0, 1, 2, 3 2 Simulate maximisation of utility under
resource constraint: Maximize sum of
attribute2

4 2 Minimize the number of requirements to im-
plement under constraints of minimum util-
ity and maximum effort.

4 RESULTS
The results of the initial trials are in the two first rows of Table 4. The

timeout and solution limits were disabled. The processing time was

unacceptable, as reflected in the results.

4.1 Requirement model generation
The first two rows of Table 6 present the results of processing the

JiraData dataset through the whole pipeline. Table 5 shows the re-

sults of processing the SynData1 dataset. A save operation includes

finding a consistent non-optimized configuration of requirements.

Figure 2 presents cases with 1000 requirements. Each bar color

corresponds to a test case with a specific number of dependencies

(from 0 to 200) and subfeatures (from 200 to 1000). The elapsed

time in Mulperi, SpringCaaS and Choco are shown for 0, 2000 and

5000 attributes, that is, 0, 2 or 5 attributes per feature, each with two

possible values per requirement.

Figure 3 depicts a case with 1000 requirements and different num-

ber of subfeatures (a requirement can be a subfeature of many re-

quirements). Please note the logarithmic scale. With 5000 subfea-

tures it took over five hours to parse the model.

Starting from (some) models with 1000 requirements, the serial-

ization of the parsed Kumbang model failed due to a stack overflow

error. It was necessary to increase the Java Virtual Machines stack

size to one gigabyte to prevent out-of-memory errors.

7272

Table 4. Effect of search strategy with Pareto optimizer, JiraData dataset

Strategy Optional features Mandatory features Attributes Solutions Time
default 14 0 0 60 130 to 300 ms
default 20 0 0 1046 11600 to 11900 ms (unacceptable)

minDomLBSearch 14 0 0 1 120 to 170 ms
minDomLBSearch 20 0 0 1 150 to 190 ms
minDomLBSearch 235 0 2 per feature 1 160 to 200 ms
minDomLBSearch 118 117 2 per feature 1 400 to 650 ms

Table 5. Minimum, maximum and median test cases of the save phase, SynData1 dataset

Requirements Dependencies Subfeatures Attributes Mulperi time (ms) SpringCaaS time (ms) Choco time (ms) Total time (ms)
500 375 200 0 85 158 98 341
500 50 500 1000 504 247 493 1244
500 250 500 2500 1971 439 2133 4543
750 563 150 0 159 220 401 780
750 375 0 1500 1040 371 2239 3650
750 563 1125 3750 4988 684 6359 12031

1000 750 400 0 309 347 670 1326
1000 750 0 2000 1895 584 4144 6623
1000 750 1500 5000 8859 1029 12772 22660
1500 1125 600 0 584 509 2009 3102
1500 0 1500 3000 4942 733 8756 14431
1500 750 2250 7500 21747 1738 30270 53755
2000 1000 800 0 661 566 4781 6008
2000 1500 0 4000 6958 1079 15816 23853
2000 1500 2000 10000 37692 2018 46433 86143

Table 3. Choco Search strategies

Search strategy Description
activityBasedSearch Search strategy for ”black-box” constraint solving.

” ... the idea of using the activity of variables during
propagation to guide the search. A variable activ-
ity is incremented every time the propagation step
filters its domain and is aged.”[14]. Used parame-
ters (GAMMA=0.999d, DELTA=0.2d, ALPHA=8,
RESTART=1.1d, FORCE SAMPLING=1) [15]

domOverWDeg Choco default. ”Intuitively, it avoids some trashing
by first instantiating variables involved in the con-
straints that have frequently participated in dead-
end situations” [7]. Slightly oversimplifying, the
strategy attempts to solve hard parts of a CSP
first, weighting constraints by their participation in
dead-ends.

minDomLBSearch ”Assigns the non-instantiated variable of smallest
domain size to its lower bound” [15]

bestBound Search heuristic combined with a constraint per-
forming strong consistency on the next decision
variable and branching on the value with the best
objective bound (for optimization) and branches on
the lower bound for SAT problems.[15]

lastConflict ”Use the last conflict heuristic as a plugin to im-
prove a former search heuristic Should be set after
specifying a search strategy.”[15]

Figure 2. Performance effect of attributes

Figure 3. Kumbang parser’s fatigue

7373

Table 6. Measurements from the whole pipeline, JiraData dataset

Function Requirements Request Milla time Mulperi time SpringCaaS time
Save model 1 - 0,182 s 0,010 s 0,050 s
Save model 282 - 1,252 s 0,311 s 0,315 s
Configure 1 empty - 0,050 s 0,005 s
Configure 282 empty - 0,050 s 0,143 s
Configure 282 10 features - 0,040 s 0,172 s
Configure 282 25 features - 0,077 s 0,127 s
Configure 282 50 features - 0,116 s 0,099 s
Configure 282 10 features with dependencies - 0,040 s 0,093 s
Configure 282 sum calculation constraint - - 5,098 s (timeout)

Table 7. Minimum, maximum and median test cases of the configuration phase, SynData1 dataset

Requirements Dependencies Subfeatures Attributes Requirements in request Mulperi (ms) SpringCaaS (ms) Choco (ms) Total (ms)
100 10 0 0 1 9 10 4 23
100 10 20 200 91 10 21 8 39
100 0 0 500 1 27 54 14 95
500 0 100 0 451 34 79 19 132
500 100 200 0 101 33 61 71 165
500 0 0 2500 201 34 266 549 849
750 0 150 0 601 60 122 55 237
750 0 150 1500 376 63 156 344 563
750 375 0 3750 601 70 273 1614 1957

1000 750 1000 0 1 129 133 126 388
1000 500 0 2000 401 90 252 777 1119
1000 0 0 0 1 1344 414 1788 3546
1500 0 0 0 1351 186 363 179 728
1500 0 0 3000 751 185 364 2159 2708
1500 300 0 7500 1351 263 715 9087 10065
2000 0 0 0 1801 237 619 334 1190
2000 200 0 4000 801 297 515 4445 5257
2000 1000 0 10000 1801 573 1056 16464 18093

Figure 4. Performance effect of dependencies, 1500 requirements

4.2 Requirement configuration

The results of the configuration task with the JiraData dataset are

from row 3 onwards in Table 6. In case of the sum constraint (the last

row), SpringCaaS was able to find 107 to 120 solutions before the

timeout at 5s was reached.

Table 7 contains the minimum, maximum and median measure-

ments of total execution times for varying numbers of requirements,

dependencies, subfeatures, attributes and number of pre-selected re-

quirements in the request.

Figure 4 shows the effect of the number of dependencies in case

of 1500 requirements per test case, but with a varying number of

requires-dependencies.

Figure 5 shows the effect of the number of requirements and at-

tributes in case of 1500 and 2000 requirements per test case.

Figure 5. Performance effect of selected requirements and unselected
attributes

4.3 Optimized configuration under resource
constraint

Table 8 presents a summary of the results of test that minimize the

number of features. Note that constraint #4 is from test cases with 2

attributes, the others apply to test cases that have one attribute that

is constrained. Because all features are optional, tests with constraint

#1 trivially contain only the root feature of the model.

Table 9 represents the results of optimizing via Maximization of

the sum of attribute 2 (e.g. utility) under constraints on attribute1.

Test cases with 100, 500, 750, 1000, 1500 and 2000 requirements

and varying numbers of requirements are solvable with 60s timeout.

10s handles all cases except 2000 requirements. 3s timeout is only

applicable to cases with 100, 500 and 750 requirements.

7474

Table 8. Minimization of the number of features. Results of 60 second timeout compared with 10 and 3 second timeouts and the custom algorithm. Lower

number of features in a solution is better. Test: the type of the testcases, #a: the number of attributes in the test cases. N : the average number of features in
the minimal solution found with the 60s timeout. N=10 : the number of test cases where 10s timeout search finds the same number of features than the 60s

version. N>10 : the number of test cases where 10s timeout search includes a larger number of features than the 60s version. ΔN10
: the average number of

additional features included in a solution found with 10s timeout when compared to the 60s search. ΔN10(%): the average percentage of additional included

features found by the 10s version. N=3 , N>3 , ΔN3 , ΔN3(%): 3 second timeout versions analogously as 10s. The corresponding figures of the custom

algorithm are presented similarly: N=c , N<c , N>c , ΔNc (%). Note that N<c is the number of cases where the custom algorithm finds a better solution.
SynData2 dataset.

Test #a N N=10 N>10 ΔN10
ΔN10(%) N=3 N>3 ΔN3

ΔN3(%) N=c N<c N>c ΔNc (%)
0 1 14.3 14 11 0.48 3.38% 7 8 0.60 4.92% 4 7 19 2573.33%
1 1 14.3 14 11 0.52 3.63% 7 8 0.67 4.92% 6 4 20 106.67%
2 1 1.0 25 0 0.00 0.00% 15 0 0.00 0.00% 30 0 0 0.00%
3 1 14.3 13 12 0.52 3.65% 7 8 0.73 4.92% 4 7 19 620.00%
4 2 14.4 17 8 0.32 2.26% 6 9 0.67 4.40% 0 0 30 1456.67%

A memory of 3 GB was required to complete the tests. The

bestBound search strategy became feasible by applying the opti-

mization to one variable or to the sums of attributes. A pareto front

with all feature variables caused excessive memory consumption.

4.4 Determining search strategy
Table 10 compares search strategies with 2000 require-

ment test cases and minimization tasks. defaultSearch and

activityBasedSearch fail in a number of cases with 60s timeout.8

minDomLBSearch can solve all these cases. Negative ΔN
indicates that the compared search strategy found better solutions

(e.g. Total number of features was 18 less in the 30 tests) .

Constraint #2 with 2 attributes is essentially uncon-

strained for big problems. Here, the optimal solution in-

cludes all features. Plain minDomLBSearch fails to

’notice’ that. Both bestBound(minDomLBSearch())
and lastConflict(bestBound(minDomLBSearch()))
help the solver to find the maximal solution. Of

these, in terms of maximized result on attribute2,

bestBound(minDomLBSearch()) is slightly better in 3

cases and lastConflict(bestBound(minDomLBSearch())) in

one. Due to limitations of space, further details are omitted.

Earlier tests with all features in the pareto front prevented the us-

age of bestBound strategy due to increased memory consumption.

Table 10. Comparison of search strategies with 2000 requirement cases
and Minimization tasks with 60s timeout

Search Strategy # no so-
lution

ΔN

minDomLBSearch() 0 0
lastConflict(minDomLBSearch()) 0 -12
bestBound(minDomLBSearch()) 0 -18

lastConflict(bestBound(minDomLBSearch())) 0 -18
defaultSearch() 20

bestBound(defaultSearch()) 45
activityBasedSearch() 50

bestBound(activityBasedSearch()) 49
lastConflict(bestBound(activityBasedSearch())) 49

5 ANALYSIS AND DISCUSSION
Initial trials The results of Table 4 turned out to be too good:

it happens that the minimal requirement configurations of models in

JiraData are unique. That is, the solver can find a minimal solution

with MinDomLBSearch and even prove its optimality.

8 This test was performed with a different, weaker computer than the nor-
mally used one.

Requirement model generation The number of dependencies be-

tween the requirements seem to have no impact during the save

phase. To avoid out-of memory errors, Kumbang model read and

write methods could be overridden with an implementation that suits

better for the Kumbang data structure, or the serialization phase

could be omitted altogether. On the other hand, optimized solving

needs even more memory.

Increasing the number of attributes increases the processing time

of each component steadily, see Figure 2. Increasing the amount

of subfeatures increases the processing time of Mulperi and Choco

steadily as well, but when the amount of subfeatures is very large,

the Kumbang parser slows down drastically, see Figure 3.

Requirement configuration The results in Section 3.4.4 suggest

that a five second timeout would be sufficient for models with about

500 requirements or less. The configuration of all 1000 requirement

models and most of the 1500 requirement models can be performed

in less than five seconds.

The timeout value of the save phase could be set to be longer. Both

timeout values could be controlled with parameters, for example if

the user thinks that he/she can wait for a full minute for the process-

ing to complete. During the configuration phase, the dependencies

actually ease Choco’s inference burden. Figure 4 with 1500 require-

ments shows that when there are no dependencies, the preselected

requirements in the configuration request speed up Choco linearly.

The increase in configuration request size adds processing over-

head to SpringCaaS. Secondly, when the dependency rate gets

higher, more requirements are included in the configuration early on,

again helping Choco perform faster. The same is true for subfeatures:

selecting requirements with subfeatures decreases processing time.

With attributes, the situation is the opposite. The more there are

attributes and the more configuration request contains selected re-

quirements, the more time it takes to select attributes, see Figure 5.

The optimization task is computationally intensive. It is difficult

for the solver to determine if an optimal solution has been found.

Therefore solving practically always ends with a timeout.

Optimised release configuration under resource constraint
When a solution is found, the versions with a lower timeout value

remain almost as good as solutions obtained with 60s timeout. The

custom algorithm was expected to perform well in test case types 1

and 2. However, this seems not be the case. Out of 150 test cases, the

algorithm finds better solutions than the the ’normal’ minimizer in

18 cases. In the clear majority of cases, it performs worse.

7575

Table 9. Maximization of sum of attribute 2 (e.g. utility). Results of 60 second timeout compared with 10 and 3 second timeouts. The custom algorithm is

excluded. Higher sum of attribute 2 (a2) is better. Test: the type of the testcases, #a: the number of attributes in the test cases. N60: the average number of
features in a solution found with the 60s timeout. a160, a260 :average value of attribute 1 / attribute 2 in solutions identified with 60s timeout, respectively.
N10,a2,< and N10,a2,=: the number of test cases where 10s timeout search finds a lower / same same sum of attribute 2 than the 60s version, respectively.

ΔN10(%) : the average difference (percentage) between number of included features between 60s and 10s timeout versions. Δa210(%): the average
difference (percentage) between sum of attribute 2 of included features between 60s and 10s timeout versions. 3 second timeouts are analogous, SynData2.

Test #a N60 a160 a260 N10,a2,< N10,a2,= ΔN10(%) Δa210(%) N3,a2,< N3,a2,= ΔN3(%) Δa23(%)
0 2 976 48979 49255 0 25 0.0% 0.0% 0 15 0.0% 0.0%
1 2 33.2 1000 1821 24 1 -2.1% -4.1% 15 0 -2.9% -5.9%
2 2 33.5 998 1831 21 4 -3.4% -4.6% 13 2 -5.7% -6.5%
3 2 53.6 1998 2860 23 2 -2.1% -3.2% 15 0 -3.6% -4.5%

Determining search strategy The best search strategy for our

purposes is bestBound(minDomLBSearch()) instead of plain

minDomLBSearch(), because it provides slighly better results in

minimization tests and maximizes significantly better.

6 CONCLUSIONS

Solutions without optimization are easy to find; solvers such as

Choco have an easy task with sparse dependencies. Still, at least for

optimization, the selection of a search strategy matching the prob-

lem at hand remains crucial. It was surprising that the ”black-box”

activityBasedSearch[14] and Choco default domOverWDeg[7] did

not perform in a satisfactory way.

The prototype engine easily scales to around 2000 requirements,

even when optimization is desired. Despite some remaining perfor-

mance issues, it seems that the approach can scale into managing the

requirements of large software projects, even for interactive use.

However, very large software projects, such as QT-BUG remain

challenging. A more close examination of the Qt Jira is required, be-

cause it seems that performance can be managed in various ways.

First, there are different types of issues such as bugs and require-

ments that do not need to be considered at the same time. Second, Qt

has used Jira over a decade and there is a lot of historical data. The

rate of new Jira issues seems to be up to 20 per a day. So, consider-

ing only issues created or modified within three years would signifi-

cantly decrease the amount of data. Third, the exact nature of Qt data

and practical applications need to be inspected in more detail; now

it seems that only about 10% of issues have dependencies, and the

compositional hierarchy such as epics decomposed to smaller items

needs a few levels at most.

The concept of Dependency Engine is novel and it seems to be

feasible for its intended use for providing holistic support for the

management of dependencies, also in the context of large software

projects.

ACKNOWLEDGEMENTS

This work has been funded by EU Horizon 2020 ICT-10-2016 grant

No 732463. We thank the Qt Company for sharing the data.

REFERENCES
[1] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Nazri

Mahrin, ‘A systematic literature review of software requirements prior-
itization research’, Information and Software Technology, 56(6), 568–
585, (2014).

[2] David Ameller, Carles Farré, Xavier Franch, and Guillem Rufian, ‘A
survey on software release planning models’, in Product-Focused Soft-
ware Process Improvement, (2016).

[3] Timo Asikainen, Tomi Männistö, and Timo Soininen, ‘Kumbang: A do-
main ontology for modelling variability in software product families’,
Advanced Engineering Informatics Journal, 21(1), (2007).

[4] D. Benavides, S. Segura, and A. Ruiz-Cortes, ‘Automated analysis of
feature models 20 years later: A literature review’, Information Systems,
35(6), 615–636, (2010).

[5] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortes., ‘Auto-
mated reasoning on feature models’, in 17th Conference on Advanced
Information Systems Engineering (CAiSE), (2005).

[6] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortes, ‘Using
constraint programming to reason on feature models’, in International
Conference on Software Engineering and Knowledge Engineering,
(2005).

[7] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar
Sais, ‘Boosting systematic search by weighting constraints’, in Pro-
ceedings of the 16th European Conference on Artificial Intelligence,
pp. 146–150. IOS Press, (2004).

[8] K. Czarnecki, S. Helsen, and U. W. Eisenecker, ‘Formalizing
cardinality-based feature models and their specialization’, Software
Process: Improvement and Practice, 10(1), 7–29, (2005).

[9] Maya Daneva and Andrea Herrmann, ‘Requirements prioritization
based on benefit and cost prediction: A method classification frame-
work’, in 34th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), pp. 240–247, (2008).

[10] Juan M. Carrillo de Gea, Joaqun Nicols, Jos L. Fernndez Alemn, Am-
brosio Toval, Christof Ebert, and Aurora Vizcano, ‘Requirements en-
gineering tools: Capabilities, survey and assessment’, Information and
Software Technology, 54(10), 1142 – 1157, (2012).

[11] S. Gregor, ‘The nature of theory in information systems’, MIS Quar-
terly, 30(3), 611–642, (2006).

[12] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson,
‘Feature-oriented domain analysis (FODA) feasibility study’, Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, (1990).

[13] D. Maplesden, E. Tempero, J. Hosking, and J. C. Grundy, ‘Performance
analysis for object-oriented software: A systematic mapping’, IEEE
Transactions on Software Engineering, 41(7), 691–710, (July 2015).

[14] Laurent Michel and Pascal Van Hentenryck, ‘Activity-based search
for black-box constraint programming solvers’, in International Con-
ference on Integration of Artificial Intelligence (AI) and Operations
Research (OR) Techniques in Constraint Programming, pp. 228–243.
Springer, (2012).

[15] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca, Choco
Documentation, TASC, INRIA Rennes, LINA CNRS UMR 6241,
COSLING S.A.S. www.choco-solver.org, 2016.

[16] P-Y. Schobbens, P. Heymans, J-C. Trigaux, and Y. Bontemps, ‘Generic
semantics of feature diagrams’, Compututer Networks, 51(2), (2007).

[17] Mikael Svahnberg, Tony Gorschek, Robert Feldt, Richard Torkar,
Saad Bin Saleem, and Muhammad Usman Shafique, ‘A systematic re-
view on strategic release planning models’, Information and Software
Technology, 52(3), 237 – 248, (2010).

[18] R. Thakurta, ‘Understanding requirement prioritization artifacts: a sys-
tematic mapping study’, Requirements Engineering, 22(4), 491–526,
(2017).

[19] Juha Tiihonen, Mikko Raatikainen, Varvana Myllärniemi, and Tomi
Männistö, ‘Carrying ideas from knowledge-based configuration to soft-
ware product lines’, in International Conference on Software Reuse, pp.
55–62, (2016).

7676

Quasi-Finite Domains: Dealing with the Infinite in Mass
Customization

Albert Haag1

Abstract. In this paper we propose to relax finiteness in relational
tables and tabular constraints in a controlled way. We preserve the
syntactic representation of a row in a table as a tuple of symbols.
Some of these symbols refer to an atomic value as usual. Others,
which we call quasi-finite symbols (QF-symbols), refer to infinite
subsets of an underlying infinite domain. Practical examples for QF-
symbols are references to (uncountable) real-valued intervals and
wildcards representing countably infinite sets. Our goal is to provide
a simple and smooth extension of the tabular paradigm, predomi-
nant in business, that is compatible with compression of the table
to c-tuples [14] or to a variant decomposition diagram [11], and is
amenable to constraint processing, such as local propagation.

The approach is based on organizing the QF-symbols pertaining
to each product property in a specialization relation [8, 9]. A spe-
cialization relation is a partial ordering that expresses specificity of
meaning. A QF-symbol can be ignored in the presence of a more
special one.

To ensure that the sets represented by two distinct QF-symbols
pertaining to the same domain are disjoint, we further require that it
must be possible to represent the intersection and set-differences of
QF-symbols. In order to be able to remove duplicates implicated by
a disjunction of QF-symbols from result sets of queries, we require
that it is possible to represent their normalized set-union.

QF-symbols may refer to any objects as long as the above require-
ments are met, e.g. regular expressions (unary predicates), rectangles
(geometric shapes), etc.

1 Introduction

This work expands on a common theme: that data in tabular form is a
natural, non-proprietary medium for communicating between inter-
related business processes within an enterprise, as well as between
enterprises. We focus on mass customization (MC), which we take to
be mass production with a lot size of one. A non-configurable prod-
uct, amenable to mass production, can have product variants2. For
example, mass produced ballpoint pens come in several colors, but
are otherwise identical. The offered colors are in a one-to-one cor-
respondence with the manufactured ballpoint variants. The business
attributes are maintained once for the generic ballpoint pen. Only one
generic bill of materials that covers all possibilities needs to be main-
tained. For each variant the value of an additional product property,
color, is needed to determine which ink filling and matching cap is

1 Product Management GmbH, Germany, email: albert@product-
management-haag.de

2 We use SAP terminology pertaining to the handling of products and product
variants, citing [6] as a general reference. A brief sketch of the history of
the SAP Variant Configurator is given in [7]

used in assembling the variant3.
MC adds customization to this setting by placing the emphasis

on individualization, i.e. there will be many variants of a product
and the business is prepared to produce only a single unit of each
one on demand (lot size one). Accordingly, the product properties
that distinguish the variants are central and potentially numerous4.
In other work [13] we discuss the MC setting in more detail and
show that compression of variant tables, tables listing combinations
of product features, is a key element in managing the exponential
explosion of the number of variants caused by the increase in the
number of customization choices, which production technology
now enables. Here, we propose to add to the expressivity of
variant tables by presenting a quasi-finite (QF) framework that al-
lows dealing with infinite sets of choices within the tabular paradigm.

If the domains of all descriptive properties are finite, then the num-
ber of variants is finite as well. Leaving the reference to the under-
lying generic MC product aside, each variant is defined by a value
assignment to the properties, which we represent as a relational tuple
(r-tuple). If the number of offered variants is not large, these r-tuples
can be maintained as rows in a database table or spreadsheet, which
then acts as a product model comprised of a single tabular constraint.
If desired or needed, this overall variant table can conceptually be
split into smaller tables that together form a constraint satisfaction
problem (CSP). Each CSP variable corresponds to a product prop-
erty and each CSP solution to an offered product variant5. We refer
to any tabular constraint on product properties as a variant table.

Variant tables are a form of modeling that is very acceptable to
a business. Their downside is that they may not scale with a grow-
ing number of choices for individualization. However, we show in
[13] that expected regularities in the product variants will allow a
compressed form of the table to scale. Here, our choice of the com-
pressed form is a variant decomposition diagram (VDD) [10, 11],
and the associated c-tuples, a term adopted from [14] and used there
for a Cartesian product of sets of values.

However, infinite domains occur in MC practice, and neither ta-
bles of r-tuples nor classic CSP approaches allow infinite sets. In
this paper we propose to relax finiteness in variant tables, and by ex-
tension in the associated constraint processing, in a controlled way.
3 The SAP tables relevant for configuration are listed in [6], Appendix A
4 For simplicity of exposition, we disregard the possibility of needing to

deal with variant structures, i.e. variants that have variants as parts. Our
approach here addresses tabular data in general and could be extended to
variant structures if needed.

5 In practice, product models are not limited to use only tabular constraints.
However, the reasoning here shows that product variants could be exclu-
sively expressed in tables in the finite case. The single overall table listing
all variants can be seen the the result of compiling the product model, e.g.
to a decision diagram [2].

77

Our goal is to provide a simple and smooth extension of the tabular
paradigm that retains its acceptance in business, and, particularly, al-
lows compression to a VDD and c-tuples. We preserve the syntactic
representation of a row in a table as a tuple of symbols, while allow-
ing some of these, which we call quasi-finite symbols (QF-symbols),
to refer to infinite sets. A symbol for a real-valued interval, which
is uncountably infinite by definition, is an example of a QF-symbol.
A wildcard symbol that refers to an infinite domain is also a QF-
symbol. In contrast, a wildcard for a finite domain is just an alias for
the finite set of values. We treat this as “syntactic sugar” and equiva-
lent to the expanded set of values.

The approach we take here is illustrated by example in Section 4
and based on the following ideas6:

• Each property domain is defined by a finite set of symbols:

– a finite domain by its values, which we refer to as r-symbols,

– an infinite domain by one or more (disjoint) QF-symbols.

• We represent a value assignment to the product properties as a
tuple of symbols. If the tuple contains only r-symbols, it is an r-
tuple. If it also contains QF-symbols, we call it a QF-tuple. Both
r-tuples and QF-tuples are interpreted a special cases of a c-tuple,
where an r-symbol in the tuple is treated as a singleton set.

• We adapt the concept of a specialization relation from [8, 9] to
QF-symbols. When queries or constraint solving need to consider
two different QF-symbols for the same property simultaneously,
they can ignore both symbols and focus instead on the more spe-
cial symbol for their set intersection.

• Only a finite number of QF-symbols is needed, which can be de-
rived in advance from the product model (e.g. the property do-
mains and the variant tables)7.

• Compression to a VDD, and through that to c-tuples, can be done
as in the finite case, if we can ensure certain requirements are met.

One difference between a QF-symbol and an r-symbol is that the
former still allows choice, i.e. it can be specialized or restricted
further when required. The consequence is that some constraints
may need to be formulated in non-tabular form, e.g. to express that
for two real-valued properties length and width it should hold that:
length ≥ width. These constraints can be seen as inter-property
predicates. Whereas we discuss unary intra-property predicates as
QF-symbols, we will not deal with other inter-property predicates in
this paper, except to note in passing that restricting real-valued in-
tervals with numeric linear (in)equalities is an established technique
(see Section 8.2) that can be smoothly integrated with our intended
processing.

We show how configuration queries over variant tables with QF-
symbols can be meaningfully supported. We also believe that the
concept of specialization relations is an important bridge to con-
straint processing in general. The idea of defining a specialization
relation via the subset-relation can be inverted: given a set of sym-
bols from the column of a table that correspond to elements of a
partial order, such that a unique greatest successor and a unique least
common predecessor exists for any two elements, these symbols can
be treated in a like manner to QF-symbols for purposes of queries
and constraint processing, if we are willing to interpret the partial
order as a specialization relation.

6 This extends the simple processing of real-valued intervals and wildcards
proposed in [10, 11] for a set-labeled VDD.

7 If further QF-symbols are generated dynamically externally, the special-
ization relation will have to be extended dynamically. Nevertheless, at any
given time a finite number of symbols will be needed.

