
Chatbot-based Tourist Recommendations Using
Model-based Reasoning

Iulia Nica and Oliver A. Tazl and Franz Wotawa1

Abstract. Chatbots have gained increasing importance for research
and practice with a lot of applications available today including Ama-
zon’s Alexa or Apple’s Siri. In this paper, we present the underlying
methods and technologies behind a Chatbot for e-tourism that allows
people textually communicate with the purpose of booking hotels,
planning trips, and asking for interesting sights worth being visit. In
particular, we show how model-based reasoning can be used for en-
hancing user experience during a chat, e.g., in cases where too many
possible selections are available or where user preferences are too
restricted causing inconsistencies and as a consequence not possible
answers to be provided. Besides the underlying foundations, we pro-
vide a use case from the intended tourism domain to show how such
a model-based chatbot effectively can be used in practice.

1 Introduction
Communicating with systems based on natural language is very
much appealing and of growing interest and importance also for in-
dustry. See for example [1, 2] for predictions about the rise of the
chatbot market in the future. Natural language interfaces (NLI) offer
a lot of new possibilities for humans to interact and collaborate with
users [8]. Chatbots are a form of artificial intelligence system that al-
lows a human-computer interaction in a natural language form. They
could be based on rule sets or neural networks in order to decide the
correct answer to the user’s request. Chatbots are not restricted to
certain application domains. They are flexible enough to be used in
many different application scenarios and domains including systems
for tourists recommending sights, hotels, or even complete travel
plans. Often chatbots rely on pre-specified patterns that trigger the
chatbot’s behavior, e.g., see [25], restricting its space of interaction
with users.

In this paper, we focus on improving adaptivity of chatbots in the
context of recommender systems, where we have identified two is-
sues that arise during and human-computer interaction session. In
order to make a recommendation, the chatbot has to interact with the
user in order to find out preferences and wishes in order to make an
appropriate recommendation. In case of too little preference infor-
mation, the first issue is, that a chatbot may not be able to restrict the
number of recommendations to be provided to the user. Selecting a
particular recommendation, e.g., the first one in a list of 1,000 ele-
ments might not be the best idea. It might also be not possible to find
a general applicable function that returns the best solution for the cur-
rent user. Hence, there is a need to further restrict the search space,
which can be provided by asking the user about further preferences
that allow to restrict the search space in an optimal way.

1 TU Graz, Institute for Software Technology, Inffeldgasse 16b/2, A-8010
Graz, Austria, email: {inica, oliver.tazl, wotawa}@ist.tugraz.at

The second issue that may arise is the impossibility of providing
even a single recommendation because of inconsistent or too restric-
tive preferences provided by the user. In this case, it is necessary, to
provide feedback to the user and ask for removing preferences or for
ranking preferences accordingly to their importance. In this paper,
we focus on these two issues and provide a solution for both. For the
first issue, we propose the use of Entropies for selecting new prefer-
ences. For the second issue, we suggest using model-based diagnosis
for identifying the causes of inconsistencies. In addition, we put both
parts together in a single recommendation algorithm for improving
user experience when interacting with a chatbot.

The main contributions of this paper can be summarized as the
follows.

1. An algorithm that is based on the ideas of model-based diagno-
sis and Shannon’s information entropy to solve recommendation
problems.

2. An iterative approach to the algorithm realized with a natural lan-
guage interface using a chatbot.

The remainder of this paper is organized as follows: In the next
section we introduce an example domain and give an overview of
our algorithmic approach. Afterwards, we get into more details re-
garding the designed algorithms. Finally, we discuss related research
and conclude the paper.

2 Chatbot for Tourism – A Case Study
In this section, we discuss the use of chatbots for recommendation
in the area of tourism where we introduce a typical conversation be-
tween a tourist and a chatbot. This conversion presents a use case of
a tourism chatbot and serves as motivating example throughout this
paper. We depict the whole conversation in Figure 1, which illustrates
the recommendation process for hotels in a specific area. There, after
selecting the sight of interest, i.e., the Branderburg gate, the tourist
requests a low-priced hotel near this sight. The answer of the chat-
bot from Line 14 in Figure 1 introduce a first challenging situation
of every recommender, i.e., an unsuccessful user query. An intelli-
gent recommender should be able to deal with such a situation and
provide a list of items which fulfill as many requirements as possi-
ble, and ideally explain the cause of trouble. Therefore, the next step
for the recommender should be to automatically identify the minimal
set of inconsistent requirements provided by the user. Furthermore,
a flexible, interactive query-based approach should allow the user to
choose from the identified inconsistent requirements, and as a conse-
quence enhancing the recommendation. The second corner situation,
which is illustrated in Line 18, deals with the case where we have too
many hotels matching the customer requirements. In this situation,

2
 1 Bot: Hello John, how can I help you today?
 2 John: I would like to plan a trip.
 3 Bot: Great! Are you interested in a specific region
 4 or would you like to plan the trip by activities?
 5 John: I am interested in a specific region.
 6 Bot: Please click on map to pick the point of interest
 7 or type in the place that you are interested in.
 8 (John clicks a point on the map near the city Berlin)
 9 Bot: OK, I will search for relevant sights near Berlin.
10 (Shows a list of relevant sights in Berlin.)
11 John: Show me the Brandenburger Tor.
12 (The bot shows several information about the Brandenburger Tor.)
13 John: Looks nice! Find a low-priced hotel near this sight.
14 Bot: I am sorry, but there are no hotels of this category near
15 Brandenburger Tor. Which requirement is not that important
16 to you? Price or distance?
17 John: Distance.
18 Bot: OK! There are 9 hotels available for you. You should
19 incorporate another filter. How about parking? Will
20 you have a car?
21 John: No, I do not need a parking facility.
22 Bot: OK! Now there are 4 hotels left. Here is the list: Hotel 7,
23 Hotel 10, Hotel 15, Hotel 18.
24 John: Cool! Is Hotel 15 available from 19.08.2018 to 25.08.2018
25 for two people?
26 Bot: Yes! Should I book it?