As stated, the goal of this work is to smoothly extend the tabular
paradigm, not to compete with other dedicated problem solving
approaches, and we do not make any such comparisons here.
The quasi-finite (QF) approach has not yet been tried in the field.
Therefore, we cannot present results. Given that the VDD processing
remains syntactically alike to the finite case, and given our positive
experiences with specialization relations in other endeavors, we
are confident that performance is not the issue. Instead, it will be
a primary concern to establish usefulness in practice and evaluate
acceptance by the business community.

The paper is structured as follows:

• We summarize a database approach to configuration in Section 2
and the topic of compression to VDDs and c-tuples in Section 3.

• We illustrate all ideas using an extensive example based on an MC
T-shirt in Section 4.

• Constructing VDDs from QF-tuples is akin to constructing them
from c-tuples. This topic is beyond the scope of this paper. How-
ever, we summarize the basic problem of ensuring disjoint c-tuples
(QF-tuples) in Section 5.

• We look at the motivating examples of QF-symbols and how they
meet our requirements in Section 6 in some detail.

• We discuss queries to variant tables with QF-symbols in Section
7.

• We present our ideas on specialization relations and their relation
to constraint processing in Section 8. In particular we show that
local propagation works seamlessly.

• We also believe that using QF-symbols (and perhaps c-tuples in
general) directly in the definition of a product variant has business
benefits, which we discuss in Section 9.

• We provide a summary and an outlook in Section 10.

2 Configuration in the Database Paradigm
The easiest MC business setting is when the business offering is a
small finite set of product variants actually represented in extensional
form in a relational database table or spreadsheet. Even when this is
not possible, due to the size such a table would have, tabular con-
straints can be used to define the valid variants.

The extensional form of a tabular constraint naturally supports var-
ious data queries such as (1) and (2), here formulated in SQL, which
are the most relevant for configuration as discussed in [11]8.

The query in (1) returns a result set of all variants matching the
user’s criteria9. The k product properties are denoted by v1, . . . , vk.
The variant table is denoted as 〈vtab〉. 〈Rj〉 denotes a subset of the
domain Dj for product property vj . The values of interest to a user
when configuring can be communicated in the WHERE clause.

SELECT * FROM 〈vtab〉
WHERE 〈v1〉 IN 〈R1〉 AND . . . 〈vk〉 IN 〈Rk〉; (1)

The query in (2) returns the domain restriction for property vj
under the WHERE clause.

SELECT DISTINCT 〈vj〉 FROM 〈vtab〉
WHERE 〈v1〉 IN 〈R1〉 AND . . . 〈vk〉 IN 〈Rk〉; (2)

8 While the approach here may be extended to cover further SQL queries, this
is beyond the scope of this paper.

9 In the SQL syntax, an IN term in the WHERE clause need not be specified
where no restriction is intended. However, for purposes of representing a
query condition as a c-tuple (see Section 3), we will substitute Rj = Dj
for an omitted IN term

78

These queries can also be done to further filter the result sets of
previous queries (see [11, 10]).

To sum up: tabular constraints in extensional form can be evalu-
ated using database queries. In [11] we have shown that this extends
to tables represented as VDDs in a way that also guarantees the effi-
ciency of the queries. We now have to show here how to handle the
queries (1) and particularly (2) in conjunction with QF-symbols.

3 C-Tuples, Table Compression, and Decision
Diagrams

The discussion of compression in this section is illustrated with
examples using a simple T-shirt in Section 4.

In the finite case a variant can be represented as an r-tuple. If we
substitute sets for values in this tuple, the tuple is no longer relational,
but represents the Cartesian set of all r-tuples that can be formed as
combinations using values from the sets. We call such a Cartesian
tuple a c-tuple10. As a tuple we denote it by C = 〈C1, C2, . . . , Ck〉,
where Cj ⊂ Dj and Dj is the domain of the product property vj ∈
{v1, . . . , vk}. As a Cartesian set it would be written as C = C1 ×
C2 × . . .× Ck.

In the context of the above definition, we don’t care whether an
element Cj of a c-tuple is finite or infinite. Note that the set of r-
tuples represented by a c-tuple is uncountable if one of the sets in the
c-tuple refers to a real-valued interval.

The WHERE clause with the k IN operators in (1) and (2) itself
describes a c-tuple 〈R1, . . . , Rk〉, which expresses the set of values
the user (the problem solving agent) believes in. We will refer to this
c-tuple as the query condition. We will allow a query condition to be
any c-tuple from our variant domain.

C-tuples offer a way to compress tables. For example, if the set of
all variants is totally unconstrained, this can be represented by a sin-
gle c-tuple, which is the Cartesian product of the product domains.
With constraints, there will be more c-tuples, but often a c-tuple rep-
resentation is much more compact than the extensional form [12].
For this reason, c-tuples are already used both formally and infor-
mally in configuration practice.

In the case of finite domains, a set of c-tuples can be further com-
pressed to a decision diagram (DD). We use the form of a Variant
Decomposition Diagram (VDD). As introduced in [10, 11], a VDD is
a binary rooted Directed Acyclic Graph (DAG), where each node has
a label denoting the assignment of a property to a value (r-symbol).
Here we will allow QF-symbols in node labels as well. Each node has
two emanating links, HI and LO, which we characterize as follows
given a fixed ordering of the product properties: v1, . . . , vk:11

• the HI-link of a node points to a node for the next product property
vj+1 or to the terminal sink > (true) from last column nodes.

• the LO-link points to an alternate value assignment for the same
product property vj or to the terminal sink ⊥ (false).

We will call a chain of nodes linked via LO-links an l-chain. If
more than one QF-symbol appears in an l-chain, the QF-symbols

10 We adapt the term from [14], which investigates direct compression to
c-tuples.

11 Under these assumptions, a multi-valued decision diagram (MDD), a more
widely known form of a DD [3, 1], can be mapped to a VDD. This is further
detailed in [11]

must denote disjoint sets, in order to allow a unique decision for a
node, given a value assignment.

Nodes in an l-chain that all have a common HI-link represent the
disjunction of their value assignments and could be merged into one
set-labeled node. In [10, 11] we introduced a VDD with set-labeled
nodes, where a node was labeled with a finite set of r-symbols rep-
resenting a disjunction of value assignments. Since any node labeled
with such a finite set can be re-expanded into an l-chain of regular
VDD nodes nodes that assign the symbols one at a time, we do not
propose to use VDDs with set-labeled nodes in practice. We use them
here in Section 4 to simplify the exposition.

A VDD is functionally equivalent to the extensional form of the
table it represents from the perspective of the queries (1) and (2)
relevant for configuration, see [11]. The extension of these queries
to include QF-symbols is the topic of Section 7. A VDD can also
support counting the number of tuples in a table or a result set of a
query and access a tuple directly by its position in the table/result set.

4 T-Shirt Example

4.1 Classic Finite T-Shirt Variants

In [10] the concepts of representing a variant table using a VDD are
illustrated using an example of a simple T-Shirt. We use this exam-
ple here both to illustrate the concepts discussed so far, and also to
illustrate the proposed extension to infinite sets.

The simple T-shirt has the three properties Imprint (v1), Size (v2),
and Color (v3) with the finite domains:

• {MIB(Men in Black), STW (Save the Whales)}
• {L(Large),M(Medium), S(Small)}
• {Black,Blue,Red,White}

Only 11 variants are valid due to constraints that state that MIB
implies Black and STW implies ¬S(Small). Table 1 is the exten-
sional form of the variant table, which is small enough to be used as
the only and definitive representation of the variants for the purposes
of both business and configuration. It encodes the underlying CSP as
a single tabular constraint.

The query (1) can be used to filter the variants to the set match-
ing any given selection criteria (query condition) 〈R!, . . . , Rk〉. For
example, if the user needs a small (S) sized T-shirt, there is only one
solution (the first row in Table 1). Alternatively, if a Red T-shirt is de-
sired, there are two variants that satisfy this (eighth and ninth rows),
and the domains are restricted as follows: Imprint ∈ {STW},
Size ∈ {Medium,Large}, and Color ∈ {Red} by applying the
query (2) for each property in turn.

Table 1. Simple T-shirt

Imprint Size Color
MIB S Black
MIB M Black
MIB L Black
STW M Black
STW L Black
STW M White
STW L White
STW M Red
STW L Red
STW M Blue
STW L Blue

79

Figure 1 depicts a VDD with set-labeled nodes for Table 1. The
HI-links in each path from the root to the sink > in the VDD in
Figure 1 define a c-tuple. The set of all c-tuples that can be formed is
disjoint and is a way to represent Table 1 in compressed form. Table
2 lists the two c-tuples needed to represent the 11 variants.

F T

1:(3, MIB)|7

2:(3, STW)|6

10:(2, [Large, Medium, Small])|312:(2, [Large, Medium])|5

6:(1, Black)|211:(1, [Black, Blue, Red, White])|4

Figure 1. VDD of T-shirt with set-labeled nodes

Table 2. C-tuples for simple T-shirt

Imprint Size Color
MIB S;M;L Black
STW M;L Black;White;Red;Blue

4.2 T-Shirt with Infinite Domains

To illustrate the use of infinite sets, we modify the example to allow
an arbitrary user-provided image as an imprint on a white T-shirt. An
image is identified at runtime via a file name. The file name must
refer to a processable graphic, which is taken to mean that only a
jpg or a tiff format can be accepted. Hence, the domain is the in-
finite set of all legal file names that match the regular expression
〈img-filename〉 = ∗.jpg| ∗ .tiff.

We also add a property Scale to capture a factor to be used to scale
the image printed on the T-shirt. For the vintage prints MIB and STW
we require Scale = 1. For the user-provided images, the scale can
be arbitrarily chosen by the user as a floating point number in the
range 0.5 to 1 (the interval [0.5, 1.0]).

Table 3 lists the c-tuples needed to describe this setting. The prod-
uct property Scale has here been placed as the first property v1. The
other properties are now v2 (Imprint), v3 (Size), and v4 (Color).

Table 3. C-tuples for simple T-shirt with infinite domains

Scale Imprint Size Color
1.0 MIB S;M;L Black
1.0 STW M;L Black;White;Red;Blue
[0.5, 1.0] 〈img-filename〉 S;M;L White

Table 4. Split c-tuples for simple T-shirt with infinite domains

Scale Imprint Size Color
1.0 MIB S;M;L Black
1.0 STW M;L Black;White;Red;Blue
[1.0] 〈img-filename〉 S;M;L White
[0.5, 1.0) 〈img-filename〉 S;M;L White

We now discuss how to construct a VDD with set-labeled nodes
for these c-tuples. Figure 2 shows the result12 .

1. We construct a root node ν1 labeled 〈v1, [1.0]〉 starting with the
first c-tuple. This node will be used for both the first and second
c-tuples in Table 3.

2. We construct the l-chain (chain of LO-links) for the root node:

• We pointed out in Section 3 that nodes linked in an l-chain need
to have disjoint set labels. This is illustrated here. It will be a
problem if we label ν2 with [0.5, 1.0] (third c-tuple), because
then the value Scale = 1.0 does not allow deciding uniquely
for either ν1 or ν2. So we split [0.5, 1.0] into the two disjoint
c-tuples.

[1.0] 〈img-filename〉 {S,M,L} White

[0.5, 1.0) 〈img-filename〉 {S,M,L} White

• Table 4 shows all the c-tuples to be handled in constructing
the VDD. The new third c-tuple is covered by ν1. We label the
second node ν2, linked from ν1 via its LO-link, with the half-
open interval [0.5, 1.0) from the fourth c-tuple. This handles
the first column.

3. We next process the rest of the three tuples in Table 4 that start
with C1 := [1.0]. We create:

• ν3, the target for the HI-link of ν1, labeled with 〈v2,MIB〉
• ν4, the target for the LO-link of ν3, labeled with 〈v2, STW 〉
• ν5, the target for the LO-link of ν4, labeled with
〈v2, 〈img-filename〉〉

4. It is straightforward to handle the third column for the above three
c-tuples: nodes ν3, ν4, and ν5 have their HI-links pointing to
nodes ν6, ν7, and ν8, respectively with the labels depicted in Fig-
ure 2:

• The first of the c-tuples allows only the color Black (node ν9).

• The second allows all colors (node ν10), and

• the third allows only the color White (node ν11).

This completely handles the first three c-tuples.

5. It is now trivial to finish the VDD. Node ν2 still needs to be pro-
cessed with respect to the last (fourth) c-tuple. But the columns
two to four are identical to those in the third c-tuple. Node ν5 was
already constructed for this.

We note that we skirted the issue that the product property Im-
print (v2) allows both values from a finite list, e.g. {MIB,STW},
as well as arbitrary “additional” values (〈img-filename〉). This is not

12 To reduce the size needed to display the graph, the terminal sink ⊥ has
been omitted. Conceptually, it terminates all chains of LO-links. Also, the
nodes ν1, ν2, . . . νn are identified by “n1”, “n2”, . . . “nn”

80

T

n1:(1, [1.0])

n2:(1, [0.5, 1.0)) n3:(2, MIB)

n5:(2, <filename>)

n4:(2, STW) n6:(3, [L, M, S])

n8:(3, [L, M, S])

n7:(3, [L, M])

n9:(4, Black)

n10:(4, [Black, Blue, Red, White])

n11:(4, White)

Figure 2. VDD of T-shirt with non-finite set-labeled nodes

uncommon in practice where a “standard” solution is modeled with
a predefined finite domain, but additional values are allowed (see
[6]). The sets {MIB}, {STW} and 〈img-filename〉 are effectively
treated as disjoint by the VDD due to the constructed l-chain of nodes
ν3, ν4, and ν5). This could be formally ensured by augmenting the
QF element 〈img-filename〉 to 〈img-filename〉 ∩ ¬{MIB,STW}
(see Section 6).
Lastly, we informally discuss some exemplary queries. QF queries
are the subject of Section 7. The query to Table 1 for small (S) T-
Shirts yielded a result set consisting of one r-tuple (the first row). The
domains for the three product properties were restricted to {MIB},
{S}, and {Black}. The same query condition against Table 4 yields
three c-tuples (the first, third and fourth c-tuple). Each of these c-
tuples in the result set must be intersected with the query condi-
tion to eliminate the sizes medium (M) and large (L) that are in
the c-tuples but excluded by the query condition. Consequently, the
domains for the four product properties are restricted to [0.5, 1.0]
{MIB, 〈img-filename〉}, {S}, and {Black,White}13.

Similarly, the query to Table 1 for Red T-Shirts yielded a result set
consisting of two r-tuples (the eighth and ninth row). Against Table 4
the result set consists of one (the second) c-tuple. After intersection
with the query condition the four product properties are restricted to
[1.0] {STW}, {M,L}, and {Red}.

Instead, if the query condition simply specifies a file name for a
particular image, my-img.jpg, then the last two c-tuples would be the
result set. They agree completely except in the first column. As there
is no need for the split here (as there was when constructing the orig-
inal VDD), the two tuples could be combined into one14:

〈[0.5, 1.0], 〈img-filename〉, {S,M,L},White〉
13 Formed by collecting all symbols occurring for each column and calculat-

ing the the union. The result of the union of the two intervals is normalized
(see Section 6)

14 This reduction is actually required where we want the tuples in a result set
to be distinct, i.e. to have been normalized.

The result set intersected with the external condition is then:

〈[0.5, 1.0], {my-img.jpg}, {S,M,L},White〉

If the query formulates the additional restriction Scale ∈
[0.25, 0.75], then the result set intersected with the external condi-
tion is:

〈[0.5, 0.75], {my-img.jpg}, {S,M,L},White〉

5 Excursion on the Construction of VDDs from
C-Tuples

A c-tuple C can be decomposed into its head (the first element C1)
and its tail T, which is also a c-tuple. We denote this by C := C1|T:

C := 〈C1, . . . , Ck〉 = C1|〈C2, . . . , Ck〉 = C1|T (3)

When constructing a (partial) VDD from a list of c-tuples
C1, . . .Cm an l-chain for the head (root) node is constructed us-
ing the first elements C11, C21, . . . , Cm1. As discussed in Section 3
and evident from the example in Section 4.2 these elements must be
disjoint.

If there are two c-tuples Ci,Ci′ with the same tail, i.e.

Ci = Ci1|T and Ci′1 = Ci′1|T

then their first elements must be merged to yield one c-tuple

C′ = (Ci1 ∪ Ci′1)|T

We can ensure disjointness of any other pair of c-tuples Ci,Ci′

with differing tails

Ci = Ci1|Ti and Ci′1 = Ci′1|Ti′

by replacing them with the three c-tuples Ca,Cb,Cc in (4) (a c-tuple
with an empty element is considered empty and can be disregarded):

Ca = (Ci1 \ Ci′1)|Ti

Cb = (Ci′1 \ Ci1)|Ti′

Cc = (Ci1 ∩ Ci′1)|(Ti ∪Ti′) (4)

As the example in Section 4.2 shows, the c-tuple heads show up
directly as labels of set-labeled nodes. We already stated that a set-
labeled node labeled with a finite set of symbols (r-symbols or QF-
symbols) can be expanded to an l-chain of regular VDD nodes.

6 Operations with Non-Finite Elements in
C-Tuples

As the discussion in Section 5 and the example in Section 4 make
clear, it will be necessary to both split and combine c-tuples when
constructing a VDD and result sets. Therefore, we need the follow-
ing operations on c-tuple elements Cij , Ci′j pertaining to the same
product property vj :

• set intersection: Cij ∩ Ci′j
• set union: Cij ∪ Ci′j
• negation with respect to the overall domain: ¬Cij := Dj \ Cij
• set difference: Cij \ Ci′j = Cij ∩ ¬Ci′j

For finite sets this is a given. For QF-symbols that are used in the
labels of VDD nodes, we must ensure that these operations are well
defined and fit in our QF framework.

In the following subsections we look at this in detail for the infinite
elements we propose to add:

81

• Real-valued intervals
• Unconstrained countably infinite sets
• Sets of exclusions, particularly finite exclusion sets.

Where the domain underlying negation needs to be made clear we
will denote negation as:

¬C := C
D

= D \ C

6.1 Real-Valued Intervals and the Xnumeric
Datatype

We denote a real-valued interval using conventional mathematical
notation, e.g. [a, b) for a half-open interval with a closed lower bound
a and an open upper bound b. This is the set of all real numbers x
such that x >= a ∧ x < b. We allow lower and upper infinity,
denoted by− inf and + inf , with open bounds. A single real number
x can be encoded as a singleton interval [x]. All other interval bounds
can be open or closed

We define an xnumeric to be a finite list of real-valued intervals
representing the union of its elements in a normalized form. Normal-
ized means that the intervals in the list are disjoint, separable, and in
ascending order, e.g. the set of intervals {[0.5, 1.0), [1.0]} is disjoint
and ascending, but it is not separable. In normalized form it is just
[0.5, 1.0]. (Remark: The interval {[0.5, 1.0), (1.0, 2.0]} is separable
and thus normalized, because its two intervals are separated by the
“gap” of the singleton interval [1.0].)

For xnumerics it is straightforward to ensure normalization. First,
any intervals that are non-disjoint or not separable can be merged
into one interval. Since the remaining intervals are disjoint, they can
be ordered. Hence the union of two xnumeric is just the set union fol-
lowed by normalization. The intersection is just the list of pairwise
intersections. Because the xnumeric is ordered due to normalization,
this operation is efficient in the sense that it is not necessary to actu-
ally intersect all pairs.

The set union of two intervals is not necessarily again an interval,
hence we need the concept of an xnumeric.

The unconstrained xnumeric is the interval (− inf,+ inf). The
negation of an xnumeric is the set difference to this unconstrained
set. It is formed by inverting the finite number of “gaps” between the
intervals in the xnumeric. For example

¬{[0.5, 1.0), (1.0, 2.0]} = {(− inf, 0.5), [1.0], (2.0,+ inf)}

Remark: a finite set of real number values can be represented as
an xnumeric using singleton intervals. All interaction with finite sets
is covered by the above operations defined for xnumerics.

An xnumeric is a list of QF-symbols (intervals) representing their
set union. A set-labeled node for an xnumeric can be expanded to an
l-chain of nodes with interval labels.

6.2 Countably Infinite Sets and Domains
Examples of countably infinite domains are the list of all integers or
all strings. This requires that each product property is associated with
an immutable datatype. We consider a domainD or anyC ⊂ D to be
qualified by a unary predicate (condition) that filters out disallowed
values at run-time (e.g. a regular expression for a string). Any value
fulfilling the predicate (e.g. any string matching the regular expres-
sion) is an acceptable value. Examples for qualifying predicates for
an integer datatype are: positive p, even p or odd p.15

15 In the absence of more specialized predicates, 〈true〉 is taken as the default
predicate.

A unary predicate can be represented by its name (a symbol),
which serves as the QF-symbol identifying it. In the example in Sec-
tion 4.2, we used the notation 〈img-filename〉 to refer to a regular
expression for legal file names.

The set operations translate into logical operations for predicates.
The union of two infinite sets qualified by predicates π1 and π2 is just
a set qualified with the disjunction π1 ∨ π2. Similarly, intersection
translates to π1 ∧ π2, and negation to ¬π1.

Again, we require normalization to reduce a complex logical
expression by removing any redundant elements. It has yet to be
determined what works best in practice here. From a theoretical
view, we might require a disjunctive normal form (DNF). The
overall predicate could then be represented as a list (finite set) of
conjunctions. A set-labeled node for such a list can be expanded to
an l-chain of nodes, as for xnumerics. Each such node would be
labeled by a conjunction of predicates, which would be treated as an
indivisible QF-symbol.

We must also deal with set unions between finite sets and count-
ably infinite sets. In the example in Section 4, the standard imprints
for the T-shirt formed a finite set {MIB,STW}, but “additional
values” were then allowed, which were specified by the QF-symbol
〈img-filename〉. The domain of the property imprint is just the union
of these sets. Generally, the domain D for a product property with a
non-xnumeric datatype is D = {F, π} := F ∪ π, where F is a finite
set of values, π a predicate representing an countable infinite set, and
both F and π respect the datatype assigned to the product property.16

The set-operations then become:

• set intersection: {F, 〈π〉} ∩ {F ′, 〈π′〉} = {F ∩ F ′, 〈π ∧ π′〉}
• set union: {F, 〈π〉} ∪ {F ′, 〈π′〉} = {F ∪ F ′, 〈π ∨ π′〉}
• negation: ¬{F, 〈π〉} := F

〈π〉 ∩ ¬〈π〉
• set difference: {F, 〈π〉} \ {F ′, 〈π′〉} = {F ′′,¬F ′, 〈π〉 \ 〈π′〉}

– where F ′′ is the finite set F \ F ′ ∪ F \ 〈π′〉, and

– the finite set ¬F ′ = F ′〈π〉 is an exclusion set of all values in
F ′ that lie in 〈π〉 (see Section 6.3).

6.3 Exclusions and Exclusion Sets
An exclusion of a value x from a property domainD is a way of stat-
ingD\{x}. It means that x is considered to be invalid, which we will
denote by ¬x. For real-valued domains, exclusions can be directly
formulated as xnumerics, e.g., {(− inf, x)(x,+ inf)}would exclude
the real number x. For a finite domain or an xnumeric domain, we can
simply positively represent the set D \ {x}. For a countably infinite
domain, we need further expressiveness. Given a countably infinite
domain D for a product property and a finite set of values E ⊂ D,
we introduce an exclusion set ¬E := E

D
:= D \ E. An exclusion

set ¬E can be merged with a unary predicate π by removing any val-
ues from E that do not satisfy the predicate π, i.e. ¬E ∩ 〈π〉 ⊂ ¬E
is a reduced exclusion set. In order to keep the exposition simple, we
will ignore this reduction and denote ¬E ∩ 〈π〉 also by ¬E.

For two exclusion sets ¬E,¬E′, the required set operations are
inverted:

• set intersection: ¬E ∩ ¬E′ = ¬(E ∪ E′)
• set union: ¬E ∪ ¬E′ = ¬(E ∩ E′)
• negation: ¬¬E = D \ (D \ ¬E) = E

16 Ideally, F and π will be disjoint. Either F or π can be empty. We define
the predicate 〈false〉 to represent the empty set.

82

• set difference: ¬E \ ¬E′ = E′ \ E

Finite exclusion sets are needed in order to meet our require-
ments of negation of finite sets against infinite domains. The
concept can also be extended to infinite exclusion sets. Indeed, a
negated unary predicate corresponds to such a set. For example, if
the set of all prime numbers is represented by the unary predicate
〈prime p〉, the ¬〈prime p〉 represents exclusion of all prime integers.

In either case, a reference to an exclusion set is treated as a QF-
symbol. For example, for a predicate π, ¬π is the symbol represent-
ing the exclusion of all values in π.

7 Queries on Quasi-Finite VDDs
In the classic finite case, the result set R of the query (1) is a finite set
of r-tuples. In the QF framework, it is a finite set of QF-tuples that
may contain both value symbols and QF-symbols. A QF-symbol in
the result set must be specialized to conform to the the query condi-
tion, e.g. by set intersection with the query condition. Problem solv-
ing (PS) must expect the remaining degree of non-determinism.

The query (2) contains the keyword DISTINCT. This means any
duplicates must be removed from the result set for the particular col-
umn (property). We see replacing QF-symbols by their normalized
union akin to removing duplicates. Therefore, the symbols in the re-
sult set, both QF-symbols and r-symbols, must be replaced by their
normalized union, which ensures also that remaining symbols are
pairwise disjoint.

8 Constraint Processing with Quasi-Finite Symbols
8.1 Specialization Relations
Given two QF-symbols φ1, φ2 for the same CSP variable, we regard
φ2 to be more special than φ1 if φ2 denotes a subset of φ1. This
leads to a partial ordering (PO) of the symbols that occur in the vari-
ant tables, which we call a specialization relation, introduced and
motivated for another context in [9]. Generally, a specialization rela-
tion on a set of facts expresses specificity of meaning, characterized
by the following three properties:

• Problem solving (PS) need not consider an otherwise valid fact
in the presence of a more special one (procedural-subsumption
property). This property requires the acquiescence of PS.

• A fact is logically implied by any of its specializations (semantic-
compatibility property).

• Negation inverts specialization (symmetry-under-negation prop-
erty).

The facts we deal with in this paper are assignments of r-symbols
and QF-symbols to a CSP variable. The PS we consider consists of
queries to the table and constraint processing, particularly local prop-
agation of constraints. From the perspective of queries we addition-
ally need to be able to aggregate the result sets into a normalized
form, e.g. delete duplicate r-symbols, replace two QF-symbols by a
more general one representing their union, etc. We have shown in
Section 6 that the QF-symbols we primarily envision meet these re-
quirements.

We can also turn the reasoning around and define a PO of symbols
pertaining to the same property domain as a specialization relation if
we can show that it has the above properties and if we also guarantee
the following:

• There is a unique symbol ⊥ (false) that is a special of all other
symbols. This is a QF-symbol for the empty set.

• For any two symbols in the PO, there exists a unique symbol for a
greatest common successor/special (the “intersection”).

• For any two symbols in the PO, there exists a unique symbol for a
least common predecessor/general (the “normalized union”)17.

• There is a unique top-level symbol Ω that represents the entire
domain. For any symbol φ in the PO, there exists a symbol ¬φ in
the PO, such that the least common predecessor of φ and ¬φ is Ω
and the greatest common successor is ⊥. ¬φ denotes the negation
of φ.18

For example, we could arrange images in a PO and declare it a spe-
cialization relation, paying some attention to fulfill the requirements
in the spirit of the intended PS.

Specialization relations provide some conceptual and practical
benefits:

• They can be pre-calculated and stored in a graph. This may be
more performant than calculating intersections and unions on the
fly.

• They provide a general concept to adapt PS to QF-symbols: PS
must simply be prepared to specialize the assignment of a QF-
symbol to a CSP variable.

• They generalize to other objects, e.g. shapes, images, taxonomies,
etc.

8.2 Local Propagation with QF-Symbols
If a product model contains multiple constraints, local propagation
[4] can be used to restrict the domains of the product properties to a
state of arc consistency. Any domain restriction of a product prop-
erty is propagated to all constraints that reference the same product
property. The process continues until no further restrictions are pos-
sible. For a tabular constraint, the query (2) can be used to determine
the domain restrictions, which are then propagated (see Section 7).

The QF framework fits nicely in this scheme. A c-tuple com-
prised of finite sets of symbols that may include the normalized union
of QF-symbols may be used as a query condition. The domain re-
strictions that result from the query (2) with this query condition
may again contain the normalized union of QF-symbols. The c-tuple
formed from the resulting domain restriction for each column can be
smoothly propagated to other constraints.

If the product model is entirely made-up of tabular constraints, the
local propagation of QF-symbols is covered by our approach. It is
also straightforward to include constraints representing numeric lin-
ear (in)equalities when propagating real-valued intervals.19 Extend-
ing the propagation of QF-symbols yet further is a topic of future
work.

8.3 General Constraint Solving
Extending existing problem solvers to deal with QF-symbols, will
require an analysis of the particular methods employed. However, a

17 We had noted that the union of two QF-symbols need not itself be a QF-
symbol. Here, however, it is an advantage to be able to have a least com-
mon predecessor/general representing the union as part of the PO. A more
detailed treatment of specialization relations is deferred to a discussion us-
ing practical examples when they arise.

18 We need “negation” primarily to ensure a “set-difference” operation to
be able to split two symbols into a disjoint triple of symbols as in (4) in
Section 5.

19 This is implemented in the SAP product configurators ([6]).

83

main common idea is that constraint problem solving will make use
of the concept of specialization relations. Instead of exploring the
validity of a simple value assignment, an assignment of a variable
to a QF-symbol can be specialized. When considering such an as-
signment and a constraint on the same variable, the greatest common
special must be substituted in the assignment. A forced specializa-
tion to the empty set would invalidate an assignment. The solutions
found by constraint solving may contain (specialized) QF-symbols,
i.e. exhibit a degree of non-determinism that cannot be avoided and
is to be expected.

9 Indeterminism in Variants and Sub-Variants
A product variant is classically defined as an r-tuple, a value assign-
ment to each of its product properties, but this is neither ideal nor
sufficient in practice. Some degree of indeterminism in a variant is
needed when a variant is to be further specialized in a later business
process (e.g., at the customer’s site). For example, a pump may be
sold with a connection that fits several different sizes of hoses. The
end customer may have to make a manual adjustment for the partic-
ular hose they want to attach by cutting off a part of the provided
connector. The pump being sold to the customer by the business is
a variant of their MC “pump” product that allows further individual-
ization at the customer’s site.

The number of sub-variants can be infinite, e.g. for the frequency
a radio receiver may be tuned to. As built, the property Frequency
would be described by a list of real-valued intervals for possible re-
ception bands, e.g. {[7.2, 7.45], [9.4, 9.9], [11.6, 12.1]} (MHz).

Allowing a variant to be defined by a c-tuple solves the above
problem. However, c-tuples that define variants must be distin-
guished from those that are merely the by-product of compression.
This would be an open MC business topic.

10 Summary and Outlook
This work extends a common theme: that data in tabular form is not
only natural for modeling variants, but also a natural, non-proprietary
medium for communicating between interrelated business processes
within an enterprise, as well as between enterprises. Compression of
tables is essential in MC for letting variant tables scale with a grow-
ing number of choices, which production technology now enables
[13]. C-tuples are a transparent yet powerful form of compression
that is transparent and upon which non-proprietary exchange formats
can be based. This is addressed in other work, e.g. [13]. Here, we
propose to add to the expressivity of variant tables by presenting a
quasi-finite (QF) framework that allows dealing with infinite sets of
choices within the tabular paradigm.

We believe the QF framework presented here meets these expec-
tations. The main idea is that problem solving will deal with the
QF-symbols representing infinite sets via specialization relations. In-
stead of exploring the validity of a value assignment of a value (fea-
ture) to a variable (product property), the assignment to a QF-symbol
can be specialized. A forced specialization to the empty set would in-
validate an assignment.

The discussed techniques involving c-tuples and VDDs using QF-
symbols has not yet been deployed in practice. The individual ingre-
dients: c-tuples, VDDs, and the management of partial orders (POs)
for specialization relations have all been applied with positive re-
sults. As already mentioned, the question of how to define practical
normalization of predicates is open. However, we believe that the
primary open issue is to verify that it actually meets the expectations

of MC business. This also includes evaluating the need of integrating
with other types of constraints, such as linear (in)equality constraints,
and the business value of indeterminism in product variants.

ACKNOWLEDGEMENTS
I would like to thank my daughter Laura and the reviewers for their
comments, which helped improve this paper considerably.

REFERENCES
[1] Jérôme Amilhastre, Hélène Fargier, Alexandre Niveau, and Cédric

Pralet, ‘Compiling csps: A complexity map of (non-deterministic) mul-
tivalued decision diagrams’, International Journal on Artificial Intelli-
gence Tools, 23(4), (2014).

[2] Henrik Reif Andersen, Tarik Hadzic, John N. Hooker, and Peter Tiede-
mann, ‘A constraint store based on multivalued decision diagrams’, In
Bessiere [5], pp. 118–132.

[3] Rüdiger Berndt, Peter Bazan, Kai-Steffen Jens Hielscher, Reinhard
German, and Martin Lukasiewycz, ‘Multi-valued decision diagrams for
the verification of consistency in automotive product data’, in 2012 12th
International Conference on Quality Software, Xi’an, Shaanxi, China,
August 27-29, 2012, eds., Antony Tang and Henry Muccini, pp. 189–
192. IEEE, (2012).

[4] C. Bessiere, ‘Constraint propagation’, in Handbook of Constraint Pro-
gramming, eds., F. Rossi, P. van Beek, and T. Walsh, chapter 3, Elsevier,
(2006).

[5] Christian Bessiere, ed. Principles and Practice of Constraint Program-
ming - CP 2007, 13th International Conference, CP 2007, Providence,
RI, USA, September 23-27, 2007, Proceedings, volume 4741 of Lecture
Notes in Computer Science. Springer, 2007.

[6] U. Blumöhr, M. Münch, and M. Ukalovic, Variant Configuration with
SAP, second edition, SAP Press, Galileo Press, 2012.

[7] A. Haag, ‘Chapter 27 - Product Configuration in SAP: A Retrospec-
tive’, in Knowledge-Based Configuration, eds., Alexander Felfernig,
Lothar Hotz, Claire Bagley, and Juha Tiihonen, 319 – 337, Morgan
Kaufmann, Boston, (2014).

[8] Albert Haag, ‘Konzepte zur praktischen handhabbarkeit einer atms-
basierten problemlösung’, in Das PLAKON-Buch, Ein Expertensys-
temkern für Planungs- und Konfigurierungsaufgaben in technischen
Domänen, eds., Roman Cunis, Andreas Günter, and Helmut Strecker,
volume 266 of Informatik-Fachberichte, 212–237, Springer, (1991).

[9] Albert Haag, The ATMS - an assumption based problem solving ar-
chitecture utilizing specialization relations, Ph.D. dissertation, Kaiser-
slautern University of Technology, Germany, 1995.

[10] Albert Haag, ‘Column oriented compilation of variant tables’, in Pro-
ceedings of the 17th International Configuration Workshop, Vienna,
Austria, September 10-11, 2015., eds., Juha Tiihonen, Andreas A.
Falkner, and Tomas Axling, volume 1453 of CEUR Workshop Proceed-
ings, pp. 89–96. CEUR-WS.org, (2015).

[11] Albert Haag, ‘Managing variants of a personalized product’, Journal of
Intelligent Information Systems, 1–28, (2016).

[12] Albert Haag, ‘Assessing the complexity expressed in a variant table’,
in Proceedings of the 19th International Configuration Workshop, La
Defense, France, September 14-15, 2017., pp. 20–27, (2017).

[13] Albert Haag and Laura Haag, ‘Empowering the use of variant tables in
mass customization’, in Proceedings of the MCP-CE 2018 conference,
Novi Sad, Serbia, September 19-21, 2018., p. (Submitted), (2018).

[14] G. Katsirelos and T. Walsh, ‘A compression algorithm for large arity
extensional constraints’, In Bessiere [5], pp. 379–393.

84

Software Configuration Diagnosis – A Survey of Existing
Methods and Open Challenges

Artur Andrzejak1 and Gerhard Friedrich2 and Franz Wotawa3

Abstract. As software systems become more complex and feature-

rich, configuration mechanisms are needed to adapt them to differ-

ent execution environments and usage profiles. As a consequence,

failures due to erroneous configuration settings are becoming more

common, calling for effective mechanisms for diagnosis, repair, and

prevention of such issues. In this paper, we survey approaches for di-

agnosing software configuration errors, methods for debugging these

errors, and techniques for testing against such issues. In addition, we

outline current challenges of isolating and fixing faults in configu-

ration settings, including improving fault localization, handling the

case of multi-stack systems, and configuration verification at run-

time.

1 Introduction
Tackling software configuration errors is recognized as an important

research problem which has been investigated by many groups from

academia and industry, e.g., see [51]. In a recent study [52], the au-

thors report empirical findings on the impact of configuration errors

in practice. In particular, a study of over 500 real-world configura-

tion issues revealed that this type of problems constituted the largest

percentage (31%) of high-severity support requests. Moreover, a sig-

nificant portion of these issues (16% to 47%) rendered systems fully

unavailable or caused severe performance degradation. Also other

studies [30] and incident reports [5] confirm that detecting and cor-

recting configuration errors in software is of a great importance for

practical applications.

In this paper, we focus on providing an overview of current re-

search in the area of software configuration diagnosis comprising

fault detection, fault localization, and correction. Besides discussing

research articles dealing with software configure errors, we further

discuss open issues and challenges that are worth being tackled in fu-

ture research activities. While the excellent survey [51] has a broader

scope and also includes aspects such as configuration-free/easy-to-

configure systems, hardening against configuration errors, automat-

ing deployment and monitoring etc., we consider in this paper pri-

marily diagnosis aspects. We also cover the most recent state-of-

the-art work like diagnosing cross-stack configuration errors [32]. In

summary, this survey attempts to offer a compact and focused intro-

duction to this research area, thus serving as a good starting point for

further contributions.

Although, there has been work also dealing with configurations

and configuration errors for systems comprising hardware and soft-

1 Heidelberg University, Germany, email: artur.andrzejak@informatik.uni-
heidelberg.de

2 University Klagenfurt, Austria, email: Gerhard.Friedrich@aau.at
3 TU Graz, Institute for Software Technology, Austria, email:

wotawa@ist.tugraz.at

ware, we focus on methods and tools that have been developed within

the area of software configuration. Dealing with software configura-

tion only allows for extracting and straightforwardly using informa-

tion from programs, which would be hardly obtained when consid-

ering hardware. As a consequence, there are many approaches that

work exclusively in the software configuration domain. Neverthe-

less, there are also approaches that can be generalized to serve di-

agnosis of system configuration as well. Especially, when it comes

to large software comprising million lines of source code and also to

cases where source code is not available, approaches have to follow

a more black-box oriented approach. This approach also enables di-

agnosis in case of hardware or systems in general where hard- and

software is investigated.

In more detail, given a program, its configuration parameters (or

settings), and an execution environment, a software configuration er-
ror comes forward when the parameters assume incorrect values. The

configuration parameters might specify multiple aspects of system

behavior, including adaptation to execution environment (paths, net-

work settings, ..), functionality (enabled/disabled components, log-

ging, ...), performance and resource policies (cache sizes, number

of threads, ..), security settings, and others. Consequently, erroneous

configuration settings can cause failures of multiple types: complete

crashes, partially disabled functionality, performance issues, inap-

propriate resource usage, or security threads. A frequent scenario of

a configuration error are parameter values which do not fit to the spe-

cific execution environment. For example, we specified a path to a

working directory of the application but the user executing the pro-

gram do not have write access to this directory, causing the program

to crash (or at least to terminate with an exception).

In the context of this survey, we consider the configuration error
diagnosis problem in its most general form: detecting the root causes,

i.e. isolating the configuration parameters with inappropriate values,

and providing means for repair in terms of identifying correct val-

ues or value ranges for these parameters (or adapting the execution

environment). This definition implies that we do not target diagno-

sis of ”traditional” software bugs, since we assume that a repair is

possible without code changes. Note that it might be difficult to de-

cide whether a failure should be attributed to a configuration problem

or a software bug, and this challenge remains one of the open issues

(see Section 3). For example, if a failure-triggering sequence of state-

ments in a faulty program is executed only because of a certain pa-

rameter setting, the subsequent failure might appear to be caused by

a configuration error.

We organize this paper as follows: We first discuss in Section 2

previous research works dealing with software configuration diagno-

sis. In the following Section 3 we present open research challenges

that have not been tackled so far. We discuss threats to validity in

8585

2
Sec. 4. Finally, we summarize the content and the findings of this

paper (Section 5).

2 Previous Work on Software Configuration
Diagnosis

In this section, we discuss research work that has been published in

the area of software configuration diagnosis. We obtained the papers

searching relevant digital libraries from IEEE and ACM. We further

focussed on the most recent work in this area not older than 10 years.

Hence, we do not claim the survey to comprise all papers in the con-

text of software configuration errors (for a more comprehensive col-

lection see [51]). However, the presented papers are intended to give

an overview of the current research directions in software configura-

tion diagnosis and methods and techniques used for this purpose.

In order to present the discussed papers in an accessible way, we

classify the paper accordingly to the following categories: (i) diag-

nosing single-layer configuration errors, (ii) diagnosing cross-stack

configuration errors, (iii) diagnosing using configuration knowledge,

and (iv) other aspects of software configuration diagnosis. Single-
layer configuration errors are errors found in one-component ap-

plications like MySQL, Hive, or Spark. Typically, such applica-

tions have one common configuration file/database and are devel-

oped as an integral project. Cross-stack configuration errors occur in

multi-component applications or software stacks like LAMP (Linux,

Apache Web Server, MySQL, PHP, Wordpress/Drupal), J2EE, or

MEAN.

The rational behind these categories is the following. Most previ-

ous work is available for diagnosing single-layer configuration errors

and this case offers an opportunity for an overview of existing diag-

nosis approaches. Diagnosis of cross-stack configuration errors pose

additional challenges. In some cases, the source code of stack com-

ponents might not be available, precluding usage of general program

analysis techniques. More frequently, cross-stack configuration er-

rors are frequently caused by a mismatch between the configuration

settings within separate components [32, 33]. To diagnose such is-

sues, knowledge about the interactions between the components is

needed.

In case of the availability of formal knowledge about configura-

tions, i.e., configuration rules or constraints, diagnosis can be per-

formed using this knowledge. Such formal knowledge bases may be

applicable for single-layer or cross-stack applications.

Finally, there are other aspects that cannot be assigned to one of

the former categories, for example testing configurable systems or

optimization of software based on configuration parameters.

2.1 Diagnosing Single-Layer Configuration Errors

Single-layer programs are typically written in a single programming

language and often the source code is available. Hence, static and dy-

namic program analysis techniques can be applied to obtain a map-

ping from configuration options to code regions. This information

can be exploited for localizing the root cause behind configuration

errors. Consequently, a lot of approaches for diagnosis configuration

errors in such programs have been proposed.

Linking configuration options and code regions. Approaches in

this group attempt to find a correspondence between a configuration

option and code regions impacted by this option. Frequently, such

techniques exploit static [43] or dynamic program slicing [14]. In

program slicing, one attempts to find the set of all code locations

which might influence a target statement (so-called seed), or all code

locations which might be influenced by a seed statement. Hence,

there approaches are mainly applicable in the software configuration

setting and may not be generalizable to deal with hardware configu-

ration diagnosis.

ConfAnalyzer [29] builds a map from each program point to the

options that might cause an error at that point by static data-flow

analysis. For diagnosis, it treats a configuration option as the root

cause if its value flows into the crashing point. The approach does

not require from users to install or use additional tools, but it can use

logs and stack traces to reduce the rate of false positives.

ConfDiagnoser [57, 56] uses static analysis, dynamic profiling,

and statistical analysis to link the undesired behavior that are repre-

sented by predicates to configuration options. When these predicates

indicate behavior deviating from the one known for correct profiles,

ConfDiagnoser lists the relevant configuration options as suspects.

Work [58] presents a technique and a tool to troubleshoot con-

figuration errors caused by software evolution. The approach uses

dynamic profiling, execution trace comparison, and static analysis to

link the undesired behavior to its root cause - a configuration option

which needs to be changed in the new software version.

ConfDoctor [7] is an approach based on static analysis to diag-

nose configuration defects. It does not require users to execute an

instrumented program or to reproduce errors, which is an essential

advantage compared to previous approaches. The only run-time in-

formation required is the stack trace of a failure. An evaluation on

JChord, Randoop, Hadoop, and Hbase shows that the approach could

successfully diagnose 27 out of 29 errors, with 20 of them ranked

first.

Authors of [25] propose a lightweight dynamic analysis technique

that automatically discovers a program’s interactions, i.e., logical for-

mulae that give developers information about how a system’s config-

uration option settings map to particular code coverage. It is evalu-

ated on 29 programs spanning five languages and could find precise

interactions based on a very small fraction of the number of possible

configurations.

Data flow analysis. ConfAid [3] applies dynamic information flow

analysis techniques to track tokens from specified “configuration

sources” and analyze dependencies between the tokens and the er-

ror symptoms, pinpointing which tokens are root causes.

Sherlog [53] uses static analysis to infer control and data infor-

mation in case of a failure. It analyses source code by exploiting in-

formation from run-time logs and computes what must or may have

happened during the failed run. One deficiency of this tool is that it

may require guidance from developers about which function should

be symbolically executed.

Paper [17] introduces Lotrack, an extended static taint analysis ap-

proach and tool to automatically track configuration options. It de-

rives a configuration map that explains for each code fragment under

which configurations it may be executed.

8686

3
Supervised learning approaches. Relatively few authors propose

to use machine learning approaches based on supervised learning

(i.e. mainly classification). This can be explained by the fact that it is

difficult to obtain or generate training data with appropriate structure

and in sufficient amount. Similarly to the challenges of mutation test-

ing, if training samples are generated, faults injected in the configu-

ration files might not trigger a failure or have unrealistic properties.

Also, since a configuration file might contain hundreds of options,

a training set is likely to containt only few faulty cases per option,

giving rise to the unbalanced class problem.

Authors of [41] use machine learning to predict whether a configu-

ration error is responsible for a failure and if yes, what is the category

of the error. To obtain training data, faults are injected into configu-

ration files and the resulting error category is manually labeled.

Work [38] exploits statistical decision tree analysis to determine

possible misconfigurations in data center environments. The authors

further improve the accuracy of this approach via a pattern modifica-

tion method.

Replay-based techniques. One category of well-known tools [44,

37, 20] are the replay-based diagnosis techniques. They treat the sys-

tem as a black box to automatically run the system with possible

configurations values without damaging the rest of the system until

fixing the misconfiguration. This class of techniques relies on having

a working configuration. Otherwise, it can not be applied. Besides,

they require users with more domain knowledge.

Signature-based approaches. Another family of tools mine a large

amount of configuration data from different instances to infer rules

about options and use these rules to identify software misconfigura-

tions.

EnCore [55] and CODE [54] belong to this category of work. En-

Core takes into account the interaction between the configuration set-

tings and the executing environment, as well as the correlations be-

tween configuration entries. It learns configuration rules from a given

set of sample configurations and pinpoints configuration anomalies

based on these rules.

Analogously, some tools such as Strider [42] or PeerPressure [40]

adopt statistical techniques to compare values of configuration op-

tions in a problematic system with those in other systems to infer the

root cause of a failure. All these techniques require substantial effort

to collect the baseline data.

2.2 Diagnosing cross-stack configuration errors

Configuration options in multi-layer architectures (e.g., LAMP,

J2EE, or MEAN “software stacks”) might easily contradict each

other or be hard to trace to each other. Therefore, configuration error

diagnosis in such architectures is particularly challenging [51]. On

the other hand, so far there are very few research approaches or tools

targeting this scenario [33].

Sayagh and Adams [32] conducted an empirical study on multi-

layer configuration options across Wordpress (WP) plugins, WP, and

the PHP engine. They discover a large and increasing number of con-

figuration options used by WP and its plugins. In addition, over 85%

of these options are used by at least two plugins at the same time.

Sayagh et al. [33] perform a qualitative analysis of over 1,000 con-

figuration errors to understand their impact and complexity. Based

on this data they develop a slicing-based approach to identify error-

inducing configuration options in heterogeneous software stacks. So

far it is the only approach which attempts to provide a complete, end-

to-end process for diagnosing cross-stack configuration errors.

Work [4] focuses on finding configuration inconsistencies between

layers in complex, multi-component software. The proposed tech-

nique (based on static analysis) can handle software that is written

in multiple programming languages and has a complex preference

structure.

In [31] the authors target the identification of configuration depen-

dencies in multi-tiered enterprise applications. It provides a method

for analyzing existing deployments to infer the configuration depen-

dencies in a probabilistic sense. This yields rank-ordered list of de-

pendencies so that administrators can consult it and systematically

identify the true dependencies.

Authors of [12] attempt to quantify the challenges that config-

urability of complex, multi-component systems creates for software

testing and debugging. It analyzes a highly-configurable industrial

application and two open source applications. They notice that all

three applications consist of multiple programming languages, lim-

iting the applicability of static analysis. Furthermore, they find out

that there many access points and methods to modify configurations,

and that the configuration state of an application on failure cannot be

determined only from persistent data.

2.3 Rules, Constraints and Fixing their Violations
Once configuration knowledge can be described using constraints or

rules they can be used for diagnosis as well. The use of such knowl-

edge is neither restricted to single-layer nor cross-stack applications

in general. Hence, methods and techniques based on rules and con-

straints, which can also be seen as models of the applications, would

provide a more general account to solve the software configuration

error problem. In this section, we distinguish methods for learning

knowledge, fixing violations, and inconsistency detection between

different software artifacts.

Learning constraints and rules. Several existing approaches ex-

tract configuration models [42, 40, 54, 50, 55] and leverage them for

configuration debugging, mainly via detecting value anomalies and

rule violations.

The categories of extracted data constituting the models typically

include the primitive and semantic data types of configuration op-

tions (e.g., integer, file path, port number, URL), the value ranges of

options (minimum and maximum integer values or a list of accept-

able values), the control dependencies (i.e., usage of parameter Q
relies on the setting of another parameter P), and value relationships
(e.g., value of parameter S should be greater than that of parameter

T). EnCore [55] additionally considers the properties of the execu-

tion environment as a part of their models.

CODE [54] takes a unique approach and uses dynamic execution

information as the model content, namely sequences of (Windows)

registry accesses and derived rules. Using these rules for efficient

filtering of even large lists of events, CODE can detect not only con-

figuration errors but also deviant program executions. It requires no

8787

4
source code, application-specific semantics, or heavyweight program

analysis.

SPEX [50] analyzes source code to infer configuration option con-

straints and use these constraints to diagnose software misconfigura-

tions, to expose misconfiguration vulnerabilities, and to detect error-

prone configuration design and handling.

Build-time configuration settings. Another category of work ad-

dresses configurations and their constraints used at compilation and

build time. Such configurations determine whether certain product

features (e.g. logging, debugging) are activated, or even which soft-

ware components are included in the shipped product. The later as-

pect is relevant e.g., for software product lines.

Works [22], [23] propose a static analysis approach to extract

(build-time) configuration constraints from C code. Despite of its

simplicity, it has high precision (77% - 93% in the studied systems)

and can recover 28% of existing constraints. A further study of the

authors reveals that configuration constraints enforce correct runtime

behavior, improve users’ configuration experience, and prevent cor-

ner cases.

Fixing violations of configuration constraints. The problem of

fixing a configuration that violates one or more constraints is ad-

dressed in [47, 48]. The authors introduce to this purpose the concept

of a range fix, which specifies the options to change the ranges of val-

ues for these options. They also design and evaluate an algorithm that

automatically generates range fixes for a violated constraint. Empiri-

cal studies shows that the range fix approach provides mostly simple

yet complete sets of fixes and has a moderate running time in the

order of seconds.

Configurable software (e.g., Linux OS, eCos) can have very high

number of options (variables) and constraints. E.g., Linux has over

6,000 variables and 10,000 constraints; eCos has over 1,000 variables

and 1,000 constraints. Such systems typically use variability model-

ing languages and configuration tools (called configurators). Exam-

ples of variability languages include Linux Kconfig, eCos CDL, and

feature models. With variability modeling languages and configura-

tors, errors can be detected early, but users still have to resolve the

errors, which is also not an easy task: the constraints in variability

models can be very complex and highly interconnected. Therefore,

researchers have proposed automated approaches that suggest a list

of fixes for an error. A fix is a set of changes that, when performed

on the configuration, resolve the current error. However, the recom-

mended fixes in these approaches are sometimes large in number and

size. For example, fix lists for eCos configurations contain up to nine

fixes, and some fixes change up to nine variables.

In this context, work [39] proposes a method to reduce the size

and complexity of error fixes by introducing a concept of dynamic
priorities. The basic idea is to first generate one fix and then to grad-

ually reach the desirable state based on user feedback. To this end,

the approach (1) automatically translates user feedback into a set of

implicit priority levels on variables, using five priority assignment

and adjustment strategies and (2) efficiently identifies potentially de-

sirable fixes that change only the variables with low priorities.

Detecting inconsistencies between code, documentation, and
configuration files. Configuration options are widely used for cus-

tomizing the behavior and initial settings of software applications,

server processes, and operating systems. Their distinctive property

is that each option is processed, defined, and described in different

parts of a software project - namely in code, in configuration file, and

in documentation. This creates a challenge for maintaining project

consistency as it evolves. It also promotes inconsistencies leading to

misconfiguration issues in production scenarios.

Confalyzer [30] uses static analysis to extract a list of configura-

tion option from source code and from associated options documen-

tation. Confalyzer first marks configuration APIs in the configura-

tion classes. Then it identifies calls to these APIs in the program by

building a call graph and obtains option names by reading values of

parameters of these calls.

PrefFinder [11] proposed by Jin et al., uses static analysis and dy-

namic analysis techniques to extract configuration options and stores

them in a database for query and use.

The SCIC approach [4] exploits Confalyzer to implement the func-

tionality of extracting configuration options in the key-value model

and the tree-structured model.

Work [6] proposes an approach for detection of inconsistencies

between source code and documentation based on static analysis.

It identifies source code locations where options are read and for

each such location retrieves the name of the option. Inconsistencies

are then detected by comparing the results against the option names

listed in documentation.

2.4 Other Aspects

There are other papers dealing with diagnosis of software configura-

tion errors not falling into the previous categories like testing, end-

user support and performance optimization, which we discuss in this

subsection.

Testing of highly configurable systems. Paper [18] presents an

initial study on the potential of using statistical testing techniques for

improving the efficiency of test selection for configurable software.

The study aims to answer whether statistical testing can reduce the

effort of localizing the most critical software faults, seen from user

perspective.

Authors of [19] analyze program traces to characterize and iden-

tify where interactions occur on control flow and data. They find that

the essential configuration complexity of these programs is indeed

much lower than the combinatorial explosion of the configuration

space indicates.

Work [36] proposes S-SPLat, a technique that combines heuristic

sampling with symbolic search to explore enormous space of config-

urations for testing of software product lines.

A more general approach for testing configurable systems includ-

ing software is combinatorial testing [15, 16]. There the underlying

assumption is that it is not necessarily one configuration parameter

that reveals a fault but a certain combination of parameters. Combi-

natorial testing assures to compute all combinations for any arbitrary

subset of configuration parameters of arity k. In the context of com-

binatorial testing, the resulting test suite is said being of strength k.

There are many algorithms and tools for combinatorial testing [13].

For a survey on combinatorial testing we refer the interested user

to [26].

8888

5
Configuration and debugging support for end-users. A tech-

nique to detect inadequate (i.e., missing or ambiguous) diagnostic

messages for configuration errors issued by a configurable software

system is proposed in [59]. It injects configuration errors and uses

natural language processing to analyze the resulting diagnostic mes-

sages. It then identifies messages which might be unhelpful in diag-

nosis or even negatively impact this process.

Authors of [49] study configuration settings of real-world users

from multiple projects and reveal patterns of unnecessary complex-

ity in configuration design. The authors also provide a few guidelines

to reduce the configuration space. Finally, the existing configuration

navigation methods are studied in terms of their effectiveness in deal-

ing with the over-designed configuration.

Work [28] introduces ConfSeer, a system which recommends to

users suitable knowledge base articles which are likely to describe

user’s current configuration problem and its fix. To this end, Conf-

Seer takes the snapshots of configuration files from a user machine

as input, then extracts the configuration parameter names and value

settings from the snapshots and matches them against a large set of

KB articles. If a match is found, ConfSeer pinpoints the configuration

error with its matching KB article. The described system powers the

recommendation engine behind Microsoft Operations Management

Suite.

Optimizing performance via configuration settings. In [24], a

rank-based approach to efficient creation of performance models is

introduced. Such models can be exploited for finding an optimally

performing configuration of a software system.

Authors of [10] conducted an empirical study on four popular soft-

ware systems by varying software configurations and environmental

conditions, to identify the key knowledge pieces that can be exploited

for transfer learning for constructing performance models of config-

urable software systems.

Paper [35] proposes a multi-objective evolutionary algorithm to

find the optimal solutions and addresses the configuration optimiza-

tion problem for software product lines.

Finally, the work described in [27] employs random sampling and

recursive search in a configuration space to find optimally performing

configurations for an anticipated workload in software product lines.

2.5 Survey Summary

There are lots of papers dealing with configuration diagnosis of sin-

gle layer applications often employing program analysis techniques

but also making use of machine learning or replay methods. In case

of more complicated applications comprising interacting and con-

figurable software components there have been less papers dealing

with concrete solutions. One approach that can be used in both cases

of software is to make use of formalized knowledge about config-

urations, i.e., the configuration parameters, their domains, and rules

specifying limitations and relationships among parameters. It would

be interesting to investigate whether classical approaches to diagno-

sis of knowledge-bases like [8, 45, 9, 34] can also be successfully

applied for configuration diagnosis. Other aspects, discussed in this

section include testing configurations, end-user support, and perfor-

mance optimization.

3 Challenges in Configuration Diagnosis
Based on the survey of papers presented in the previous section, we

are able to identify several still open challenges. A general challenge

that immediately arises is to distinguish whether an application fail-

ure is due to a fault in the configuration setup or code defect in the

program. This is a common problem when applying configuration

debugging tools, which usually assumes a certain cause. If we want

to come up with a general approach for software configuration di-

agnosis, we have to adapt diagnosis to identify the underlying root

cause.

A method that is able to separate these causes would take the cur-

rent configuration, the program, the description of the execution en-

vironment, and the passing/failing tests as input. Based on these in-

puts the possible causes of a failure are provided as output. In order to

come up with such an approach, it is necessary to have a close look at

various configuration diagnosis problems, given consequently raise

to the another challenge, i.e., providing an open repository of various

configuration diagnosis problems that can be accessed by researchers

in this field.

Such a general repository for software configuration diagnosis

should include a larger set of different programs from single-layer

to cross-stack applications together with configuration errors com-

ing from different sources, test suites, and ideally also configuration

knowledge bases. The repository should cover programs of different

sizes and from different domains capturing currently available soft-

ware to allow comparing different configuration diagnosis methods

and techniques.

Besides these two general challenges, there are other challenges

that are more specific to the applications (single-layer versus cross-

stack) or the tasks to be tackled (i.e., fault localization and repair

versus fault detection). In the following, we illustrate some of these

more specific challenges in detail.

Diagnosis of single-layer applications Despite the fact that there

have been various methods already published in this domain, there

are still some open issues.

• Transfer techniques from functional fault localization: In case of

software debugging, there are various methods available going be-

yond program analysis including spectrum-based fault localiza-

tion [1, 2] among others. In this approach, code regions are ranked

(essentially) according to the number of times there are executed

by passing or by failing tests (intuition: if a code line is executed

primarily by failing tests, it is more likely to contribute to a fail-

ure). For a detailed look at current debugging techniques we re-

fer the interested reader to Wong et al.’s survey [46]. In particu-

lar spectrum-based fault localization offers superior performance

compared to static and dynamic program analysis applied to de-

bugging. The open research question that is, whether spectrum-

based fault localization can be efficiently used for software con-

figuration diagnosis as well.

• Study and exploit the trade-off between the type of data from users

required for diagnosis (as well as the effort of obtaining this data,

e.g., via instrumentation) and the achieved accuracy. The research

goals that would go into this direction include:

– For each type of diagnosis data (from static analysis to diag-

nosis data dynamically created from instrumentation and also

8989

6
for combinations) understand and quantify the degree of likely

penalties (e.g., in terms of accuracy) of using only this data for

diagnosis. Specifically, characterize error types which can be

or cannot be diagnosed for each type of diagnosis data (when

using state-of-the art debugging approaches).

– For each “class” of diagnosis data, attempt to improve the cor-

responding state-of-the art diagnosis methods in terms of types

of errors they are able to debug. This can be done e.g., by an

in-depth analysis why they fail for some error types and by pro-

viding substrates/replacements for the missing diagnosis data.

Diagnosing of cross-stack configuration errors In the case of

cross-stack applications, there is not so much work available. Impor-

tant open research challenges include:

• Exploit work on consistency checking to detect potential incon-

sistencies between different stack layers.

• Leverage existing work on extraction of rules and constraints to

model dependencies between layers. Then use the techniques for

discovery and fixing of constraint violations to diagnose (and pos-

sibly repair) cross-stack configuration errors.

• As a further application of extracted rules, configurator-like tools

(as used for configuring operating systems) could be used for safe

configuration of cross-stack systems.

• Create models of expected behavior (given a current global con-

figuration) of each layer from the perspective of each layer. Di-

vergences in the behavior might indicate potential configuration

inconsistencies or errors. For example, given the current config-

uration of a database-layer (specifying n1 database connections),

also the PHP-layer should allow n1 database connections. How-

ever, if the expected behavior of PHP-layer, based on its own con-

figuration, allows only n2 < n1 database-connections, then an

inconsistency between these two behavioral models is indicated.

It is worth noting that it is quite important which dependencies

or interaction between layers can be observed or recorded. More-

over, in the context of these challenges the application of model-

based approaches for diagnosing (configuration) knowledge-base,

e.g., [8, 45, 9, 34], might be worth being considered.

Testing-related challenges and goals In case of testing, we are

interested in detecting faults caused by configuration settings. There

the motivation is to improve testing approaches specifically for de-

tecting faults in system configurations ideally during software devel-

opment. To clarify the meaning of “software testing” in context of

configuration (errors) we should consider that an application failure

in this context does not necessarily imply that there is a defect in

code (as in traditional testing). Such a failure rather indicates that:

• There is a mismatch between the state of the application environ-

ment (operating system, file system, hardware, location of input

data, libraries, network properties, remote components, etc.) and

the configuration settings. This implies that a test for this type of

error must take into consideration the environment.

• There is an inconsistency between configuration values, either

within a single layer or between layers in a multi-layer applica-

tion. The corresponding tests might be independent of the appli-

cation environment, but are probably more comprehensive if this

is also taken into account.

Consequently, this discussion gives rise to the following goals:

• Attempt automated test generation that considers the state of the

application environment and the configuration settings (maybe

implicitly). Such tests would adapt to environment changes and

target only the above-mentioned mismatch between environment

and configuration. In order to avoid confusion with the meaning of

traditional testing, we might call this “configuration verification”

step instead of testing.

• Generate tests that verify only the consistency of configurations
between layers of a multi-stack system. In this case a test failure

should indicate only an inconsistency, not a lack of adaptation to

the production environment. For example, a test could only verify

the consistency of configurations across layers, not execute the

whole application.

• Generate tests which verify the correctness of application’s be-

havior independently of the configuration settings. For example,

an application should produce the same behavior independently

of the exact path to input/output/libraries, number of used threads

(in some range), used compiler (or its flags) etc.

• Generate tests that improve the outcome of fault localization.

There it would be necessary to identify those tests that can dis-

tinguish different computed root causes (see e.g., [21]).

4 Threats to Validity
Several threats to validity of this paper exist. The main one is the risk

of omitting important contributions to this field. To mitigate this risk,

we have created lists of relevant works using several processes de-

scribed below. We then merged and pruned the results according to

the rank of the publishing venue and originality (i.e. works proposing

a novel or distinctive approach were included even if published in a

workshop). In the first literature collection process, we searched for

publications containing the word ”configuration” that were published

in selected high-quality venues (ICSE, ASE, ISSTA, FSE, ISSRE,

ICSME, ICPC, IEEE Trans. Software Eng., and some others) in the

last five years; for each found publication, we verified via abstract

whether a publication indeed targets configuration error (diagnosis).

In the second process, we read the related work sections of the pre-

viously identified works, and created a list of papers discussed there,

which are of relevance (here, also less prestigious venues were con-

sidered). Finally, we screened the survey [51] for checking that no

important contribution was omitted.

Another threat to validity is the possibility to misinterpret any of

the discussed papers (e.g. due to different understanding of terms),

and state here inaccurate claims. To reduce this risk, we have studied

each described contribution in a depth sufficient to avoid a misinter-

pretation. Besides of this, information from related work section to

verify our interpretation was used where available.

5 Conclusion
In this paper, we presented a survey on methods and techniques used

for detecting, localizing, and correcting faults in the context of soft-

ware configurations. We distinguished the different cases of software

9090

7
configuration diagnosis for single-layer and cross-stack applications

as well as methods used in case of available configuration knowledge

and further aspects. From the survey we were able to identify some

still open challenges and research questions including distinguish-

ing different variants of potential root causes, the lack of repositories

of application-cases for validating and comparing research results as

well as the need for new fault localization and testing methods.

The motivation for this paper is to provide a solid basis for fu-

ture research in this area and to identify some important challenges

in software configuration diagnosis worth being tackled. We also in-

dicated some relationships with work on diagnosis of configuration

knowledge bases and other approaches of software debugging that

might stimulate this field. Because of the growing interest in provid-

ing programs comprising a stack of other programs that themselves

can be configured, we see a growing need for research in this area.

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van

Gemund, ‘A practical evaluation of spectrum-based fault localization’,
Journal of Systems and Software, 82(11), 1780–1792, (2009).

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund, ‘Spectrum-
based multiple fault localization’, in ASE 2009, 24th IEEE/ACM In-
ternational Conference on Automated Software Engineering, Auckland,
New Zealand, November 16-20, 2009, pp. 88–99. IEEE Computer So-
ciety, (2009).

[3] Mona Attariyan and Jason Flinn, ‘Automating Configuration Trou-
bleshooting with Dynamic Information Flow Analysis’, in 9th USENIX
Conference on Operating Systems Design and Implementation, pp. 1–
11, Vancouver, BC, Canada, (2010). USENIX Association.

[4] Farnaz Behrang, Myra B. Cohen, and Alessandro Orso, ‘Users Be-
ware: Preference Inconsistencies Ahead’, in 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, pp. 295–
306, New York, NY, USA, (2015). ACM.

[5] Jon Brodkin. Why Gmail Went Down: Google Misconfigured Load
Balancing Servers. https://goo.gl/Hdga7H. Accessed: 5 June
2018.

[6] Z. Dong, A. Andrzejak, D. Lo, and D. Costa, ‘ORPLocator: Identify-
ing Read Points of Configuration Options via Static Analysis’, in 2016
IEEE 27th International Symposium on Software Reliability Engineer-
ing (ISSRE), pp. 185–195, (October 2016).

[7] Z. Dong, A. Andrzejak, and K. Shao, ‘Practical and accurate pinpoint-
ing of configuration errors using static analysis’, in 2015 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
pp. 171–180, (September 2015).

[8] A Felfernig, G Friedrich, D Jannach, and M Stumptner, ‘Consistency-
based diagnosis of configuration knowledge bases’, Artificial Intelli-
gence, 152(2), 213–234, (2004).

[9] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 26(1), 53–62, (2 2012).

[10] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner,
Akshay Patel, and Yuvraj Agarwal, ‘Transfer Learning for Performance
Modeling of Configurable Systems: An Exploratory Analysis’, in 32Nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2017, pp. 497–508, Piscataway, NJ, USA, (2017). IEEE Press.

[11] Dongpu Jin, Myra B. Cohen, Xiao Qu, and Brian Robinson,
‘PrefFinder: Getting the Right Preference in Configurable Software
Systems’, in 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pp. 151–162, New York, NY, USA,
(2014). ACM.

[12] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson, ‘Config-
urations Everywhere: Implications for Testing and Debugging in Prac-
tice’, in Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion 2014, pp. 215–224, New
York, NY, USA, (2014). ACM.

[13] Sunint Kaur Khalsa and Yvan Labiche, ‘An orchestrated survey of
available algorithms and tools for combinatorial testing’, in 25th Inter-
national Symposium on Software Reliability Engineering, pp. 323–334,
(2015).

[14] Bogdan Korel and Janusz Laski, ‘Dynamic Program Slicing’, Informa-
tion Processing Letters, 29, 155–163, (1988).

[15] D. R. Kuhn, R. N. Kacker, and Y. Lei, ‘Combinatorial testing’, in En-
cyclopedia of Software Engineering, ed., Phillip A. Laplante, Taylor &
Francis, (2012).

[16] D. Richard Kuhn, Renee Bryce, Feng Duan, Laleh Sh. Ghandehari,
Yu Lei, and Raghu N. Kacker, ‘Combinatorial testing: Theory and prac-
tice’, in Advances in Computers, volume 99, 1–66, Elsevier, (2015).

[17] Max Lillack, Christian Kästner, and Eric Bodden, ‘Tracking Load-time
Configuration Options’, in 29th ACM/IEEE International Conference
on Automated Software Engineering, ASE ’14, pp. 445–456, New York,
NY, USA, (2014). ACM.

[18] Dusica Marijan, ‘Improving Configurable Software Testing with Statis-
tical Test Selection’, in International Workshop on Formal Methods for
Analysis of Business Systems, ForMABS 2016, pp. 5–8, New York, NY,
USA, (2016). ACM.

[19] J. Meinicke, C. P. Wong, C. Kästner, T. Thüm, and G. Saake, ‘On
essential configuration complexity: Measuring interactions in highly-
configurable systems’, in 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 483–494,
(September 2016).

[20] James Mickens, Martin Szummer, and Dushyanth Narayanan, ‘Snitch:
Interactive Decision Trees for Troubleshooting Misconfigurations’, in
2Nd USENIX Workshop on Tackling Computer Systems Problems with
Machine Learning Techniques, pp. 8:1–8:6, Cambridge, MA, (2007).
USENIX Association.

[21] Nica Mihai, Nica Simona, and Wotawa Franz, ‘On the use of mutations
and testing for debugging’, Software: Practice and Experience, 43(9),
1121–1142, (2013).

[22] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, ‘Where Do Configura-
tion Constraints Stem From? An Extraction Approach and an Empirical
Study’, IEEE Transactions on Software Engineering, 41(8), 820–841,
(August 2015).

[23] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czar-
necki, ‘Mining Configuration Constraints: Static Analyses and Empiri-
cal Results’, in 36th International Conference on Software Engineering,
ICSE 2014, pp. 140–151, New York, NY, USA, (2014). ACM.

[24] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel, ‘Using
Bad Learners to Find Good Configurations’, in 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, pp. 257–
267, New York, NY, USA, (2017). ACM.

[25] ThanhVu Nguyen, Ugur Koc, Javran Cheng, Jeffrey S. Foster, and
Adam A. Porter, ‘iGen: Dynamic Interaction Inference for Configurable
Software’, in 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, pp. 655–665, New
York, NY, USA, (2016). ACM.

[26] Changhai Nie and Hareton Leung, ‘A survey of combinatorial testing’,
ACM Computing Surveys, 43(2), (January 2011).

[27] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund, ‘Find-
ing Near-optimal Configurations in Product Lines by Random Sam-
pling’, in 2017 11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2017, pp. 61–71, New York, NY, USA, (2017).
ACM.

[28] Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-Rotaru, Ming-
shi Wang, Liyuan Zhang, and Navendu Jain, ‘ConfSeer: Leveraging
Customer Support Knowledge Bases for Automated Misconfiguration
Detection’, Proc. VLDB Endow., 8(12), 1828–1839, (August 2015).

[29] Ariel Rabkin and Randy Katz, ‘Precomputing Possible Configuration
Error Diagnoses’, in 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, pp. 193–202, Washington, DC,
USA, (2011). IEEE Computer Society.

[30] Ariel Rabkin and Randy Katz, ‘Static Extraction of Program Config-
uration Options’, in 33rd International Conference on Software Engi-
neering, ICSE ’11, pp. 131–140, New York, NY, USA, (2011). ACM.

9191

8
[31] Vinod Ramachandran, Manish Gupta, Manish Sethi, and Soudip Roy

Chowdhury, Determining Configuration Parameter Dependencies via
Analysis of Configuration Data from Multi-tiered Enterprise Appli-
cations’, in 6th International Conference on Autonomic Computing,
ICAC ’09, pp. 169–178, New York, NY, USA, (2009). ACM.

[32] M. Sayagh and B. Adams, ‘Multi-layer software configuration: Em-
pirical study on wordpress’, in 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp.
31–40, (September 2015).

[33] Mohammed Sayagh, Noureddine Kerzazi, and Bram Adams, ‘On
Cross-stack Configuration Errors’, in 39th International Conference on
Software Engineering, ICSE ’17, pp. 255–265, Piscataway, NJ, USA,
(2017). IEEE Press.

[34] Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and
Philipp Fleiss, ‘Sequential diagnosis of high cardinality faults in
knowledge-bases by direct diagnosis generation’, in ECAI ’14, pp. 813–
818, (2014).

[35] K. Shi, ‘Combining Evolutionary Algorithms with Constraint Solving
for Configuration Optimization’, in 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), pp. 665–669,
(September 2017).

[36] S. Souto, M. D’Amorim, and R. Gheyi, ‘Balancing Soundness and
Efficiency for Practical Testing of Configurable Systems’, in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE), pp. 632–642, (May 2017).

[37] Ya-Yunn Su, Mona Attariyan, and Jason Flinn, ‘AutoBash: Improving
Configuration Management with Operating System Causality Analy-
sis’, in Proceedings of Twenty-first ACM SIGOPS Symposium on Oper-
ating Systems Principles, pp. 237–250, Stevenson, Washington, USA,
(2007). ACM.

[38] T. Uchiumi, S. Kikuchi, and Y. Matsumoto, ‘Misconfiguration detection
for cloud datacenters using decision tree analysis’, in Network Opera-
tions and Management Symposium (APNOMS), 2012 14th Asia-Pacific,
pp. 1–4, (September 2012).

[39] Bo Wang, Leonardo Passos, Yingfei Xiong, Krzysztof Czarnecki,
Haiyan Zhao, and Wei Zhang, ‘SmartFixer: Fixing Software Config-
urations Based on Dynamic Priorities’, in 17th International Software
Product Line Conference, SPLC ’13, pp. 82–90, New York, NY, USA,
(2013). ACM.

[40] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-min
Wang, ‘Automatic Misconfiguration Troubleshooting with PeerPres-
sure’, in In OSDI, pp. 245–258, (2004).

[41] Mengliao Wang, Xiaoyu Shi, and K. Wong, ‘Capturing Expert Knowl-
edge for Automated Configuration Fault Diagnosis’, in 2011 IEEE
19th International Conference on Program Comprehension (ICPC), pp.
205–208, (June 2011).

[42] Yi-min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen J.
Wang, and Chun Yuan, ‘STRIDER: A Black-box, State-based Ap-
proach to Change and Configuration Management and Support’, in In
Usenix LISA, pp. 159–172, (2003).

[43] Mark Weiser, ‘Program slicing’, IEEE Transactions on Software Engi-
neering, 10(4), 352–357, (July 1984).

[44] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble, ‘Configu-
ration Debugging As Search: Finding the Needle in the Haystack’, in
6th Conference on Symposium on Opearting Systems Design & Imple-
mentation - Volume 6, pp. 6–6, San Francisco, CA, (2004). USENIX
Association.

[45] Jules White, David Benavides, Douglas C. Schmidt, Pablo Trinidad,
Brian Dougherty, and Antonio Ruiz Cortés, ‘Automated diagnosis of
feature model configurations’, Journal of Systems and Software, 83(7),
1094–1107, (2010).

[46] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa,
‘A survey on software fault localization’, IEEE Trans. Software Eng.,
42(8), 707–740, (2016).

[47] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki,
‘Range Fixes: Interactive Error Resolution for Software Configuration’,
IEEE Transactions on Software Engineering, 41(6), 603–619, (June
2015).

[48] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki,
‘Generating Range Fixes for Software Configuration’, in 34th Inter-
national Conference on Software Engineering, ICSE ’12, pp. 58–68,
Piscataway, NJ, USA, (2012). IEEE Press.

[49] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasu-
pathy, and Rukma Talwadker, ‘Hey, You Have Given Me Too Many
Knobs!: Understanding and Dealing with Over-designed Configuration
in System Software’, in 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pp. 307–319, New York, NY,
USA, (2015). ACM.

[50] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy, ‘Do Not Blame
Users for Misconfigurations’, in Twenty-Fourth ACM Symposium on
Operating Systems Principles, pp. 244–259, Farminton, Pennsylvania,
(2013). ACM.

[51] Tianyin Xu and Yuanyuan Zhou, ‘Systems Approaches to Tackling
Configuration Errors: A Survey’, ACM Comput. Surv., 47(4), 70:1–
70:41, (July 2015).

[52] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy, ‘An Empirical Study on
Configuration Errors in Commercial and Open Source Systems’, in
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP
’11, pp. 159–172, New York, NY, USA, (2011). ACM.

[53] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy, ‘SherLog: Error Diagnosis by Connecting Clues
from Run-time Logs’, in Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
XV, pp. 143–154, New York, NY, USA, (2010). ACM.

[54] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Ver-
bowski, and Arunvijay Kumar, ‘Context-based Online Configuration-
error Detection’, in 2011 USENIX Conference on USENIX Annual
Technical Conference, pp. 28–28, Portland, OR, (2011). USENIX As-
sociation.

[55] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu
Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou, ‘EnCore: Exploit-
ing System Environment and Correlation Information for Misconfig-
uration Detection’, in 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 687–
700, Salt Lake City, Utah, USA, (2014). ACM.

[56] Sai Zhang, ‘ConfDiagnoser: An Automated Configuration Error Di-
agnosis Tool for Java Software’, in 2013 International Conference on
Software Engineering, ICSE ’13, pp. 1438–1440, Piscataway, NJ, USA,
(2013). IEEE Press.

[57] Sai Zhang and Michael D. Ernst, ‘Automated diagnosis of software con-
figuration errors’, in ICSE’13, 34th International Conference on Soft-
ware Engineering, San Francisco, CA, USA, (May 2013).

[58] Sai Zhang and Michael D. Ernst, ‘Which Configuration Option Should
I Change?’, in 36th International Conference on Software Engineering,
ICSE 2014, pp. 152–163, New York, NY, USA, (2014). ACM.

[59] Sai Zhang and Michael D. Ernst, ‘Proactive Detection of Inadequate
Diagnostic Messages for Software Configuration Errors’, in Int. Symp.
on Software Testing and Analysis (ISSTA), pp. 12–23, NY, USA, (2015).
ACM.

9292

Liquid Democracy in Group-based Configuration
Muesluem Atas and Thi Ngoc Trang Tran and Ralph Samer

and Alexander Felfernig and Martin Stettinger
Institute of software technology, Graz University of Technology, Graz, Austria,

email: {muesluem.atas, ttrang, rsamer, alexander.felfernig, mstettinger}@ist.tugraz.at

Davide Fucci
University of Hamburg, Hamburg, Germany

email: fucci@informatik.uni-hamburg.de

Abstract. Group-based configuration systems support scenarios
where a group of users configures a product/service. In those group-
based configuration scenarios where the knowledge of some group
members regarding items is insufficient, an advice of experts is nec-
essary in order to help members to evaluate products or services. This
paper introduces a novel approach which takes advantage of the con-
cept of liquid democracy that allows the delegation of group mem-
ber votes to experts. Concerning the application of liquid democ-
racy, we propose a new approach based on Multi-attribute Utility
theory (MAUT)-based evaluation used to calculate the utility of con-
figurable items. Compared to the traditional approach, the proposed
MAUT-based evaluation focuses on the role of experts by assigning
higher weights to them. Additionally, the respective expertise level of
the experts is taken into account. Consequently, the main contribution
of this paper consists in the improvement of group-based configura-
tion by taking liquid democracy aspects into consideration.

1 Introduction
Configuration [5, 12] is an important application area of Artificial
Intelligence that enables users to configure complex items described
by many dimensions (attributes). Typical examples of such items
include release plans [10], tourism packages [13], furnitures [6], and
financial services [7, 11]. While most existing configuration systems
focus on the support of single users, there also exist scenarios where
items can be jointly configured by groups of users, e.g., requirements
engineering scenarios where a group of stakeholders configures
software release plans. In such scenarios, group-based configuration
systems have been recognized as being useful tools that help to
identify configurations which satisfy preferences of all group
members [4]. When interacting with group-based configuration
systems, each group member explicitly articulates his/her preference
with respect to different item dimensions. Preferences declared by
group members are then checked for consistency. As soon as all
user preferences are consistent with each other as well as with the
knowledge base, the constraint solver will be able to find items
that satisfy the preferences of all group members. After this, utility
values for each item can be calculated, for example, on the basis of
Multi-attribute Utility theory (MAUT) [3]. Such an approach takes
into account the preferences of group members with respect to the
dimensions of items and the importance of dimensions from the
users’ point of view. The item achieving the highest utility value will

then be recommended to the group.

In the context of group-based configuration, sometimes, some
group members may be unable to evaluate the dimensions of a given
set of items due to a knowledge gap. Hence, in order to precisely
evaluate items, group members have to invest much effort in order
to collect necessary information as well as to analyze items [14]. In
such a situation, group members could ask for advice from people
who are experts in the item domain of interest. The consultation of
experts helps to precisely identify evaluations of items and thereby
further facilitates the entire configuration process. The preference
configuration of group members in this context can be interpreted
and considered as a liquid democracy paradigm which provides an
alternative decision making model to make better use of collective
intelligence [14]. The liquid democracy concept empowers group
members to either play an active role (i.e., active users who directly
vote items) or a passive role (i.e., passive users who delegate their
rating power to experts) in the voting process [2].

Recently, a variety of studies regarding liquid democracy have
been conducted for the purpose of making better use of the so-called
”wisdom of the crowds” [14]. For instance, Boldi et al. [2] propose
a Facebook application that enables each user to select one of
his/her friends as the expert of a music genre. The expert then helps
him/her to select some pieces of music. Johann et al. [8] introduce
the applicability of liquid democracy and e-democracy concepts to
address challenges of a massive and continuous user participation in
the context of requirements engineering. Zhang et al. [14] propose
an efficient statement voting scheme that unifies two basic stages
of liquid democracy, i.e., delegation and voting. During the vot-
ing/delegating phase, each voter can either vote for candidate(s) or
delegate his/her voting power to another voter. Each voter is assigned
with a temporal ID which is encrypted and distributed in such a
way that guarantees the anonymity of the delegation/voting process.
Although up to now, there exist many studies with regard to liquid
democracy, to some extent it is still unclear how liquid democracy
can be applied in the context of group-based configuration. Two
emerging questions are: (i) ”How does the system recommend
experts to a user who has not enough knowledge about items?”
and (ii) ”How to calculate the utility on the basis of emphasizing
the importance of experts who were chosen by stakeholders?”.
To the best of our knowledge, there does not exist any research

93

which provides an in-depth view of the correct application of liquid
democracy in group-based configuration. In this paper, we present
an insight of the application of liquid democracy in group-based
configuration and propose a novel approach of a MAUT-based
evaluation that takes preferences of group members/experts into
account and thereby assigns a higher importance to the experts.

The remainder of the paper is organized as follows. In Section 2,
we describe a group-based configuration scenario in requirements
engineering which is used as a working example throughout the pa-
per. In Section 3, we discuss how liquid democracy can be applied
to group-based configuration in order to transfer the rating power
from group members to experts. Section 4 presents a new approach
of MAUT-based evaluation to calculate the utility value of a require-
ment. Section 5 discusses how requirements can be assigned to re-
leases based on their utility value, their effort estimation, existing
dependencies between requirements, and the capacity of releases. Fi-
nally, Section 6 draws a brief conclusion and provides some ideas for
future work.

2 Working example
For demonstration purposes, we introduce a group configuration sce-
nario occurring in a small requirements engineering example project
where we configure a release plan. In this context, we define a set
of requirements (R1, R2, R3, and R4) for developing a sport watch.
These requirements are defined by a group of engineers with long-
standing experience and practical knowledge in requirements engi-
neering. Each requirement is described by an id, a title, and a textual
description (see Table 1).

Id Title Description

R1
Evaluation
Software

To evaluate the collected training data, an evalua-
tion software is required. The evaluation software
requires the connection and the access to the clock’s
internal memory. The evaluation should contain
measured information regarding the distance, the
height, the average heart rate, and the calorie con-
sumption.

R2

Data-
Storage
Function

To evaluate the measured data, a storage service is
required. The internal memory is used for saving
the measured information, such as the distance, the
height, the average heart rate, and the calorie con-
sumption. The stored data will be used by the eval-
uation software.

R3 GPS
To identify the position, a GPS sensor is used. Based
on the measured position and time information, the
speed and the distance can be measured.

R4
Display
lighting

The sport watch needs a display lighting to be oper-
ated at dusk.

Table 1. Example requirements for the development of a sport watch. Each
requirement is described by an id, a title, and a textual description.

In this example, we assume a situation where a group of five stake-
holders (i.e., users) reads requirements, evaluates them regarding dif-
ferent dimensions of requirements, and assigns them to different re-
leases (i.e., release planning configuration). We defined two different
releases which are shown in Table 2.

Given the sets of requirements and releases, we assume that each
stakeholder evaluated requirements with regard to the following
dimensions: risk, effort, and profit. The dimension of risk indicates
”the estimated risk for developing a requirement”, effort represents
”the estimated total work done for developing a requirement”, and
profit corresponds to ”the estimated profit of a requirement”. These

Releases Capacity (in hours) Start date End date
Release 1 260 2020-05-01 2020-07-01
Release 2 260 2020-07-15 2020-09-15

Table 2. Defined releases for the development of a sport watch. Each re-
lease is described by the start date, the end date, and the capacity. The ca-
pacity indicates the planned effort of a release in hours.

dimensions are evaluated using ratings. Thereby, the ratings can lie
in the range between 1 and 5, where an evaluation of 5 indicates
a requirement with low risk, high profit, and low effort and an
evaluation of 1 represents a requirement with high risk, low profit,
and high effort.

The evaluation of stakeholders with regard to different dimensions
of requirements is shown in Table 3. In this table, some group mem-
bers did not sufficiently evaluate dimensions of a requirement (i.e.,
some dimensions were not evaluated by stakeholders). For instance,
the first stakeholder (S1) did not evaluate the profit of the require-
ment R2. In addition, there also exist some stakeholders who did not
evaluate any dimension of a requirement. For instance, the fourth
stakeholder (S4) did not evaluate any dimension of the requirement
R1. A possible reason for the existence of such missing evalua-
tions can be lacking expertise or knowledge of some stakeholders
regarding the meaning of some requirements. In this scenario, those
stakeholders who do not know much about the content of some
requirements have to invest a lot of effort in order to acquire enough
necessary knowledge and to analyze the requirements. This triggers
a high cost of the requirement evaluation process. Alternatively,
the stakeholder could ask for the advice of some experts to provide
more precise evaluations with regard to dimensions of requirements.
In other words, the stakeholder directly passes his/her evaluation
power to experts by using liquid democracy (see Section 3). In the
context of requirements engineering, the expert can be a requirement
engineer who has longstanding experiences and practical knowledge
of requirements. The consultation of experts helps to precisely
evaluate the dimensions of items.

Alternatively, in some cases empty evaluations could be trigged
by the reason that the stakeholder does not want to evaluate some
dimensions of a requirement. Moreover, he/she also does not want
to delegate the rating power to anyone else. In this scenario, group-
based configuration systems will automatically check the quantity
of complete evaluations of requirements and the configuration phase
is only complete if this quantity is high enough. In this example, we
assume that the quantity of complete evaluations should be equal to
or greater than 80% of the total number of all evaluations. In other
words, the configuration phase will not be finished until the quantity
of available evaluations reaches 80%.

In addition to that, when evaluating a requirement, stakeholders
can assign different weights to dimensions. Thereby, the weight is re-
ferred to as the importance of a dimension, i.e., the higher the impor-
tance of a dimension, the higher the weight. Different stakeholders
could assign different weights to the same dimension. For instance,
one stakeholder (e.g., developer) assumes that the effort of a require-
ment is the most important dimension, whereas another stakeholder
(e.g., project manager) evaluates the profit to be the most important
dimension of a requirement. In order to limit the scope of this pa-
per, some simplifications have to be made. For the sake of simplicity,
we assume that the importance (i.e., weight) of all dimensions for all
stakeholders is equal and all dimensions have a weight of 1 from the

94

Stakeholders Requirement 1 (R1) Requirement 2 (R2) Requirement 3 (R3) Requirement 4 (R4)
Risk Profit Effort Risk Profit Effort Risk Profit Effort Risk Profit Effort

S1 5 3 4 2 - 4 4 4 4 2 - -
S2 3 3 - 2 - 3 2 5 - 2 5 4
S3 3 4 3 5 - 4 2 3 3 4 2 -
S4 - - - 4 - 2 2 4 4 1 3 -
S5 3 3 4 - - 4 2 - 4 4 3 4

Table 3. Evaluations of stakeholders with regard to the defined requirements in Table 1. Each requirement is represented by the three following dimensions:
risk, profit, and effort. Each evaluation is in the range of 1 to 5, where the evaluation of 5 indicates a requirement with low risk, high profit, and low effort and
the evaluation of 1 represents a requirement with high risk, low profit, and high effort. Evaluations which were not provided by stakeholders are represented as a
dash symbol (”-”).

stakeholders’ point of view (i.e., ∀ s ∈ stakeholders, weight(s, risk)
= weight(s, profit) = weight(s, effort) = 1).

3 Application of Liquid Democracy

Liquid democracy is a hybrid voting model of participative
democracy which combines direct and representative democracy
approaches in order to empower electors [1, 9]. While direct democ-
racy allows electors to directly vote for an item, representative
democracy enables electors to select representatives (or experts) and
empower them to vote for items. One of the major issues of direct
democracy is the insufficient knowledge of the voter about some
items. As a consequence, these voter may provide unprecise evalua-
tions or may even not be able to assess them in a reasonable way. In
sharp contrast to direct democracy, representative democracy allows
a stakeholder to elect an expert who plays the role of a representative
to vote for items. However, representative democracy is also known
to show a weakness in terms of representativeness. In particular,
this is true for scenarios where many voters delegate their voting
power to only one expert. That means, the expert’s opinion usually
represents the idea of many voters and hence, it triggers a situation
in which the evaluation of the expert partly reflects the opinion of a
stakeholder. In this context, liquid democracy has been recognized
as a mixed approach which takes advantage of the strength of direct
and representative democracy. Liquid democracy enables voters to
either directly vote items or delegate their voting rights to an expert.
Consequently, this key benefit of liquid democracy serves as main
motivation to apply this voting model.

In this paper, we use a liquid democracy approach in order to com-
plete evaluations of dimensions which were not evaluated by stake-
holders. As shown in Table 3, we can observe that stakeholders did
not evaluate all dimensions of requirements. In this example, we as-
sume that stakeholders S2, S4, and S5 need experts to complete their
evaluations. Expert selection can be done by one of two approaches.
The first approach is to select only one expert for the three afore-
mentioned stakeholders. The second approach is to allow each group
member to select his/her own expert. In our example, we choose the
second approach where each stakeholder chooses different experts
for different requirements. For instance, regarding the requirement
which is related to the user interface, the stakeholder can choose an
expert who has experiences in user interface design. For the data
storage-related requirement, the stakeholder can choose an expert
who has knowledge of data management. In our approach, the expert
selection process is done automatically by the recommender system.
That means, experts on a specific topic are automatically identified
and recommended to the stakeholder. Alternatively, each stakeholder
is allowed to select experts who are not included in the recommended

list. In our approach, the recommender system suggests experts based
on the expertise level. In the context of requirements engineering,
the expertise level of an expert can be calculated based on the fol-
lowing criteria: working experience, skills, number of contributions
in requirements engineering projects, and number of delegations re-
ceived in the requirements engineering domain. The expertise level
is in range of 1 to 5. The expertise level of 5 indicates excellent topic-
related knowledge, whereas the expertise level of 1 represents limited
knowledge.

In this paper, we exemplify an expert recommendation process
with 5 experts in the requirements engineering domain. Table 4
shows a recommended list of experts ranked in a descending order
of the expertise level. In addition, stakeholders who want to delegate
evaluations to other experts can select different experts for different
requirements. As shown in Table 1, the development of the defined
requirements requires deep knowledge with regard to different areas.
Therefore, selecting an appropriate expert for each requirement helps
to increase the overall quality of requirements engineering. The ex-
pert selection for stakeholders S2, S4, and S5 are depicted in Table
5. In this table, we can observe that stakeholders select different ex-
perts for different requirements. For instance, stakeholder S2 requires
experts’ evaluations regarding the dimensions of requirements R1,
R2, and R3. The stakeholder S2 chooses Expert3 for R1, Expert2
for R2, and Expert4 for R3. Furthermore, we can observe that the
stakeholder S2 does not need any expert for R4 and this is repre-
sented by a dash symbol (”-”) in Table 5.

Experts Expertise-Level
(sport watch domain)

Expert2 4.5
Expert5 3.75
Expert4 3.15
Expert1 2.25
Expert3 2.05

Table 4. The expertise level in the sport watch domain. The expertise level
is in the range of 1 to 5, whereby 1 indicates limited knowledge and 5 indi-
cates excellent knowledge.

Stakeholders R1 R2 R3 R4

S2 Expert3 Expert2 Expert4 -
S4 Expert2 Expert2 - Expert2
S5 - Expert5 Expert2 -

Table 5. Experts chosen by stakeholders regarding different requirements.
The dash symbol ”-” represents a situation in which a stakeholder does not
need any advice of an expert.

After the selection of experts with respect to each requirement,
these experts evaluate the remaining requirement dimensions which

95

Stakeholders Requirement 1 (R1) Requirement 2 (R2) Requirement 3 (R3) Requirement 4 (R4)
Risk Profit Effort Risk Profit Effort Risk Profit Effort Risk Profit Effort

S1 5 3 4 2 - 4 4 4 4 2 - -
S2 3 3 3 2 3 3 2 5 3 2 5 4
S3 3 4 3 5 - 4 2 3 3 4 2 -
S4 2 3 3 4 4 2 2 4 4 1 3 5
S5 3 3 4 3 2 4 2 4 4 4 3 4

Table 6. Evaluations of stakeholders with regard to the defined requirements in Table 1. Each requirement is represented by the three following properties:
risk, profit, and effort. The evaluation is in the range of 1 to 5, where the evaluation of 5 indicates a requirement with low risk, high profit, and low effort and
the evaluation of 1 represents a requirement with high risk, low profit, and high effort. Evaluations which were not provided by stakeholders and experts are
represented as a dash symbol (”-”). Evaluations provided by experts are represented in bold text.

were not evaluated by the stakeholders S2, S4, and S5. The evalu-
ations which were given by experts are shown (in bold) in Table 6.
Next, the utility of each requirement has to be calculated and used
as one of the important criteria to assign requirements to releases.
The utility of each requirement is calculated based on Multi-attribute
Utility Theory (MAUT) (see Section 4).

4 Application of Multi Attribute Utility Theory
As already mentioned before, configurable items are usually de-
scribed by a set of dimensions. In this context, Multi-attribute Util-
ity Theory (MAUT) [3] is applied. In this paper, we propose a new
MAUT-based approach that calculates the utility of an item i accord-
ing to the evaluations of stakeholders (evaluation(s,d)) with regard
to dimensions d, the importance of these dimensions (w(s,d)) from
the stakeholders’ point of view, and the importance of stakehold-
ers/experts (w(s)). The final result of the MAUT evaluation is then
represented by the weighted average of all stakeholders’ evaluations
for the dimensions d. Formula 1 indicates that an experts’ evaluation
evaluation(e,d) for a dimension d is used in cases where a stake-
holders’ voting is delegated. Otherwise, a stakeholders’ own evalu-
ation will be taken into account for the MAUT calculation. In our
approach, compared to a stakeholder, an expert has a higher impact
on the overall utility of an item, i.e., the weight of an expert is twice
the weight of a stakeholder (see Formula 2). In addition, the expertise
level el(e) of an expert e is also considered in the weight calculation.
The total MAUT value (i.e., the utility value) of a requirement Ri is
then calculated by summing all dimension-specific MAUT values of
the requirement Ri (see Formula 3).

eval(s, d) =

{
evaluation(e, d) ifevaluation(s,d) delegated
evaluation(s, d) otherwise

(1)

w(s) =

{
weight(s) ∗ 2 + el(e) if evaluation(s,d) delegated
weight(s) otherwise

(2)

Utility(Ri) =

∑
s∈stakeholders

∑
d∈dims eval(s,d)∗w(s,d)∗w(s)∑

d∈dims w(s,d)∗w(s)

|stakeholders|
(3)

An example of the utility calculation of a requirement is presented
in Formula (4). In this example, for simplicity, we assume that all
stakeholders assign the same weight (i.e., the weight of 1) for all di-
mensions of requirements (∀s ∈ stakeholders, ∀d ∈ dimensions,
w(s, d)= 1). Additionally, we assume that each stakeholder has also

the same importance (∀s ∈ stakeholders weight(s)= 1).

Utility(R2) =

∑
s∈stakeholders

∑
d∈dims eval(s,d)∗w(s,d)∗w(s)∑

d∈dims w(s,d)∗w(s)

|stakeholders|

=
1

5

(2 ∗ 1 + 4 ∗ 1
1 + 1

+
2 ∗ 1 + 3 ∗ (1 ∗ 2 + 4.5) + 3 ∗ 1

1 + (1 ∗ 2 + 4.5) + 1

+
5 ∗ 1 + 4 ∗ 1

1 + 1
+

4 ∗ 1 + 4 ∗ (1 ∗ 2 + 4.5) + 2 ∗ 1
1 + (1 ∗ 2 + 4.5) + 1

+
3 ∗ (1 ∗ 2 + 3.75) + 2 ∗ (1 ∗ 2 + 3.75) + 4 ∗ 1

(1 ∗ 2 + 3.75) + (1 ∗ 2 + 3.75) + 1

)
=

1

5

(6
2
+

24.5

8.5
+

9

2
+

32

8.5
+

32.75

12.5

)
= 3.354

(4)

Similarly, MAUT values of other requirements are also calcu-
lated by using Formulae 1 - 3. The MAUT values of requirements
R1, R2, R3, and R4 are the following: MAUT (R1) = 3.266,
MAUT (R2) = 3.354, MAUT (R3) = 3.380 and MAUT (R4) =
3.326. After the calculation of requirement utilities, requirements
will be assigned to defined releases (see Section 5).

5 Release Planning
In Section 4, we showed how the utility value of a requirement
can be calculated based on Multi-attribute Utility Theory (MAUT).
The higher the MAUT value, the sooner the requirement will be
implemented. In the context of requirements engineering, making a
recommendation of requirements is referred to as release planning,
i.e., to clarify which requirement should be implemented in which
release. In release planning, stakeholders have to estimate the
effort investing for each requirement. In our working example, the
effort is referred to as the invested time (in hour) to implement
a requirement. The higher the evaluation of effort, the lower the
invested time. We assume that an evaluation of 5 corresponds to an
effort of 50 hours and an evaluation of 1 corresponds to an effort
of 250 hours. In order to calculate the effort of a requirement, we
first calculate the average of evaluations with regard to the effort of
the requirement given by all stakeholders. After that, the effort (in
hour) is calculated using the Formula 5, where effort(Ri, s) is the
evaluation of the stakeholder s about the effort of the requirement Ri.

effort(Ri) =
(
5−

∑
s∈stakeholders effort(Ri, s)

|stakeholders| + 1
)
∗ 50

(5)

96

We exemplify the calculation of the effort of the requirement R1

as shown in Formula 6. The effort values of other requirements are
calculated in a similar way and presented in Table 7.

effort(R1) =
(
5− 4 + 3 + 3 + 3 + 4

5
+ 1
)
∗ 50 = 130 (6)

Requirements Average effort (effort in hours) Assigned release
R1 3.4 (130) Release 2
R2 3.4 (130) Release 1
R3 3.6 (120) Release 1
R4 4.33 (83.33) Release 2

Table 7. The assignment of requirements to releases based on the effort of
requirements, dependencies between requirements, their utility values, and
capacity of releases. The effort of each requirement in represented in the sec-
ond column of the table.

In our example, release planning is done based on four criteria: the
utility (MAUT) value, effort (measured in hours), the dependency be-
tween requirements, and the capacity of releases. Given the fact that
requirement R3 achieves the highest utility (i.e., MAUT (R3) =
3.380) and its estimated time effort of 120 hours, R3 turns out to be
the best candidate to be assigned to Release 1. Furthermore, it is rea-
sonable that requirement R2 should follow R3 and hence also be as-
signed to Release 1, as R2 shows the second highest utility and there
is still some remaining capacity left for Release 1 to cover R2 in this
release (i.e., capacity(Release 1) = 260 hours). Next, requirement R4

has to be assigned to a release. The assignment of requirement R4

to the first release is not possible, because of the limited capacity (
remaining capacity (Release 1) = 10 hours and effort(R4) = 83.33
hours). Therefore, requirement R4 is assigned to the second release.
Finally, requirement R1 is assigned to the second release. Based on
the description of requirements shown in Table 1, we can observe
that there is a dependency between R1 and R2 which is indicated as
follows: ”The evaluation software requires the access to the clock’s
internal memory”. In the context of requirements engineering, this
means that the first requirement R1 (i.e, evaluation software) can not
be implemented before R2 (i.e., data storage function) has been com-
pleted. However, in this scenario, the identified dependency will not
trigger any changes in the release planning since the release plan in
Table 7 shows that requirement R2 which is assigned to the first re-
lease (development period: from 2020-05-01 to 2020-07-01) will be
implemented before all the requirements assigned to the second re-
lease (development period: from 2020-07-15 to 2020-09-15). With
this final step, all requirements are assigned to releases and the re-
quirements engineering process is complete.

6 Conclusion and Future Work

In this paper, we introduced utility analysis concepts which focus on
liquid democracy. These concepts allow the manual delegation of a
stakeholder’s voting right to a domain expert. First, we described a
scenario for the development of a sport watch which is used as a
working example throughout this paper. Based on the working ex-
ample, we applied liquid democracy in order to receive consultations
from experts in situations where stakeholders do not have enough
knowledge with regard to certain requirements. Afterwards, we pro-
posed a novel approach of a MAUT-based evaluation which takes
into account users’ and experts’ evaluations and assigns higher im-
portance to expert consultations (i.e., evaluations). Finally, we pro-
posed a group-based configuration for release planning where re-

quirements were assigned to releases based on derived utility values,
effort estimations, existing dependencies, and release capacities.

Within the scope of future work, we plan to integrate the proposed
approach in a requirements engineering tool named INNOSENSR1.
INNOSENSR is a modern innovative release planning tool which
makes use of intelligent techniques in order to facilitate the com-
plete requirements engineering process. In the current version of IN-
NOSENSR, stakeholders have to evaluate requirements without get-
ting any support from domain experts. In the future, we will integrate
our approach into INNOSENSR in order to increase the requirements
engineering quality.

Acknowledgment
The work presented in this paper has been conducted within the
scope of the Horizon 2020 project OPENREQ (732463).

REFERENCES
[1] Christian Blum and Christina Isabel Zuber, ‘Liquid democracy : Poten-

tials, problems, and perspectives’, The Journal of Political Philosophy,
24, 162–182, (2016).

[2] Paolo Boldi, Corrado Monti, Massimo Santini, and Sebastiano Vigna,
‘Liquid FM: recommending music through viscous democracy’, in Pro-
ceedings of the 6th Italian Information Retrieval Workshop, Cagliari,
Italy, May 25-26, 2015., (2015).

[3] J. S. Dyer, Maut - Multi-attribute Utility Theory, 265–292, Springer
New York, New York, NY, 2005.

[4] Alexander Felfernig, M Atas, TNT Tran, and Martin Stettinger, ‘To-
wards group-based configuration’, in International Workshop on Con-
figuration 2016 (ConfWS16), pp. 69–72, (2016).

[5] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha Tiihonen,
Knowledge-based Configuration: From Research to Business Cases,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1 edn.,
2014.

[6] A. Haag, ‘Sales configuration in business processes’, IEEE Intelligent
Systems and their Applications, 13(4), 78–85, (Jul 1998).

[7] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich, Recommender Systems: An Introduction, Cambridge Univer-
sity Press, New York, NY, USA, 1st edn., 2010.

[8] Timo Johann and Walid Maalej, ‘Democratic mass participation of
users in requirements engineering?’, in 23rd IEEE International Re-
quirements Engineering Conference, RE 2015, Ottawa, ON, Canada,
August 24-28, 2015, pp. 256–261, (2015).

[9] Anna Litvinenko, ‘Social media and perspectives of liquid democracy
on the example of political communication of pirate party in germany’,
in The Proceedings of the 12th European Conference on e-Government
in Barcelona, pp. 403–408, (2012).

[10] Gerald Ninaus, Alexander Felfernig, Martin Stettinger, Stefan Reiterer,
Gerhard Leitner, Leopold Weninger, and Walter Schanil, ‘Intellireq:
Intelligent techniques for software requirements engineering’, in Pro-
ceedings of the Twenty-first European Conference on Artificial Intel-
ligence, ECAI’14, pp. 1161–1166, Amsterdam, The Netherlands, The
Netherlands, (2014). IOS Press.

[11] Markus Stolze, Simon Field, and Pascal Kleijer, ‘Combining configu-
ration and evaluation mechanisms to support the selection of modular
insurance products’, in Proceedings of the 8th European Conference on
Information Systems, Trends in Information and Communication Sys-
tems for the 21st Century, ECIS 2000, Vienna, Austria, July 3-5, 2000,
pp. 858–865, (2000).

[12] Markus Stumptner, ‘An overview of knowledge-based configuration’,
Artificial Intelligence Community, 10(2), 111–125, (April 1997).

[13] TNT Tran, Müslüm Atas, Martin Stettinger, and Alexander Felfernig,
‘An extension of choicla user interfaces for configurable products’, RS-
BDA’16.

[14] Bingsheng Zhang and Hong-sheng Zhou, ‘Brief announcement: State-
ment voting and liquid democracy’, in Proceedings of the ACM Sympo-
sium on Principles of Distributed Computing, PODC ’17, pp. 359–361,
New York, NY, USA, (2017). ACM.

1 http://innosensr.com

97

http://innosensr.com

9898

Knowledge retrieval for configuring risks when answering
calls to tenders or direct customer demands

Ayachi Rania1,2 and Guillon Delphine1,3 and Vareilles Elise1 and Marmier François1
Aldanondo Michel1 and Coudert Thierry2 and Geneste Laurent3

Abstract.1 This short article provides the first ideas and results
about the configuration of risks when answering tenders or direct
customer demands. Indeed, when an offer is defined, it becomes
more and more important to analyze possibilities of risks
occurrence and their consequences. Most of the time, this analysis
is conducted manually thanks to a risk expert. In this paper, we
propose to assist the expert with a risk configuration tool that relies
on a knowledge base and that allows to define and evaluate: (i) the
risk probability, (ii) the main risk impacts and (iii) the interests of
various corrective and preventive actions to mitigate it. We first
detail the problem. Then we propose a generic model of risks for
calls for tenders. Then we describe some knowledge retrieval
queries that support the configuration of risk characteristics. As
preliminary studies, we will not be able to discuss hard theoretical
results but should be able to show a nice a demo of a first software
prototype.

Keywords: Customer/supplier relation, offer elaboration, risk
configuration, knowledge based system, knowledge model, case
base reasoning

1 INTRODUCTION
This short article deals with offer elaboration when answering call
for tenders or direct customer demands. The offer concerns
physical product or mechanical systems, called indistinctly in the
rest of the paper ‘systems’. The customer/supplier relation is
assumed to be in a B2B context and in a "light" Engineer To Order
situation (ETO) [1]. By light ETO we mean that more than 75% of
the systems are configured to order (CTO), either Assembly or
Make To Order (ATO or MTO); the 25% left are engineer to order
(ETO). Globally, such systems are mainly standard but allow some
customer specific options that are non-standard, also called ETO
options [2]. These ETO options are a strong point for the supplier's
competitiveness.

During the offer elaboration, as there is no guarantee that the
customer accepts the offer, we assume that the supplier doesn’t
study in detail: (i) the design of every ETO option, (ii) their
integration with the standard solution and (iii) their production
process. The supplier configures in detail the CTO part of the
system but just characterizes the key parameters of the ETO

1 Industrial Engineering Center, Toulouse University – IMT Mines Albi,

Albi, France
2 Laboratoire de Génie de Production, Toulouse University – INP-ENIT,
Tarbes, France
3 ESTIA Recherche - Bidart - France
corresponding author e-mail: michel.aldanondo@mines-albi.fr

options (among them performance and cost). As a consequence, if
the customer accepts the offer, the supplier must design in detail
every ETO option, their integration and production process before
launching production. This is where the risky point lies as
explained by [3]. As the offer has been submitted and accepted
with given performance, cost and due date, without a detail study
of the ETO options, the supplier takes the risk of not being able to
match what he has promised and sold. This means that the final
delivered system might be more expensive and/or longer to
produce than expected.

We assume that the offer elaboration is achieved thanks to a
concurrent system/process configuration [4] activity supported by:

a system configuration software in order to configure the
CTO part of the system that has some kind of a “design
gate” for ETO enabling the user to capture the rough
ideas about the solution relevant to ETO options [5], [6].

a delivery process configuration software in order to
configure the design activity (for ETO options) and the
production activities (for the whole system, from
sourcing, assembling up to installing and test) [7].

The risk, previously characterized, is therefore attached to the
delivery process. Therefore, following the system/process
configuration activity, a second activity is concerned with what we
call the risk configuration relevant to the delivery process as shown
in Fig.1.

Similarly to knowledge fundamentals relevant to configuration
key ideas [8] we consider that it should be possible: (i) to gather
risk knowledge and risk processing knowledge in a knowledge
base, as a kind of generic model, and (ii) to propose a knowledge
interactive process that allows to support risk configuration for a
specific risk. In this purpose, the rest of this article goes as follows:
in a second section, we identify the knowledge involved in risk
configuration. In the third section, we define the risk generic model
and the risk configuration problem. In the fourth section, the first
ideas relevant to knowledge retrieval queries that can support risk
configuration when elaborating offers are proposed.

Fig. 1 - Offer elaboration and risk configuration

9999

100

101

select from selected risk strategies, corrective/ preventive
actions with conceptual element attributes same or
similar to those of the current offer, propose these results
to the person in charge.

These three queries are given as examples. Other one can be
established. They provide a strong support to the person in charge
of risk configuration in the sense that they avoid him to rely only
on his own knowledge or risk expertise.

5 CONCLUSION
The goal of this short article was to provide first elements in order
to set-up to a knowledge-based support system for risk
configuration when answering tenders or direct customer demands.
Risk configuration knowledge has been identified, a generic model
of risk was provided as well as a risk configuration definition.
Some examples of queries to assist risk configuration by the use of
past cases have been also provided.

Two main interests of this proposition are:
to support and to give confidence to the risk expert
suggestions,

to allow being less human expert dependent.
In a more operational and industrial level, another key interest of
this proposition is to allow companies:

to reduce the level of expertise required to engineer
conventional risks (with a junior risk expert for example)
to leave more time to senior experts to focus on
unconventional risks (new risks or critical risks, for
example).

Given all these elements and according to the approach
advocated in [9] that proposes to use a discrete event simulator, the
expert is now able to:

configure the risks of a given delivery process taking into
account the offer context and system characteristics,
simulate the delivery process with all possible
combinations of risk occurrences taking into account
corrective and preventive actions
and evaluate for each combination of risks, the relevant
metrics and probability of occurrence.

These simulations allow the expert to evaluate all the scenarios
from the worst one (with all the risk occurrences and no relevant
preventive and/or corrective actions) to the best one (no risk
occurrence and no additive expenses or loses of time due to
preventive or corrective actions), and to give for each of them the
probability of occurrence and the value for the relevant metrics
(cost and duration). Therefore, in this study, this first level of risk
configuration/simulation allows the expert to know “what could
happen if things don’t go as they should with and without
preventive and corrective actions”.

As far as we know, we did not find any scientific work relevant to
this problem. We are at the present time beginning to prototype and
test this knowledge base system with four companies from
industrial and service sectors. The next issue is to add some rule-
based decision aiding, assuming that some generic risk
configuration rules can be extracted from the case base.

ACKNOWLEDGMENTS
The authors would like to thank all ANR OPERA partners and the
French ANR agency for work funding.

REFERENCES
[1] Rivest L., Desrocher A., Brie A., ‘Adaptive generic product structure

modelling for design reuse in engineer-to-order products’, Computers
in Industry, 61, 53–65 (2000).

[2] Markworth S., Hvam L., ‘Understanding the impact of non-standard
customisations in an engineer-to-order context: A case study’, Int. J.
of Production Research, (2018).

[3] Sylla A., Vareilles E., Coudert T., Kirytopoulos K., Aldanondo M.,
Geneste L, ‘Readiness, feasibility and confidence: how to help
bidders to better develop and assess their offer’s, Int. J. of Production
Research, 55 (23), 7204–7222, (2017)

[4] Pitiot P., Aldanondo M., Vareilles E., Gaborit P., Djefel M.,
Carbonnel S., ‘Concurrent product configuration and process
planning, towards an approach combining interactivity and
optimality’, Int. J. of Production Research, 51 (2), 524-541, (2013).

[5] Sylla A., Guillon D., Vareilles E., Aldanondo M., Coudert T.,
Geneste L., ‘Configuration knowledge modeling: How to extend
configuration from assemble/make to order towards engineer to order
for the bidding process’, Computers in Industry , 99, 29–41, (2018)

[6] Vareilles E., Aldanondo M., Gaborit P., ‘Evaluation and design: A
knowledge-based approach’, Int. J. of Computer Integrated Manuf.,
20 (7), 659–653, (2007)

[7] Zhang L., Vareilles E., Aldanondo M., ‘Generic Bill of Functions,
Materials, and Operations for SAP 2 Configuration’, Int. J. of
Production Research, 51(2), 465–478 (2013)

[8] Felfernig A., Hotz L., Bagley C., Tiihonen J., Knowledge-Based
Configuration From Research to Business Cases, Ed Morgan
Kaufmann (2014).

[9] Marmier F., Gourc D., Laarz F, ‘A risk oriented model to assess
strategic decisions in new product development projects’, Decision
Support Systems, 56, 74–82 (2013).

[10] Thun J.H., Hoenig D., ‘An empirical analysis of supply chain risk
management in the German automotive industry’, Int. J. of
Production Economics, 131(1), 242-249 (2011).

[11] Hallikas J, Puumalainen K., Vesterinen T., Virolainen V., ‘Risk-
based classification of supplier relationships’, J. of Purchasing and
Supply Manag., 11(2-3), 72-82, (2005).

[12] ISO 31000, International Standards for Business, Risk Management
– Principles and Guidelines, (2009).

[13] Fang C., Marle F., ‘A simulation-based risk network model for
decision support in project risk management’, Decision Support
Systems, 52, 635–644, (2012).

[14] Yildiz A.E., Dikmena I., Birgonul M.T., Ercoskunb K., Alten S., ‘A
knowledge-based risk mapping tool for cost estimation of
international construction projects’, Automation in Construction, 43,
144–155, (2014).

[15] Alhawaria S., Karadshehb L., Talet A.N., Mansoura E., ‘Knowledge-
Based Risk Management framework for Information Technology
project’, Int. J. of Information Manag., 32, 50 – 65, (2012).

[16] Aamodt, A., Plaza, E., ‘Case-based reasoning: foundational issues,
methodological variations, and system approaches’, AI
Communications, 7(1), 39–52, (1994).

[17] Hillson, D. & Hulett, D. T, Assessing risk probability: alternative
approaches. Paper presented at PMI® Global Congress 2004—
EMEA, Prague, Czech Republic. Newtown Square, PA: Project
Management Institute (2004).

[18] Mittal S. and Frayman F., Toward a generic model of Configuration
Tasks, Int. Joint Conferences on Artificial Intelligence, 1395-140,
(1989).

102102

How to deal with Engineering-to-Order Product/System
Configuration?

Abdourahim Sylla1, 2 and Delphine Guillon1, 3 and Rania Ayachi1, 2 and Elise Vareilles1 and Michel
Aldanondo1 and Thierry Coudert2 and Laurent Geneste2

Abstract.1This paper considers the configuration of physical
systems in a business to business environment (machine tool,
aerospace equipment, cranes …). In this kind of business,
knowledge-based configuration software are frequently used when
dealing with Assemble/Make-To-Order or (Configure-To-Order
(CTO)) situations where the entire customer’s requirements can be
fulfilled with standard systems. However, in Engineer-To-Order
(ETO) situations where non-standard systems must be designed in
order to fulfill the entire customers’ requirements, existing
knowledge-based configuration software cannot be used. In fact,
the configuration hypothesis state that all configured systems are
assembled from standard sub-systems and components. The aim of
this paper is therefore to investigate how the existing
products/systems configuration hypothesis, problems’ definitions,
and models can be modified or adapted in order to allow the use of
configuration software in ETO situations. In this purpose, first, the
main differences between standard and non-standard systems are
analyzed. Then, six cases of systems configuration that
differentiate CTO from ETO are identified and discussed. Finally,
some Constraint Satisfaction Problems (CSP) based modeling
extensions are proposed to allow the use of configuration software
in these situations.

1 INTRODUCTION
The current economic environment is characterized by the
increasing demand for personalized systems from the client
companies. In addition, the requirements on the performances,
costs and delivery times of the systems are increasingly
constrained. Therefore, in order to propose relevant systems
solutions to the client companies, the supplier companies have to
design customized systems in a very short period while optimizing
time and resources involved in the design process [1],[2],[3]. In
this article, a system is considered as a set of sub-systems that are
integrated following the system architecture.

The design of a system that fulfils the customer’ requirements
is carried out using three kind of knowledge: (i) the knowledge
about the customer’s requirements that are the source of the design
problem, (ii) the knowledge about the potential systems solutions
relevant to these requirements, and (iii) the knowledge about the
design methodology [4]. Depending on the availability of these
three kinds of knowledge, two types of industrial situations are

1 Centre de Génie Industriel, Université de Toulouse / IMT Mines Albi,
France, email: firstname.lastname@mines-albi.fr

2 Laboratoire Génie de Production, Université de Toulouse / INP ENI
Tarbes, France, email: firstname.lastname@enit.fr

3 ESTIA Recherche, Ecole Supérieure des Technologies Industrielles
Avancées, France, email: lastname@estia.fr

encountered by the suppliers when designing systems solutions
relevant to the customer’s requirements [4]: (i) Configure-To-
Order (CTO) which gathers both Assemble-To-Order and Make-
To-Order industrial situations, and (ii) Engineer-To-Order (ETO).

In Configure-To-Order (CTO) contexts, the relevant
knowledge necessary for the design of systems solutions that fulfill
the customer’s requirements are available. The design of a system
in this case, consists in choosing systems solutions that correspond
to the requirements [4],[5]. This problem refers to the configuration
problem also called customization [7]. In this situation, all possible
systems solutions that are relevant to the customer’s requirements
have been totally designed or predefined. The supplier has just to
choose one system solution to propose to the customer. This
configuration problem is encountered in many industries, including
in the automotive, aeronautics or the micro-informatics sectors
[8],[9]. In fact, most of the time, the systems or sub-systems
solutions must be selected from a huge number of types or variants
to meet specific customer’ requirements [8],[9]. Knowledge-based
configuration software is very often used by the suppliers to
rapidly configure systems that fulfill the customers’ requirements.

 In Engineer-To-Order (ETO) situations, some modifications or
adaptations must be performed on existing systems solutions in
order to design systems that fulfil the entire customer’s
requirements [6]. For example, a customer wants a crane system
composed of two sub-systems: a jib of 7 meters long and a tower of
10 meters high. The existing solutions cover the tower sub-system.
However, until now, the supplier has only designed jibs of 5 and 9
meters long. Therefore, a jib of 7 meters long must be designed and
integrated to the other sub-systems solutions in order to fulfil the
entire customer’s requirements. Depending on the extent of the
design activities necessary to define a system solution that satisfy
the entire customer’s requirements, some authors and practitioners
speak of “light” and “heavy” ETO. In any ETO situations, the
existing configuration software cannot be used to configure the
entire system. Indeed, the configuration makes the assumption that
a system is assembled or defined from sub-systems and
components that have been totally designed or predefined. The
assembly mode of the sub-systems and components is also
predefined [10],[8],[9]. As a consequence, some companies use
configuration software to design the predefined parts of the system.
The other parts are defined manually or using other tools such as
Computer Aided Design (CAD) [11],[12],[13]. This results in
additional time, resources and efforts in the design process.

In [18], the authors introduced the concepts of open
configuration. They stressed out that one of the characteristics of
open configuration is the ability to integrate components and

103103

constraints that are not completely predefined during the
configuration process. They presented some example application
domains of open configuration. However, the aspects related on
how to extend configuration principles towards ETO industrial
situations have not been addressed.

The aim of this article is to investigate how the existing
configuration hypothesis, problems’ definitions, and models can be
modified or adapted in order to extend the use of configuration
software towards ETO industrial situations. In the section 2,
relevant products/systems configuration background, including
problems definitions and Constraint Satisfaction Problems (CSP)
knowledge modelling, are recalled. In section 3, the main
differences between standard and non-standards systems are
analyzed. Then, six cases of systems configuration that
differentiate CTO from ETO are identified and discussed. Some
Constraint Satisfaction Problems (CSP) based modeling extensions
that consider the six cases of systems configuration in ETO
situations are also proposed.

2 PRODUCT/SYSTEM CONFIGURATION
IN CTO SITUATIONS

2.1 Configuration problem definition

Since the first configuration problems defined by Mittal [14], many
products configuration problems have been defined in the scientific
literature [8],[9],[15]. According to the problems, different aspects
of a product are considered, especially the physical, descriptive,
and functional aspects [8],[9],[15]. Among all these definitions, we
consider the key elements proposed in [14],[15]. They are
presented as follows:

Hypothesis: a system is considered as set of sub-systems
Given:

each system or sub-subsystem is characterized with a
predefined set of attributes which have predefined
domains,
the attributes can be either descriptive (length, power for
instance) or key performance indicators such as the cost,
the sub-systems that have the same characteristics
constitute a family of sub-systems,
the possible combinations or assembly of sub-systems
and/or attributes values are predefined with a set of
constraints,
a customer’s requirements corresponds to the selection of
a sub-system or attributes values.

Objectives: The configuration consists in finding at least one set of
sub-systems that satisfy all the constraints and customer’s
requirements.

As you can see in this configuration problem definition, only
systems and sub-systems that have totally been designed or
predefined are considered. This is the common point between the
configuration problems and models encountered in the scientific
literature. They all assume the following hypothesis
[8],[9],[14],[15],[16],[17]: (i) a configured product or system is
assembled from predefined sub-systems or components, and (ii) the
assembly mode is also predefined. As a consequence, these

definitions and models are not suitable to the ETO situations where
some sub-systems are not totally designed or predefined.

In this article, in section 3.1, we propose some adaptations of
this definition to the ETO situations. In the section 3.2, we
introduce the CSP-based modelling framework that is used to
model systems configuration knowledge. We also present an
example of system configuration in CTO situations.

2.2 CSP based knowledge modelling

In the scientific literature, the CSP (Constraint Satisfaction
Problem) is the most commonly formalism used to formalize
configuration knowledge. It gathers three elements: (i) a set
variables, (ii) a finite domain for each variable, and (iii) a set of
constraint that establishes relationships between variables [19].
Referring to the configuration problem previously defined, a CSP-
based configuration model is defined as follow [7],[13],[15]: each
sub-system family and each attribute is associated to a variable. A
specific sub-system or attribute value is then a value in its
corresponding variable domain. The constraints are used either to
specify acceptable combinations of sub-system solutions and/or
attribute values. For example, in the Fig. 1, the sub-system jib is
associated to the variable “Jib solution”. Its descriptive attributes
are associated to the variables “Length” and “Stiffness”. The length
of the jib has two possible values “5 meters” and “9 meters” which
represents its domain. The constraints are represented with the full
line. They link the attributes’ values to their corresponding sub-
systems’ solutions. Using this model in a configuration software, if
the customer’ requirements correspond to these solutions; the
supplier can configure rapidly at least one solution that cover all
the requirements. However, if the customer’s requirements exceed
these solutions, the supplier cannot exploit this model in a
configuration software to configure a crane system solution that
covers all the requirements, even if the supplier is able to design,
produce or assemble and deliver that solution.

Figure 1: System configuration model in CTO situations

104104

In the next section, we propose some modifications or
adaptations to the existing configuration problems’ definitions and
models in order to allow the use of configuration software in ETO
situations.

3 PROPOSITIONS
In this section, we propose some elements that allow to extend the
use of configuration software from CTO towards ETO situations.
For this purpose, like Myrodia et al. [12], Aldanondo et al. [15] and
other authors, we distinguish : the sub-systems, integrations and
systems that have been totally designed or predefined as standard
elements, and those that have not been totally designed or
predefined as non-standard ones. In the section 3.1, we analysis the
main differences between standard and non-standard systems that
allow to identify six cases that differentiate the configuration of
systems in ETO from CTO situations. In the section 3.2, using a
simple example, we show how a configuration model relevant to
CTO can be adapted and extended towards ETO situations.

3.1 Differences between CTO and ETO

In this section, an analysis of the characteristics of standards and
non-standards systems has allowed us to identify the main
characteristics which permit to distinguish them. These
characteristics rely on: the descriptive attributes of the sub-systems
and systems, and the sub-systems that compose the systems. These
two elements (descriptive attributes and sub-systems) may: (i) be
standard or non-standard, (ii) take standard or non-standard
values/instances, and (iii) be the object of standard or non-standard
associations/integrations. On this basis, we will talk about standard
systems configuration (a configuration in a CTO situation) when
all elements, all values or instances, and all associations or
integrations are standard. In contrast, for any other case, we will
talk about non-standard systems configuration. Thus, the presence
of a non-standard feature implies a case of non-standard systems
configuration (a configuration in a ETO situation). This analysis
has leaded us to identify six cases that differentiate the
configuration in CTO from ETO. They represent the different cases
of systems configuration in CTO situation. Three cases concern the
sub-systems and three relate to the systems. They are presented in
Fig. 2 and are described in the following.

The three cases at the sub-system level are:

Case 1: Non-standard association of standard values for the
descriptive attributes. This happens when two or more descriptive
attributes values that have never been associated together to
configure a sub-system have to be associated in order to fulfil
customer’ requirements. For example, in the Fig. 1, a jib with “5
meters” long and “strong” stiffness is required by a customer.
Case 2: Addition of non-standard values for a descriptive attribute.
This happens when a non-standard value must be considered for a
descriptive attribute in order to fulfill customer’s requirements. For
example, a customer wants a jib with “11 meters” long.
Case 3: Addition of non-standard attribute for a sub-system. In this
case, a non-standard attribute must be added to configure a sub-
system that fulfills customer’s requirements. For example, a
customer asks for a jib with a specific “shape”.

The three cases at the system level are:

Case 4: Non-standard integration of standard instances or solutions
for the sub-systems. This happens when two or more sub-systems
solutions that have never been integrated together to configure a
system, must be integrated to fulfil customer’ requirements. For
example, the jib “ji_1” and the tower “To_2” must be integrated to
fulfil a customer’s requirements in the Fig. 1.
Case 5: Addition of a non-standard instance or solution for a sub-
system. This happens when a non-standard sub-system solution
must be considered for a sub-system in order to fulfill customer’s
requirements. For example, a customer wants a tower different
from “To_1” and “To_2”.
Case 6: Addition of non-standard sub-system to a system. In this
case, a non-standard sub-system that has never been considered in
a system must be added to configure a system that fulfills the
customer’s requirements. For example, a customer wants a control
cabin.

In each of these six cases, all the standard solutions that
constitute the diversity of systems (options and variants),
formalized in a generic model, do not cover the entire customer’s
requirements. Non-standard systems must be configured. However,
as the knowledge related to these non-standard systems is not
formalized in a generic model, they cannot be exploited in a
configuration software to configure a non-standard system relevant
to the customer’s requirements.

Therefore, in order to allow the construction of generic models
that gather knowledge related to both standard and non-standard
systems, a definition of standard and non-standard system
configuration problem is proposed in the following. It includes
standard and non-standard element.

Figure 2: The six cases of systems configuration in ETO situations

105105

Hypothesis: a system is considered as set of sub-systems;
Given:

each system or sub-subsystem is characterized with a
standard or non-standard set of attributes which have
standard or non-standards values in their domains,
the attributes can be either descriptive (length, power for
instance) or key performance indicators such as the cost,
the sub-systems that have the same characteristics
constitute a family, they can be standard or non-standard,
the possible combinations or assemblies of sub-systems
and/or attributes values are defined with a set of
constraints, the combinations can be standard or non-
standard,
a customer’s requirements corresponds to the selection of
a sub-system or attributes values.

Objectives: The configuration consists in finding at least one set of
standard and/or non-standard sub-systems that satisfy all the
constraints and customer’s requirements.

Based on this definition, in the section 3.2, we propose some
modelling approaches that enable to extend existing configuration
models relevant to CTO towards ETO situations.

3.2 CSP-based Modelling approaches for
systems configuration in ETO situations

For each of the six cases of configuration of systems in ETO
situations listed in the section 3.1, we have proposed some
modifications on the existing configuration models in order to
include knowledge related to non-standard elements in the generic
models. These modifications include changes to the variables and
their domain (the set of possible values), as well as changes to the
constraints that bind them. In this article, we only present the
extension for the case 1 at the sub-system level and the case 5 at
the system level. The same example used for the configuration of
system in ETO is used. The model is presented in the Fig. 3. This
model is a very simple one. The aim is to show how a
configuration model relevant to CTO situation can be modified and
extended towards ETO.

At the upper level of the Fig. 3, the sub-system model (case 1)
is presented. The same variables as for the configuration model in
CTO situation are kept. The main differences are:

a non-standard sub-system instance or solution “Ji_NS”
is added to the domain of the “Jib Solution”, this enable
the supplier to know that this solution has not been
totally designed yet.
a constraint is added for the non-standard association of
standard values; it links the values “5 meters” of the
attribute “length”, the value “strong” of the attribute
“stiffness” and the non-standard solution “Ji_NS”;

At the lower level of the Fig. 3, the system model (case 5) is
presented. The same variables as for the configuration model in
ETO situation are also kept. The main differences are:

a non-standard sub-system instance or solution “Ji_NS”
is added to the domain of the “Jib Solution”, it results
from the modification made at the sub-system level;
a non-standard system instance or solution “Cr_NS” is
added to the domain of the “Crane Solution”; as for the

sub-system, it enables the supplier to know that this
system has not been totally designed yet;
two constraints are added for the non-standard
integrations of : “Ji_NS” and “To_1”, and “Ji_NS” and
“To_2”.

For both AMTO and ETO industrial situations, the knowledge
necessary to setup the configuration models must be defined by
expert teams composed of people from the sales, manufacture, and
design departments. The experts must decide on the standard and
non-standard systems that can be designed, produced and delivered
to a potential customer. This means, with respect to six cases
identified in section 3.1, deciding which of the following non-
standard aspects can be accepted: (i) combination of standard
attribute values, (ii) attribute values (iii) attributes, (iv) integration
of standard sub-system solutions, (v) integration of standard and
non-standard sub-system solutions and (vi) sub-system. After
identifying and validating the knowledge necessary to setup the
configuration models for both AMTO and ETO situations, the
proposed modelling approach can be used to build configuration
models relevant to configure systems in both AMTO and ETO
industrial situations.

4 CONCLUSION AND FUTURE WORK

In this article, we have studied the configuration of physical
systems in the context of business to business environment where a
supplier has to propose a system solution to a client company in a
very short period while optimizing time, resources and efforts
involved. The aim of the article was to propose some solutions in
order to extend the use of configuration software from CTO
towards ETO situations.

Figure 3: System configuration model in ETO situations

106106

For this purpose, first, we have shown why the existing
configuration hypothesis, problems’ definitions and models are not
adapted for systems configuration in CTO situations. Then, we
have analyzed the main differences between standard and non-
standard systems. This has allowed us to identify six cases of
systems configuration that differentiate the configuration of
systems in CTO from ETO situations. The six cases represent the
different situations of systems configuration in ETO. This is the
main contribution of this article. As far as we know, no scientific
work has proposed a formalization of the differences between
systems configuration in CTO and ETO situations. Finally, based
on these six cases and the configuration background, we have
proposed a definition and some CSP (Constraint Satisfaction
Problems) modelling approaches for systems configuration
problems in CTO and ETO situations. A simple example is used to
illustrate the propositions.

As a future research, we intend to test the applicability of our
proposals on a larger case of systems configuration. We also intend
to extend the configuration of processes relevant to CTO towards
ETO.

ACKNOWLEDGMENTS
The authors would like to thank all ANR OPERA partners for their
implications in our research work.

REFERENCES

[1] M. Krömker, K. D. Thoben, and A. Wickner, ‘An infrastructure to
support concurrent engineering in bid preparation’, Comput. Ind., vol.
33, no. 97, pp. 201–208, 1997.

[2] A. Sylla, E. Vareilles, M. Aldanondo, T. Coudert, and K.
Kirytopoulos, ‘Customer / Supplier Relationship : reducing
Uncertainties in Commercial Offers thanks to Readiness , Risk and
Confidence Considerations’, in Advances on Mechanics, Design
Engineering and Manufacturing, 2017, pp. 1115–1122.

[3] J. p Cannon and C. Homburg, ‘Buyer-Supplier Relationships and
Customer Firm Costs’, J. Mark., vol. 65, no. 1, pp. 29–43, 2018.

[4] B. Chandrasekaran, ‘Generic Tasks in Knowledge Based Reasoning:
High Level Building Blocks for Expert System Design’, IEEE
Expert, vol. 1(3), pp. 23–30, 1986.

[5] P. Pitiot, M. Aldanondo, E. Vareilles, P. Gaborit, M. Djefel, and S.
Carbonnel, ‘Concurrent product configuration and process planning,
towards an approach combining interactivity and optimality’, Int. J.
Prod. Res., vol. 7543, no. December 2014, pp. 1–18, 2012.

[6] A. Sylla, E. Vareilles, T. Coudert, M. Aldanondo, and L. Geneste,
‘Readiness , feasibility and confidence : how to help bidders to better
develop and assess their offers’, Int. J. Prod. Res., 2017.

[7] D. Sabin and R. Weigel, ‘Product configuration frameworks- a
survey’, IEEE Intell. Syst., vol. 13, no. 4, pp. 42–49, 1998.

[8] A. Felfernig, L. Hotz, C. Baglay, and J. Tiihonen, Knowledge-based
configuration From Research to Business Cases. 2014.

[9] L. L. Zhang, ‘Product configuration : a review of the state-of-the-art
and future research’, Int. J. Prod. Res., vol. 52, no. 21, pp. 6381–
6398, 2014.

[10] S. Mittal and F. Frayman, ‘Towards a generic model of configuration
tasks’, Proc. Elev. Int. Jt. Conf. Artif. Intell., vol. 2, pp. 1395–1401,
1989.

[11] A. Haug, L. Hvam, and N. H. Mortensen, ‘Reducing variety in
product solution spaces of engineer-to-order companies : The case of
Novenco A / S’, Int. J. Prod. Dev., vol. 18, no. 6, pp. 531–547, 2013.

[12] A. Myrodia, K. Kristjansdottir, and L. Hvam, ‘Impact of product
configuration systems on product profitability and costing accuracy’,
Comput. Ind., vol. 88, pp. 12–18, 2017.

[13] A. Sylla, E. Vareilles, T. Coudert, M. Aldanondo, L. Geneste, and Y.
Beauregard, ‘ETO Bid Solutions Definition and Selection Using
Configuration Models and a Multi-Criteria Approach’, in IEEE
International Conference on Industrial Engineering and Engineering
Management (IEEM), 2017, pp. 1833–1837.

[14] S. Mittal and F. Frayman, “Towards a generic model of configuration
tasks,” in Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, 1989, vol. 2, pp. 1395–1401.

[15] M. Aldanondo and E. Vareilles, “Configuration for mass
customization: How to extend product configuration towards
requirements and process configuration,” J. Intell. Manuf., vol. 19,
no. 5, pp. 521–535, 2008.

[16] T. Soininen, J. Tiihonen, M. Tomi, R. Sulonen, and T. Männistö,
‘Towards a general ontology of configuration’, Aiedam, vol. 12, no.
4, pp. 357–372, 1998.

[17] A. Günter and C. Kühn, ‘Knowledge-Based Configuration – Survey
and Future Directions’, in German Conference on Knowledge-Based
Systems, 1999, pp. 47–66.

[18] A. Felfernig, M. Stettinger, G. Ninaus, M. Jeran, S. Reiterer, A.
Falkner, G. Leitner and J. Tiihonen, ‘Towards Open Configuration’,
in Configuration Workshop, pp. 89 – 94, 2014.

[19] U. Montanari, ‘Network of Constraints: Fundamental Properties and
Applications to Picture Processingr’, Inf. Sci., vol. 7, pp. 97–132,
1974.

107107

108108

Towards Knowledge Infrastructure for Highly Variant
Voltage Transmission Systems

Mathias Uta and Alexander Felfernig

Abstract. The high voltage transmission business uses very
mature technical solutions to transport electrical energy over large
distances. New developments in the information technology sector
are now promising opportunities to revolutionize the traditional
processes within the business. In this paper the opportunities to
implement a sophisticated knowledge infrastructure to improve the
efficiency and quality of high voltage product manufacturers will
be outlined. Therefore, possible solutions have been assessed to
establish a non-redundant data structure and create an advanced
database system architecture with respect to business specific
requirements, considering in particular product configurators.
Based on the proposed master data system, the possibility to create
as well as integrate a knowledge system has been evaluated.
Accordingly, the introduction of a global knowledge manager is
proposed to organize inquiries of product configurators to expert
systems and introduce a company-wide framework for rules and
constraints. To assure communication between all parts of the
software architecture, the implementation of a universally
understandable format is discussed. Finally, possibilities to
integrate recommendation system mechanisms into the suggested
system architecture are highlighted.

1 INTRODUCTION
The market of high voltage transmission business is highly
competitive. The differentiation through up to date processes, high
quality and fast response times is highly desirable to manage the
increasingly complex and fast changing customer requirements.
This effect is intensified by general technical developments in
measurements initiated by the energy transition from fossil to
renewable energy sources.
Due to an increasing share of renewable energy into the grid and
their decentralized physical arrangement compared to huge power
plants, an extension of the electrical grid has to be provided.
Additionally, the weather dependency of the new energy sources
intensifies this effect. As a result, the utilities are confronted with a
fast changing energy market and need to react to the new energy
mixture [1]. Not only a transformation has to be managed on the
supplier side but also consumers are starting to adopt new
technologies with huge electrical energy demand like electrical
cars. Therefore, the only solution to assure a secure energy supply
in the future seems to be an extension of the transmission grid [2].
The structure of the electrical grid and the main components are
shown in Figure 1. The renewable and non-renewable based power
plants convert several energy sources to electrical energy and are
connected via transformers to the grid. The overhead lines and the
cables transport the energy over large distances to consumers. The
switchgears integrate many of these lines on one conductor
(busbar) and build nodes in the grid. In case of failures circuit

breakers separate the faulty part of the grid to prevent blackouts.
Additionally, current transformers and voltage transformers give
transmission utilities the possibility to measure the transported
energy. The collection of all main parts concentrated in one
physical spot is called electric power transmission substation.

Figure 1. Electrical components in the energy grid [3]

Since each of the main modules has to correspond with many
diversified customer requirements, the big suppliers in the business
such as Siemens, ABB or Alstom have separated their energy
transmission business in many smaller segments [4] [5]. Each of
these segments is concentrated on one of the main components in
the grid. Customers expect suppliers to offer solutions for
specifications including a complete electric power transmission
substation. As a result, very complex projects with many internal
stakeholders have to be managed. This includes the decentralized
data storage of in many cases identical information. In each of the
involved business segments a unique tool infrastructure is installed
and requires varying processes. In particular it is possible that, each
business segment uses one or more individual configuration
solutions to determine the bill of material derived from individual
configuration rules and constraints. These configuration rules are
cross segmental on a higher level and do not differ until a finely
granulated level of configuration is reached. Furthermore,
individual pricing and quotation tools are used which are
sometimes integrated with the configuration tool, resulting in so
called configuration prizing and quotation solutions (CPQ). As a
consequence, very complex processes and redundant actions are

109109

decreasing competitiveness in a cost driven market environment.
Additionally, data and knowledge maintenance cause
disproportional effort leading to human and hardware resource
binding.
To tackle the above described challenges, the introduction of a
well-designed data and software infrastructure is necessary. A
completely integrated data and software landscape which provides
necessary information via interfaces to all quotation related tools
should provide synchronization of all involved stakeholders and
improve the maintainability of data and knowledge.
In an environment which utilizes several ERP (enterprise resource
planning), PDM (product data management) and CRM (customer
relationship management) tools, in future one company-wide
integrated database should be implemented to deliver one data
source for all configuration, pricing and quotation tools. The goal
is to enter the information only once into the system so that the
characteristic is passed on to all connected business segments and
their CPQ tools. In consequence, all related objects rely on the
same data input. This assures cross segmental consistency of data
in all offer documents, technical descriptions and technical
calculations.
Moreover, the integrated representation of data delivers the
opportunity to implement consistent connections between objects
in form of rules and constraints. This leads to the extension of data
to knowledge and should support users by preventing false
configurations and incorrect data input, i.e., to contract relevant
documents. These relations between the objects need to be non-
redundant as per the data itself. Supplemental to the rules and
constraints describing simple relationships, interfaces to expert
systems capable of very specific and complex calculations need to
be established. Mechanical calculations due to earthquake
requirements or ferroresonance calculations of the grid are two
examples of these expert systems.
Finally, based on the achieved integrated data and knowledge, an
analysis of the utilized materials, parameter characteristics and all
other objects during the configuration, prizing, and quotation
process can act as a basis for a self-learning system to improve the
CPQ-tools. This system should be able to recommend technical
solutions and parameter input based on previously chosen solutions
in distinctive situations as customer specific requirements or
special environmental conditions. The user in this scenario still has
the opportunity to neglect the recommended solution which is
consequently used to improve the recommendation logic.
Overall, a complex system composition consisting of domain
specific and integrated databases with direct interfaces to
configuration, pricing, and quotation tools has to be established.
Further, the user of the quotation tools is supported by knowledge
bases inheriting logical connections between relevant parts and an
adaptive artificial intelligence which analyses user decisions.
The remainder of this paper is organized as follows. In section 2
we discuss the possibility of a holistic database and point out that
different use cases lead to contradicting database types. Conducted
from this perception we propose system architecture assuring data
consistency for the high voltage transmission business. Based on
this data consistency section 3 emphasizes the advantages of
knowledge integrity. This is followed by a general survey on an
approach to implement a global knowledge manager on basis of the
proposed system architecture in section 4. Section 5 suggests a
concept of a recommendation system in which the knowledge base
is constantly extended using the results of configuration
applications used by experts.

2 DATABASE EVALUATION
Data modelling plays an important role. To create a ubiquitously
applicable database, one has to consider a data structure which
allows multiple views and possibilities to manipulate the stored
data via interfaces from manifold applications. Graeme C. et al.
characterize this situation as follows ‘The data model is a relatively
small part of the total systems specification but has a high impact
on quality and useful life of the system’ [6]. Data modelling is
concentrated on achieving completeness, non-redundancy, and
reusability in databases. Additionally, stability, flexibility, and
performance have to be taken into account. The implemented
database should be capable of modifications and extensions to
integrate requirements arising in the future. Nonetheless, the data
modeler has to start with the given information to create a so called
‘conceptual schema’ which can be accomplished by different
course of action like the process-driven, data-driven, or object-
oriented approach to name only the most important ones. Based on
the ‘conceptual schema’ a ‘logical schema’ can be deducted by
using entity-relationship modelling (ERM) or unified-modelling
language (UML) approaches. Finally, a physical design of the
database can be created.
Typically used database types are relational databases (RDBs),
object-oriented databases (OODBs) and a hybrid form which is
called object-relational database (ORDB). Consistency in RDBs is
achieved by using normalization methods for tables as proposed in
[7]. The objective of OODBs is to create an abstract view on the
reality which is easily adaptable to object oriented programming
languages. Dependencies between objects are provided by pointers
which allow m:n relationship representations. Therefore, OODBs
are often adapted for computer aided design (CAD) or technical
calculation programs (expert systems) since these programs deal
usually with high complexities and many variants [8] [9].
Unfortunately, OODBs lack query performance compared to
RDBs, which is why they are still not able to replace traditional
relational databases for query focused applications [10]. ORDBs
try to combine both approaches to achieve an improved
performance and are often adapted by CPQ-tools. Michael
Stonebreaker evaluated all three options in [11] and classified them
as depicted in Table 1. The table points out ORDBs combine the
advantages of RDBs and OODBs in comparison of the most
important properties for databases, ‘fast queries’ and ‘complex data
management’. But ORDBs implicate some issues as well which is
most importantly a low performance in web applications [10].

Table 1. A classification of database management systems (DBMS) [11]

A very detailed analysis of the given requirements is precondition
for implementation of the most appropriate database and data
structure. Since full integration of the whole value chain, including

110110

111

this approach not mandatory. The installation of a repository
follows the idea of metadata storage to connect applications with
each other whenever an interaction is necessary. Therefore,
primary keys of all involved applications for a certain attribute are
stored in the repository and matched for cross-program query
events with each other.
In case of the high voltage transmission business, an
implementation of one integrated MDM solution seems, equivalent
to the result of the second chapter for databases, not feasible. Two
reasons are mainly responsible for implementation of a more
complex structure. First of all the structure of the business
includes, as already pointed out, several different independent
departments responsible for distinct parts of the substation. These
departments are not necessarily located at the same location but are
distributed over the world to assure an increased satisfaction of
locational requirements. Consequentially, one centralized system
located, for instance, in Europe will lead to performance issues
when it comes to queries from an application located in Asia. Live
connections over long distances and many servers are due to the
congestion control of the transmission control protocol not
advisable [15]. A system which synchronizes independent and
asynchronous to operational tasks is therefore preferable. Secondly,
each department has sometimes not only one factory but several
production sides each with their own portfolio. The main structure
of the portfolio is same as per the department. The differences can
be found on a more detailed layer of the products as, for instance,
in the differentiation of high-end products and cost-optimized
products which serve generally the same technical requirements
but are differentiated in more sophisticated configuration options
as better operation monitoring or increased maintainability of the
electrical component. From these considerations follows, a solution
incorporating combinations of the previously presented options
seem more feasible to encounter the high complexity in the high
voltage transmission business and causes the introduction of more
than one MDM layer.
Figure 3 shows an option where a centralized master data system is
implemented storing master data of one manufacturing location
whereas the centralized database is connected to other locations via
a repository to assure a synchronization of all business relevant
data independent from daily operational tasks. Furthermore,
standards across the whole company are defined to realize a
homogenous creation of new data since each master data system is
allowed to create and maintain its data by itself.

Figure 3. Three layer repository - master data system – standards approach

In another scenario a company-wide leading system located in at a
distinct place is established to create and maintain all master data.
This leading system is additionally used as basis for connected
central master data systems installed in distributed factories of the
company. These centralized master data systems receive the
company-wide master data from the leading system and can be
extended with manufacturing side specific master data as basis for
connected applications.

Figure 4. Two layer leading master data system approach

Further combinations are imaginable as well and have to be
evaluated based on several reference values in further publications.
Based on these results and taking all requirements for the high
voltage transmission business into account finally a decision on the
system architecture can be reached. Another important decision is
the selection of the tool used as master data management system.
The use of the ERP, CRM or PDM tool is imaginable since the
most data is created in these databases. Additionally, the adaption
of the CPQ-tool as main input tool for data might also be a
reasonable choice.
Up to that point we focused on data structure and system
architecture neglecting the value which can be created out of
integrated, non-redundant data. The following chapters will discuss
the possibilities given by such a dataset.

4 KNOWLEDGE INTEGRITY
A well-known use case for master data management systems is the
implementation of data warehouses. Operational data is put
through an ‘extraction, transformation, integration, and cleansing
process (to) store the data in a common repository called data
warehouse’ [13]. Data in the data warehouse is in reference to
W.H. Inmon saved ‘subject-oriented, integrated, time-variant,
nonvolatile (to) support management’s decision making process’
[16]. This means an OODB is implemented that saves data over a
long time to enable analysis of developments in the observed
business. Besides the data itself metadata – data about the stored
data – is stored in the data warehouse. In big organizations, data is
not directly used by queries to the data warehouse. Instead, data
marts are introduced as an additional layer between the user and
the data warehouse. Similar to the already analyzed central master
data systems data is transmitted from the data warehouse (central
master data system) to the data mart (application database) which
fits to the requirements of a specific department. The user of the

112112

data mart is finally able to create reports, perform data analysis and
to mine data.
The restriction of this concept is already given in the definition of
the data warehouse. The data warehouse should ‘support
management’s decision making process’ [16]. The area which
besides the management decisions is widely neglected in
centralized data and knowledge storage is the configuration and
engineering sector. While huge effort is put into preparation of
management reports and supporting management decisions,
configuration tasks, technical calculations and dimensioning
decisions are left completely to engineers and expert departments.
This leads to a complete dependency of the company on their team
of experts. The problem worsens if the dependence is only on a
single expert. Attempts to consolidate the knowledge of
engineering experts to more than one employee usually collapse
because of budget and time restrictions. The experience of the
expert cannot be transferred to other colleagues within in short
period of time [17]. It sometimes requires years to reach the level
of an expert and could result in loss of knowledge in case the
expert retires.
Another issue which is more and more visible to companies arises
with the implementation of more than one configuration software.
Since the beginning of the new millennium a rising number of
companies implement product configurators to treat a phenomenon
called ‘mass customization’ [18]. ‘Mass customization’ is an
oxymoron referring on the one hand to the growing production
charges of companies to serve the market and on the other hand the
increasing amount of individualization requirements by customers.
The configuration technology relies on a subject-oriented,
integrated, time-variant, nonvolatile dataset similar to the data
warehouse. Combinations of entities and their attributes are
configured according to combination and configuration rules to
create a producible bill of material.
This technology was immediately adopted by the high voltage
transmission business since the modular design of its products is
predestinated to realize product configurators. Unfortunately, the
degree of standardization in the business does not allow a full
switch from CAD (computer aided design) applications to product
configuration solutions. Special-purpose solutions define the high
voltage transmission market up to fifty percent. The result is an
increasing redundancy in the configuration data and knowledge.
While the CAD system inherits engineering data accomplished by
rules and constraints for the product with a high degree of freedom
to support the engineering expert, the product configuration
application is designed for sales people or even for the customer
and includes a separated engineering dataset complemented by
even more sophisticated rules, constraints and methods to prevent a
wrong configuration. Nevertheless, a redundancy of engineering
data and knowledge is introduced; leading to a high maintenance
effort and complicated processes whenever the research and
development department (R&D) releases technical innovations or
the product lifecycle management department (PLM) disables the
use of certain parts of the product.
Based on these evaluations, a centralized engineering database has
to be implemented as foundation for all product configurators.
PDM systems fortunately inherit all relevant product information
and can, as the major tool for PLM and R&D departments, be
utilized as a centralized engineering database. The result is a
database valid for all configuration applications which are no
longer maintained decentral by each product configurator but are
centrally maintained by the product responsible departments. The

technical realization of this requirement can be established by
introducing interfaces between the product configurators and the
PDM system. However, with this step an integrated data
administration can be introduced but the knowledge administration
is still redundantly managed in each configuration tool.
To achieve knowledge integrity - a major target formulated in the
visions at the beginning of this paper - we propose steps connatural
to the actions necessary to reach data integrity [7] [8] and which
are also related to frameworks as formulated in [19]. First a
‘conceptual schema’ of the knowledge base has to be created using
the object-oriented approach since several connections between the
given objects have to be considered. Data in the PDM system is
most likely stored, as analyzed in chapter 2, in RDBs and has to be
addressed to objects in an OODB or ORDB. These objects have to
be connected via rules and constraints on a level applicable for all
product configurators to implement a ‘logical scheme’. Therefore,
normalization methods comparable to data normalization need to
be formulated. In other words, a framework for product
configurators needs to be established ‘making the common parts
common’ [19] and making general rules and constraints applicable
for all configuration tools to prevent redundant code
implementation. Due to the generalization of rules and constraints
on a higher level, a non-redundancy of the knowledge in the
separated specialized configuration solutions is achieved and
therefore, a centralized maintainability of the knowledge.
Redundancy detection algorithms as proposed in [20] can
consequentially be applied under these conditions to assure
continuous knowledge integrity. Furthermore, the knowledge of
experts can be transferred in incremental steps into the knowledge
base avoiding redundancy in several tools and decreasing
dependency on single persons in the company. Finally, a ‘physical
scheme’ of the system architecture has to be created and is
investigated in more detail in the next chapter.

5 A GLOBAL KNOWLEDGE MANAGER
An initial approach to set up a system architecture analog to the
requirement formulated above was made in the paper ‘On
Knowledge-Base System Architectures’ and is illustrated in Figure
5 [21]. The paper introduced a unit called global knowledge
manager (GKM) to centrally handle inquiries by other knowledge-
based systems and data type processors (e.g. traditional databases).
To assure common semantics a translator or interface was
proposed. A request incoming to the GKM is first scheduled and
optimized by using the GKM’s knowledge base and information
delivered by the source of the request. The result is an access plan
stored in the GKM’s internal database. The monitor/interpreter
uses this plan to process the request by applying the GKM’s
knowledge base rules, constraints and methods. The outcome is
returned to the original source using common semantics.
This approach presumes a fully centralized inference of all
inquiries. Any information in the system is gathered in the GKM,
scheduled and interpreted. In consequence, a centralized expert
system is introduced responsible to create and maintain all business
relevant rules, constraints and methods irrespective of the
complexity and domain of the request. A configuration task to
calculate the mechanical forces on a circuit breaker in case of an
earthquake would as well be processed as a simple request for
earnings before interest and taxes (EBIT) calculation. The
consequence would be a very complex set of knowledge

113113

representations neglecting all domain specific requirements.
Therefore, a master data and master knowledge approach assuring
consistency between all connected tools might be a more feasible
solution.

Figure 5. Architecture with global knowledge manager [21]

Figure 6 shows, based on the system architecture presented in
Figure 3, an overview of the system architecture we propose to
provide the requirements of an easy maintainable, integrated
system for the high voltage transmission business. A company-
wide standard or framework for creation of data, rules and
constraints is defined to assure semantic consistency between all
locations. The master data system is accomplished by the global
knowledge manager to facilitate data and knowledge integrity in
one location. While the master data management part is responsible
for the data integrity of all databases, the global knowledge
manager is comparably responsible for knowledge integrity in all
connected configuration applications and expert systems.
Additionally the global knowledge manager organizes special
calculation inquiries by CPQ-tools to expert tools. Therefore, a
universally understandable format (e.g. extensible markup
language – XML) is introduced to enable communications between
the GKM and all connected tools. Knowledge integrity during
operation is assured by redundancy detection algorithms
considering all knowledge bases of the software infrastructure.
Additionally, a repository is tracking comparable data, rules and
constraints of the separately operating locations by defining
company-wide primary keys. Changes in the master data and
global knowledge management system are synchronized
asynchronous to operational inquiries to maintain consistency
between all local data and knowledge sets by utilizing the
repository primary keys. The behavior of the system is illustrated
in more details by the two following examples.

Figure 6. Three layer repository – global knowledge management –
standards approach

In Location 1, which is in shown in Figure 7, a system architecture
including two CPQ-tools and the usual databases is established.
CPQ-tool 1 is responsible for very standardized configuration tasks
while CPQ-tool 2 is an expert tool to configure specialized
customer requirements. Simple if-then relationships which
generally describe a part of the substation are maintained in the
GKM. For instance: ‘If product A is chosen then the cross section
of the rectangular conductor cannot exceed 2400 mm².’ The
information about the product is received via an interface to the
PDM database and is maintained in a fast accessible RDB
database. In the GKM two objects (product A and rectangular
conductor) are described by parameters (cross section, ambient
temperature, body temperature, rated current) matched to the
information delivered by the PDM database and are connected via
the above mentioned relationship. This general rule is
accomplished by a more specific rule in CPQ-tool 1 by the
following relationship: ‘If the rated current exceeds 2500 A at a
ambient temperature of 35 °C then a rectangular aluminum
conductor needs at least a cross section of 2400 mm² to not exceed
65°C body temperature.’ [22].
A user of CPQ-tool 1 is in consequence not allowed to choose
product A if the rated current exceeds 2500 A and an ambient
temperature of 35°C is given. Contradicting to this rule, an expert
in CPQ-tool 2 is not restricted by this constraint. An expert could
decide to use product A if the current exceeds 2500 A at a ambient
temperature of 35 °C knowing that the conductor is allowed to
exceed 65 °C if the conductor is not touchable by humans. This
expert knowledge includes besides product knowledge as well
knowledge about spatial constraints and human interactions with
the product and is with its complexity not easily describable in a
non-expert configuration tool. Nevertheless both configuration
systems will lead to a correct solution. CPQ-tool 1 will lead to the
costlier product B but is operable by the customer herself while
CPQ-tool 2 with a higher degree of freedom will deliver a cheaper
solution of the configuration task but needs expert knowledge.
Therefore, two options for the customer are established, a slightly
costlier but very fast configuration or a very accurate solution with
a more time consuming configuration.

114114

Figure 7. Multiple CPQ-tool system architecture

Location 2 is in detailed visible in Figure 8 and includes the
standard databases, CPQ-tool 1 and an expert system. The
previously mentioned configuration task to calculate the
mechanical forces on a circuit breaker in case of an earthquake is
given. This calculation task requires information which is not
stored in the PDM database or any other standard available master
data. Additionally, very specific calculation methods have to be
applied not handled in the CPQ-tool. An expert system is necessary
to solve the calculation task. The calculation inquiry is sent from
the CPQ-tool via the universally understandable format to the
GKM that interprets schedules and finally processes the request to
the correct expert tool. In consequence, the GKM inherits besides
generalized rules and constraints also information about the expert
tools in the system and administrates access to them. The inquiry is
handled by the expert system using the information received via
the interface and by utilizing additional information like specific
knowledge on the occurring earthquake forces in the concerned
region to calculate the forces on the circuit breaker. The result is
processed back to the GKM and further to the CPQ-tool where the
resulting values trigger rules and constraints to decide which circuit
breaker has to be chosen.

Figure 8. CPQ-tool – expert system architecture

These two simplified examples are only supposed to give an
overview about the working-principle to be established with the
introduction of a GKM and need to be further researched in
following publications. But since the vision formulated at the

beginning of this paper also includes recommendation mechanisms
and possibilities to implement self-learning algorithms the
proposed system architecture needs to be accomplished by
continuative considerations.

6 CONSTRAINT-BASED RECOMMENDER
SYSTEMS

Recommender systems are since the 1990s an increasingly used
service in mainly e-commerce applications to recommend simple
products to users [23]. The user gets recommended products based
on previously taken buy decisions (individual information), social
background information and a knowledge base that proceeds given
user input in form of determined attribute and using concerned
domain and contextual knowledge. But according to Felfernigs et
al. definitions recommender systems could be used in a much more
general way: ‘Any system that guides a user in a personalized way
to interesting or useful objects in a large space of possible options
or that produces such objects as output.’ [24].
Besides the possibilities given for e-commerce sellers, a second
very large field of application opens with the usage in expert
systems. Mainly product configuration applications are adopting
recommendation techniques which can be classified in:

1. collaborative recommendation – relying on the choices
made previously by other users with the same social and
demographical background

2. content-based recommendation – relying on choices
made previously by the user herself

3. knowledge based recommendation – relying on user
requirements and domain knowledge

4. hybrid forms – try to combine the other types to avoid
disadvantages of each stand-alone solution

With respect to the high voltage transmission business the only
reasonable choice for recommender systems is the knowledge
based recommendation technique since electric power transmission
substations do not rely on choices or preferences of single users but
on very detailed requirement specifications delivered by the
customers (utilities). Even if the requirement specifications of
utilities do not change frequently and a content-based
recommendation could be possible in terms of parameter input to a
configuration application an important circumstance, a unique
feature of substations has to be taken into account – the
environmental conditions. Unlike other typically configurable
products like cars or kitchens substations are crucially impacted by
the locations they are assembled.
For example, the Russian ministry of electricity announces in a
tender a high voltage transmission substation with the same
topology (electrical circuit diagram) and electrical requirements as
five years before. One might conclude that the same electrical
requirements lead to the same bill of material and same physical
topology of the substation. But taking the new location near the
Baltic Sea compared to the previous one in Novosibirsk into
account this paradigm is false. The environmental conditions
including temperature, air pollution, earthquake requirements and
altitude of side have an essential impact on the physical
arrangement of the substation. This set of conditions to be
considered can be depicted as a very complex conglomeration of
constraints and is in conclusion applicable for recommendation

115115

systems. However, the complexity of the configuration task is
probably too high to be provided with all features in one product
configuration application which is why the example in the previous
chapter has been chosen.
To achieve the best configuration solution many specialized
systems have to give input to the configuration process.
Mechanical calculations, waste heat, ferroresonance and further
calculation applications are delivering valuable information and
need to be addressed to receive a feasible solution. The expert
systems outcome is involved as input for the existing
recommendation constraints to create a solution for the given
configuration task. The user of CPQ-tool 1 in the example
illustrated for Figure 7 as a non-expert gets one feasible solution
recommended without any repair mechanism. The solution will be
rather conservative, but is in line with the given rules and
constraints. On the other hand the expert using CPQ-tool 2 in the
example has the possibility to neglect the recommended solution
and choose a more efficient one. The changes are recognized by
the system and adapted to the existing constraints in the GKM. A
self-learning system as formulated in the vision at the beginning of
this paper is created using expert knowledge to continuously
improve the general knowledge manager as a basis for all product
configurators. Basis for this mechanism is the system architecture
and universally understandable format to provide communication
and non-redundancy between all parts of the system as proposed in
this paper.

7 CONCLUSION AND OUTLOOK
The paper discussed the currently arising challenges and
opportunities given in the high voltage transmission business and
highlighted the current situation of the information technology in
the business. Insulated solutions due to complexity of the products
and the world-wide distribution of the associated business
segments lead to redundant data storage and the development of
several different product configuration solutions. On the basis of
the state of the art methods to normalize data and to integrate
master data solutions into the system, considerations concerning
the resulting system architecture have been made. Furthermore, the
need to create a non-redundant knowledge set has been emphasized
in addition to a normalized and integrated data set. Deducted from
this condition, the proposed system architecture was extended by
introducing a global knowledge manager on the same level as the
master data system to create a framework for configuration, pricing
and quotation rules and constraints. Additionally, a universally
understandable format was proposed to enable communication
between all parts of the system and to create the possibility to
integrate expert systems via inquiries scheduled and processed by
the global knowledge manager. The working principle of this
system was outlined by two examples. Finally, the opportunity to
extend the system by recommendation techniques and self-learning
algorithms was pointed out.
Since this paper was supposed to give only a first overview over
the problem statement, several future prospects arise from the
evaluations presented. These future prospects are the following:

 Data integrity – how can product configurators be
enabled to use data from centrally maintained databases
instead of using encapsulated exclusive data sets
resulting in redundancy?

 Knowledge integrity – how should knowledge
normalization methods look like to build the base for a
global knowledge manager and a framework for rules
and constraints?

 System architecture – which system architecture allows
the highest performance, best maintainability, and
security with respect to the requirements given by a fully
integrated knowledge system?

 Global knowledge manager – how should the global
knowledge manager be designed?

 Universally understandable format – how should a
format look like which is processible by all databases and
programs in the system, including expert systems and
product configurators?

 Recommender system – how can rules and constraints be
improved by analyzing decisions of experts in a product
configurator to improve the recommended solutions to
non-experts?

REFERENCES
[1] European Commission, Energy - Country datasheets,

https://ec.europa.eu/energy/en/data-analysis/country, (2018)
[2] Katrin Schaber, Florian Steinke, Pascal Mühlich and Thomas

Hamacher, Parametric study of variable renewable energy
integration in Europe: Advantages and costs of transmission grid
extensions, Energy Policy, Volume 42, 498 – 508, (2012)

[3] Mathias Uta, Development of a product configurator for highly
modular and modifiable products, Figure 1, (2017)

[4] Siemens AG, High-Voltage Products, https://www.siemens.com/
content/dam/internet/siemens-com/global/products-
services/energy/high-voltage/high-voltage-switchgear-and-devices,
2016

[5] ABB, High Voltage Products – Business snapshot,
http://new.abb.com/high-voltage, (2017)

[6] Graeme C. Simson and Graham C. Witt, Data Modeling Essentials,
Third Edition, p. 10, (2005)

[7] E. F. Codd, A Relational Model of Data for Large Shared Data
Banks, Communications of the ACM., 13 (6), 377–387, (1970)

[8] Alan Radding, So what the Hell is ODBMS?, Computerworld. 29
(45), p. 121–122, (1995)

[9] Frank Manola, An Evaluation of Object-Oriented DBMS
Developments, GTE Laboratories technical report TR-0263-08-94-
165, (1994)

[10] Ramaknth S. Devrakonda, Object-relational database systems – The
road ahead, Crossroad magazine, Volume 7, p. 15-8, (2001)

[11] Michael Stonebraker, Object-Relational DBMSs: The Next Great
Wave, Morgan Kaufmann Publishers, p. 12, (1996)

[12] Alejandro Vaisman and Esteban Zimányi, Data warehouse systems,
Springer, (2014)

[13] ISO 8000-2:2012, Data Quality, Part 2: Vocabulary, (2012)
[14] Cornel Loser, Christine Legner and Dimitrios Gizanis, Master Data

Management For Collaborative Service Processes, International
Conference on Service Systems and Service Management, (2004)

[15] Habibullah Jamal and Kiran Sultan, Performance Analysis of TCP
Congestion Control Algorithms, International Journal of Computers
and Communications, Issue 1, Volume 2, (2008)

[16] William H. Inmon, Building the Data Warehouse, John Wiley &
Sons, p. 31, (1996)

[17] Robert R. Hoffman, The Problem of Extracting the Knowledge of
Experts from the Perspective of Experimental Psychology, AI
Magazine, Summer Edition, p. 53-67, (1987)

[18] S. M. Davis, Future Perfect: Mass customizing, Addison-Wesley,
(1987)

116116

[19] Aparajita Suman, From knowledge abstraction to management,
Woodhead, p 87-109, (2014)

[20] Alexander Felfernig, Lothar Hotz, Claire Bagley and Juha Tiihonen,
Knowledge-Based Configuration – From Research to Business
Cases, Elsevier Inc., Chapter 7 and 12, (2014)

[21] Frank Manola and Michael L. Broadie, On Knowledge-Base System
Architectures, On Knowledge Base Management Systems, Springer,
p. 35-54, (1986)

[22] Henning Grempel and Gerald Kopatsch, Schaltanlagen Handbuch,
Cornelsen, 11th Edition, p. 603, (2008)

[23] Michael D. Ekstrand, John T. Riedl and Joseph A. Konstan,
Collaborative filtering recommender systems, Foundations and
Trends in Human-Computer Interaction, Vol. 4, p.81-173, (2011)

[24] A. Felfernig and R. Burke, Constraint-based recommender systems:
technologies and research issues, In Proceedings of the 10th

International Conference of Persuasive Technologies, ICEC ’08,
ACM, p.1, (2008)

117117

118118

Configuration Lifecycle Management – An Assessment of
the Benefits Based on Maturity

Anna Myrodia1 and Thomas Randrup and Lars Hvam

Abstract.1To handle the increasing product complexity
manufacturing companies of configurable products tend to utilize
configurators to cover more lifecycle phases of their products. This
is described as configuration lifecycle management (CLM) and it is
concerned with the management of all configuration models across
a product’s lifecycle. However, to connect and align all
configurators and IT systems to each other remains a challenging
task. Apart from the technical perspective, on an operational level
the integration and alignment of the IT systems also requires a
structured approach and is highly related to the maturity of the
organization. Therefore, this research focuses on studying the
relation between the maturity level and the expected benefits from
implementing CLM. It is expected that the more advanced an
organization is in using product configurators in different lifecycle
phases and integrating and aligning them to each other and to other
IT systems, the realized benefits would be significantly higher than
the sum of benefits from applying standalone configurators to
support each life cycle phase. Empirical evidence from seven case
studies demonstrate that there is a relation between the maturity
and the realized benefits with regards to the utilization of product
configurators.

Keywords: configuration lifecycle management, maturity,

benefits, product configuration

1 INTRODUCTION

Configuration lifecycle management (CLM) describes the

management of all configuration models and related data across all

lifecycle phases of a product [1]. A CLM solution is highly

relevant for manufacturing companies of configurable products, as

its purpose is to provide one valid source of configuration data and

models that is shared among different business units within an

organization.
The utilization of product configurators comes along with

various benefits. During the last decades, several researchers have

performed studies to identify and measure the realized benefits of

the use of a product configurator [2–4]. The identified benefits

cover a wide range of aspects, from process improvements to

impact on products’ profitability. However, the majority of these

studies are concerned with configurators that are implemented in

the sales phase and some in the engineering phase [2,3] .
Therefore, the focus of this research is to identify possible gains

when the utilization of a product configurator is not limited only to

the sales phases, but it includes all lifecycle phases of a

configurable product, such as engineering, sales, manufacturing

and service. It is expected that the realized benefits would be

similar but not identical in the remaining lifecycle phases and that

1 Configit A/S, Copenhagen, Denmark, email: amyrodia@configit.com

the accumulated impact would be significantly higher than the

gains on each individual lifecycle phase.
For an organization, to be able to implement and connect

product configurators across all lifecycle phases and business

processes is considered a rather challenging task. When it comes to

the utilization of a configurator in the sales phase, there are

numerous challenges identified not only by the literature but also

from industrial user cases [5,6]. Resistance to change, difficulties

in data acquisition and verification, valid product modeling and

maintenance of the models, accurate documentation are some of

the most commonly reported challenges in the utilization of

product configurators in the sales phases [7,8] .
It could be assumed that similar challenges are expected to be

experienced in the other lifecycle phases during the

implementation and utilization of a product configurator. However,

this research claims that even though some of the challenges would

be faced in all lifecycle phases, there several aspects that are not

addressed in them. For instance, developing a universal product

model to be used by several configurators across all lifecycle

phases, business units, even external organizations (e.g. suppliers,

resellers, vendors) requires input from various sources and is

highly related to numerous dimensions of the organization [9].
In particular, the integration of product configurators with other

IT systems for data exchange, as input and/or output of each

configuration step, is considered a rather challenging task,

especially when it comes to IT systems that are used by several

departments [10]. Apart from the technical challenge of

connecting, aligning and integrating IT systems with product

configurators, the operational perspective is of high importance and

it should not be discarded. At an operational level, the process

standardization, resources allocation, knowledge sharing and

support, established ways of cross-departmental collaboration are

some of the factors that are highly related to the success of

utilization a CLM solution [6,7,10,11]. Additionally, on a strategic

level a clear mission and vision for CLM deployment,

communication to all stakeholders and engagement with specific

goals for each involved department are of great importance and

highly related to the level of success of the CLM solution.
All these aspects mentioned before that influence the success of

a CLM solution are related to the maturity of an organization.

Maturity in this context does not only describe the development of

the IT systems and the possibilities of seamless integration of a

universal product model for a CLM solution. Maturity also

describes the process and the organizational development, from an

operational, strategic and cultural point of view [12,13]. The

readiness of an organization to implement and utilize a CLM

solution, and the support and involvement of the stakeholders are

crucial success factors for a CLM solution.
As a result, it is expected that the more mature an organization

is, the higher the realized benefits would be. Therefore, this

119

research relates the expected benefits to the maturity of the

organization. The maturity is evaluated in terms of years of

implementation of product configurators and the spam of lifecycle

phases they cover. The expected benefits of a CLM solution are

estimated to be higher than these of standalone configurators in the

different lifecycle phases. Exploratory case studies are conducted

to examine this proposition.

Proposition 1 The size of realized benefits when implementing

a CLM solution is related to the maturity of the organization.

The remainder of the paper is structured as follows. Section 2

includes a literature review on the expected benefits from the use

of product configurators in different lifecycle phases and the

characteristics of maturity of an organization. Section 3 presents

the empirical evidence from the case study research and discusses

the results. Section 4 provides some overall conclusions regarding

the connection of realized benefits and the maturity of an

organization when implementing a CLM solution.

2 LITERATURE REVIEW

2.1 Benefits from implementing product
configurators

This section discusses the findings from the literature regarding the

expected benefits from implementing and utilizing product

configurators. As this field has been examined in detail, we refer to

previous work [2,3,11,14–16] and their lists of references.

However, to provide an overview we present a short list of realized

benefits for the different lifecycle phases (Table 1).

Table 1. Benefits per lifecycle phase

Lifecycle phase Benefits

Sales Reduction in quotation time

Improve quotation accuracy

Improve control of product portfolio

Engineering Reduction in number of errors

Improve quality of specification and bills-of-

materials (BOMs)

Manufacturing Improve quality of production specifications

Improve communication with suppliers

Reduced production costs

Service Reduced installation and maintenance time

Improved predictability in maintenance of products

sold

The benefits are grouped under each lifecycle phase to provide a

better overview when it comes to implementing a CLM solution,

and they address three main factors: time, quality and cost [17].

However, it should be mentioned that that are some common

benefits reported across all lifecycle phases, such as improved

process efficiency, reduction of hours spent due to iterations,

improved data validity, improved quality due to reduction in the

number of errors.

2.2 Maturity

The maturity assessment of an organization includes several

dimensions and maturity models are the tools used to perform the

evaluation. Strategy, processes, IT, organizational structure,

knowledge sharing and support activities are among the most

widely discussed dimensions in the literature that describe most

accurately all functions of an organization [12,18]. The maturity is

measured in each of these dimensions; however, the maturity level

does not have necessarily to be the same across all of them. This

could explain why companies implementing state of the art

configurators are still not able to experience all the expected

benefits. This is aligned to the findings of [19] that business

processes and IT alignment should fit into the organization.

The improvement of configuration management policies and

tools, and the establishment of requirement engineering processes

are considered top priorities of organization maturity. Seamless

integration, knowledge management, monitoring, support and

training activities for the users are additional aspects related to the

maturity and affect the success of implementing a configuration

solution [20]. Empirical studies also indicate that the maturity of IT

processes is connected to the gap between organizational targets

and processes’ aims [21].

Challenges in realizing expected benefits are identified in the

sales and planning process [22–24] and are connected to the need

of horizontal reorganizational of the structure to include customer

and supply chain stakeholders [25]. The current vertical

organization structure is a source of delays, increased costs and

challenges of managing subcontractors [20]. This is also supported

by [26] who claim that when the manufacturing company is in

control of the entire supply chain and it is able to coordinate

internal and external processes, then it is more mature and can gain

a competitive advantage [27,28].

One aspect of knowledge management related to the maturity of

an organization is the lack of overview of the product portfolio,

which is due to increased complexity. Keeping external variety

high to satisfy personalized customer needs to be induced by

controlled internal variety and product standardization to avoid

increasing costs and complexity [28].

According to [12], the maturity of an organization is increasing

based on the level of standardization. That includes both

standardization of products and processes. Consequently, this

would have direct impact of the realized benefits by utilizing a

product configurator, even more when it comes to CLM. However,

this alignment and standardization is a task that requires time as it

comes along with numerous changes in the organization [6,29]. It

is expected that the higher the maturity of an organization is, the

higher the gains form the realized benefits would be by the use of

product configurators, especially across all lifecycle phases. This is

identified as an area not explored by the existing literature.

Even though the research from [12] focuses on the ETO

companies, the underlying principles can be extrapolated and used

for manufacturers of standard but complex products too, such as

the examined case studies. Therefore, this research aims at

contributing to this field by providing some empirical evidence to

test the developed proposition.

3 EMPIRICAL EVIDENCE

To examine the suggested proposition, case research is selected as

the research method. The main reason for selecting case research is

that allows for comparison of the results across different case

companies, where the analysis has been conducted under the same

settings and followed a research protocol. In this study, 7

companies are used as cases. Through the case research the under

120

examination phenomenon is studied in its natural settings and it

allows for deeper understanding of phenomena that are not fully

examined [30–32]. In this research, the under investigation

phenomenon is the one described in the proposition; the relation

between the size of realized benefits and the maturity of an

organization with regards to the implementation of CLM. The

following section provides an introduction to the companies and

the set-up of the research, presents and

analyzes the results.

3.1 Background

For this study 7 manufacturing companies (A – G) were contacted.

All of them are designing, selling, producing and servicing highly

engineered and complex products. All the companies have been

utilizing product configurators to support at least one lifecycle

phase of their products. Furthermore, all 7 companies are large

organizations, employing more than 1000 people, and they are

operating globally, in terms of market, production facilities and

suppliers. They have been utilizing product configurators for at

least 2 years before the research was conducted. Table 2 provides

an overview of the selected cases regarding their main

characteristics and the lifecycle phases they are utilizing a product

configurator.

Table 2. Overview of the case studies
Case

company

Industrial sector Lifecycle phase No. of years

utilizing product

configurators

A IE&M

(Mechanical)

Sales 3

B IE&M

(Mechanical)

Sales 2

C IE&M

(Medical)

Sales 5

D IE&M

(Mechanical)

Sales 6

E Automotive Sales,

Engineering

7

F IE&M

(Agriculture)

Sales,

Engineering

7

G IE&M (Electrical) Sales,

Engineering

3

3.2 Results

In each of the case companies’ data collection included interviews

with managers and head of departments that have been using a

product configurator. The form of the interviews was semi-

structured, to ensure that the relevant data were collected and to

allow for some discussions regarding future directions and

initiatives towards a CLM solution. All managers were asked the

same set of questions to provide information regarding the use of

configurators, the lifecycle phases they cover, and the realized

benefits they have been experiencing or measuring. The benefits

were predefined, based on the results of the literature review. To

ensure the validity of the results, two persons from each company

we interviewed separately.

During the interviews, the different maturity dimensions were

discussed. Since this is an exploratory study, the focus was given

on process standardization and cross-organizational collaboration.

Process standardization is assessed based on the following two

criteria; the number of manual tasks that need to be performed on

top of the use of the product configurator, and the generated

documentation following the actual configuration process. Cross-

organizational collaboration is assessed based on the number of

teams from different departments that are using the product

configurator or providing input when setting up the configuration

models. In addition to these findings, the research team took into

account the number of years that each company has been using

configurators and the number lifecycle phase they cover, to assess

the maturity of each case company. The assigned maturity level

varies among low-medium-high. Table 3 presents the results of the

analysis.

As it can be seen from Table 3, the number of realized benefits

is increasing along with the maturity of the organization. In detail,

case companies E, F and G are ranked with medium maturity level

due to the fact that they have cross-organizational implementation

of product configurators. Even though case company G has been

using product configurators for 3 years, which is relatively lower

than cases C and D, its level of maturity is still considered to be

medium, due to the fact that it has fully standardized and

automated processes, and minimum manual work required on top

of the use of the configurators across the sales and the engineering

teams. In all these three cases, when setting up the product models

in the configurator teams from both the sales and the engineering

departments were involved. Teams from these two departments

also undertake the maintenance and the update of product related

data in the configurator, while at the same time product related data

for the sales and the engineering phases are handled via the

configurator. The realized benefits reported are related to the

process standardization, control of complexity, knowledge

management and data validity.

Case companies A, B, C and D are utilizing a configurator in

the sales phase, therefore the reported benefits are related to cost

estimation, quotation and sales efficiency. It should also be

mentioned that case company C was the only one able to provide

quantitative data regarding the realized benefits. Company C

reported that it has managed to reduce the hours used for preparing

quotations by 50% (from days to hours). Due to the reduction of

errors in the specifications in the sales phase, they have managed to

reduce the costs of poor quality in production with 80% due to

more accurate production specification.

By summarizing the results can be concluded that there is a

relation to the maturity level of an organization and the size of

realized benefits. This confirms the under investigation proposition

in this study.

3.3 Discussion

The benefits identified in the case studies are aligned to the

findings from the literature. On a high level it can be concluded

that all the benefits can be grouped under the three categories

suggested in the literature; time, quality and cost [17]. This

conclusion can be used for assigning key performance indicators

(KPIs) to monitor and measure the performance of different factors

that have a direct impact on these three categories. The KPIs

should both cover the lifecycle management aspects of the

configurable products and the configuration process itself (detailed

examples of KPIs can be found at [33]). By providing quantitative

121

data the companies would have a more accurate assessment of the

improvements they have established due to the use of the product

configuration.

Furthermore, the results from the case studies indicate that

process standardization is a cornerstone for a successful

implementation of configurators. Case company G is such an

example; even though the implementation of the configurator s

relatively new (3 years) by standardizing the sales and the

engineering processes, they managed to achieve the highest

number of benefits across the examined cases. This is because by

standardizing the processes, the management of configuration

models can be improved [34], and the knowledge encapsulated

within these models can be used in different lifecycle phase by

different users [35]. In the sales phase, the utilization of the

configurator is more mature and is usually where the companies

are starting. This can be explained by [6] as sales configurators are

proven tools and the most popular solutions both in the industry

and in academic research.

However, the findings show that several gains can be

experienced in the engineering phase. These benefits might be

identical to the ones from the sales phase, such as improved

efficiency, quality and lead time, but are also phase specific, such

as scalability of product models, product platform design and BOM

validation.

Nevertheless, the results cannot be generalized to all lifecycle

phases based on this case study, as none of there were no empirical

evidence from the manufacturing and service phase in these cases.

It can be argued, that in a similar way as in the sales and

engineering phase, benefits can be gained across all lifecycle phase

of a configurable product. It can also be assumed that the more

phases the configurators cover, the higher the degree of process

standardization and knowledge sharing across the organization.

4 CONCLUSION

The scope of this study is to examine the relationship between the

realized benefits from the use of product configurators across all

lifecycle phase of a product and the maturity level of the

organization. The developed proposition is tested in 7 case

companies and the study reveals a direct relation between these

two variables.

This is an exploratory study. The main limitation of this

research is the generalizability of the results, which can be

improved by having a more in depth investigation of the

phenomenon.

Future research will include more cases that are using product

configurators in the manufacturing and service phase. This will be

examined in relation to the maturity of the organization, not only in

terms of product and process standardization, but also strategic

initiatives, knowledge sharing and support, degree of integration of

IT systems. Finally, another factor that should be examined is the

complexity of the configuration process, regarding the size of the

models, the number of features, rules, and the number of users.

This could also provide some insight regarding the implementation

strategy that would improve the user-friendliness and the

acceptance rate of the new system by its users.

REFERENCES

[1] Configit A/S, CLM DECLARATION, (2015) 1–2.

https://configit.com/configit_wordpress/wp-

content/uploads/2015/10/CLM-Declaration-2015.pdf (accessed

January 8, 2018).

[2] A. Myrodia, K. Kristjansdottir, L. Hvam, Impact of product

configuration systems on product profitability and costing

accuracy, Comput. Ind. Ind. 88 (2017) 12–18.

doi:10.1016/j.compind.2017.03.001.

[3] K. Kristjansdottir, S. Shafiee, L. Hvam, M. Bonev, A. Myrodia,

Return on investment from the use of product configuration

systems – A case study, Comput. Ind. 100 (2018) 57–69.

doi:10.1016/j.compind.2018.04.003.

[4] A. Haug, L. Hvam, N.H. Mortensen, The impact of product

configurators on lead times in engineering-oriented companies,

Artif. Intell. Eng. Des. Anal. Manuf. 25 (2011) 197–206.

doi:10.1017/S0890060410000636.

[5] T. Blecker, N. Abdelkafi, G. Kreutler, G. Friedrich, Product

configuration systems: state of the art, conceptualization and

extensions, in: Proc. Eight Maghrebian Conf. Softw. Eng.

(MCSEAI 2004), 2004: pp. 25–36.

[6] C. Forza, F. Salvador, Managing for variety in the order

acquisition and fulfilment process: The contribution of product

configuration systems, Int. J. Prod. Econ. 76 (2002) 87–98.

doi:10.1016/S0925-5273(01)00157-8.

[7] M. Heiskala, J. Tihonen, K.-S. Paloheimo, T. Soininen, Mass

Customization with Configurable Products and Configurators: A

review of benefits and challenges, in: Mass Cust. Pers. Commun.

Environ. Integr. Hum. Factors, IGI Global, 2009: pp. 75–106.

doi:10.4018/978-1-60566-260-2.ch006.

[8] M. Heiskala, K.-S. Paloheimo, J. Tiihonen, Mass Customisation

of Services: Benefits and Challenges of Configurable Services,

Tampere, Finland, 2005..

[9] G. Stevens, Integrating the supply chain, Int. J. Phys. Distrib.

Mater. Manag. 19 (1989) 3–8.

[10] C. Forza, F. Salvador, Product information management for mass

customization: connecting customer, front-office and back-office

for fast and efficient customization, Palgrave Macmillan, New

York, 2007.

[11] C. Forza, F. Salvador, Product configuration and inter-firm co-

ordination: an innovative solution from a small manufacturing

enterprise, Comput. Ind. 49 (2002) 37–41.

[12] O. Willner, J. Gosling, P. Schönsleben, Establishing a maturity

model for design automation in sales-delivery processes of ETO

products, Comput. Ind. 82 (2016) 57–68.

doi:10.1016/j.compind.2016.05.003.

[13] R. Batenburg, R.W. Helms, J. Versendaal, The maturity of

product lifecycle management in Dutch organizations: A strategic

alignment perspective, Prod. Lifecycle Manag. Emerg. Solut.

Challenges Glob. Networked Enterp. (2005) 436–450.

[14] A. Myrodia, K. Kristjansdottir, S. Shafiee, L. Hvam, Product

configuration system and its impact on product’s life cycle

complexity, in: IEEE Int. Conf. Ind. Eng. Eng. Manag., 2016.

doi:10.1109/IEEM.2016.7797960.

[15] L.L. Zhang, Product configuration: a review of the state-of-the-art

and future research, Int. J. Prod. Res. 52 (2014) 6381–6398.

doi:10.1080/00207543.2014.942012.

122

[16] L. Hvam, M. Malis, B. Hansen, J. Riis, Reengineering of the

quotation process: application of knowledge based systems, Bus.

Process Manag. J. 10 (2004) 200–213.

doi:10.1108/14637150410530262.

[17] M.M. Ahmad, N. Dhafr, Establishing and improving

manufacturing performance measures, Robot. Comput. Integr.

Manuf. 18 (2002) 171–176.

[18] M. Niknam, P. Bonnal, J. Ovtcharova, Configuration

management maturity in scientific facilities, Int. J. Adv. Robot.

Syst. 10 (2013) 1–14. doi:10.5772/56853.

[19] R. Batenburg, R.W. Helms, J. Versendaal, PLM roadmap:

stepwise PLM implementation based on the concepts of maturity

and alignment, Int. J. Prod. Lifecycle Manag. 1 (2006) 333.

doi:10.1504/IJPLM.2006.011053.

[20] G. Cugola, L. Lavazza, V. Nart, S. Manca, M.R. Pagone, An

experience in setting-up a configuration management

environment, in: Proc. Eighth IEEE Int. Work. Softw. Technol.

Eng. Pract. Inc. Comput. Aided Softw. Eng., IEEE Comput. Soc,

1997: pp. 251–262. doi:10.1109/STEP.1997.615501.

[21] M.A. Vitoriano Vieira, J.S. Neto, INFORMATION

TECHNOLOGY SERVICE MANAGEMENT PROCESSES

MATURITY IN THE BRAZILIAN FEDERAL DIRECT

ADMINISTRATION, J. Inf. Syst. Technol. Manag. 12 (2015)

663–686.

[22] P. Bower, 12 most common threats to sales and operations

planning process, J. Bus. Forecast. 24 (2005) 4–14.

[23] L. Lapide, Sales and operations planning part I: The process, J.

Bus. Forecast. 23 (2004) 17–19.

[24] J. Piechule, Implementing a sales and operations planning process

at Sartomer company: a grass-roots approach, J. Bus. Forecast. 27

(2008) 13–18.

[25] N. Tuomikangas, R. Kaipia, A coordination framework for sales

and operations planning (S&OP)_ Synthesis from the literature,

Intern. J. Prod. Econ. 154 (2014) 243–262.

doi:10.1016/j.ijpe.2014.04.026.

[26] P.E. Stavrulaki, P.M. Davis, Aligning products with supply chain

processes and strategy, Int. J. Logist. Manag. 21 (2010) 127–151.

doi:10.1108/95740931080001326.

[27] C. Hicks, T. McGovern, C.F. Earl, A Typology of UK Engineer-

to-Order Companies, Int. J. Logist. Res. Appl. 4 (2001) 43–56.

doi:10.1080/13675560110038068.

[28] M.H. Mello, J.O. Strandhagen, E. Alfnes, Analyzing the factors

affecting coordination in engineer-to-order supply chain, Int. J.

Oper. Prod. Manag. J. Manuf. Technol. Manag. Iss Int. J. Oper.

& Prod. Manag. 35 (2015) 1005–1031.

https://doi.org/10.1108/IJOPM-12-2013-0545.

[29] T. De Bruin, Business Process Management: Theory on

Progression and Maturity, Queensland University of Technology,

2009.

[30] J. Meredith, Building operations management theory through case

and field research, J. Oper. Manag. 16 (1998) 441–454.

doi:10.1016/S0272-6963(98)00023-0.

[31] C. Voss, N. Tsikriktsis, M. Frohlich, Case research in operations

management, Int. J. Oper. Prod. Manag. 22 (2002) 198–219.

doi:10.1108/01443570210414329.

[32] R.K. Yin, Case study research: design and methods, Sage

Publications, Thousand Oaks, 2003.

[33] S. Tornincasa, E. Vezzetti, A. Grimaldi, M. Alemanni, Key

performance indicators for PLM benefits evaluation: The Alcatel

Alenia Space case study, Comput. Ind. 59 (2008) 833–841.

doi:10.1016/J.COMPIND.2008.06.003.

[34] Aberdeen Group, The Configuration Management Benchmark

Report, (2007) 27.

[35] D. Monticolo, J. Badin, S. Gomes, E. Bonjour, D. Chamoret, A

meta-model for knowledge configuration management to support

collaborative engineering, Comput. Ind. 66 (2015) 11–20.

doi:10.1016/j.compind.2014.08.001.

123

Table 3. Realized benefits per case company

Benefits Company A B C D E F G

Maturity (L=Low, M=Medium) L L L L M M M

Sales

Improve quality - Reduction of number of errors X X X X X

Improved technology management X X

Increase productivity X X X

Increased sales X

Improve competitiveness X

Reduction in printing costs and distribution of catalogues X

Improve process efficiency X X

Reduce cost of IT systems and maintenance X X X

Improve functionality of integrated IT systems X

Reduction of complexity X

 Reduced quotation time X X X X X

Improve accuracy of quotation X X

Support different market/regions/language/currencies X X

Improve guided-selling X X

Increased customer orders X

Improved dealer management X

Increase number of quotes through dealers

Improved ordering process and customer self-service X X

Improved validity of configuration data X

Engineering Improve efficiency and scalability of product modeling X

Bill of material validation X X

Component optimization X

 Improve quality - Reduction of number of errors X X X

 Improved technology management X X

 Increase productivity X X

 Increased sales X

 Improve competitiveness X

 Reduction in printing costs and distribution of catalogues X

 Improve process efficiency X

 Reduce cost of IT systems and maintenance X X X

 Improve functionality of integrated IT systems

 Reduction of complexity X

 Reduced quotation time X

No. of benefits per case 5 3 3 3 9 15 18

124

	Group_Decision_Support.pdf
	Introduction
	Application Scenario
	Traditional RM Process
	RM Process with Group Decision Support

	Potential Issues of Group Decision Support
	Group Decision Support for Bidding Processes
	Conclusion and Future Work

	liquid-democracy-group.pdf
	Introduction
	Working example
	Application of Liquid Democracy
	Application of Multi Attribute Utility Theory
	Release Planning
	Conclusion and Future Work

	15_CONFWS18_paper_32.pdf
	Introduction
	Working example
	Application of Liquid Democracy
	Application of Multi Attribute Utility Theory
	Release Planning
	Conclusion and Future Work

	11_CONFWS18_paper_19.pdf
	1 Introduction
	2 Theoretical Background
	3 Methodology
	4 Proposed Cognitive Complexity Metric for Configuration Models
	5 Results from the Case Study
	6 Discussions and Conclusions
	7 REFERENCES

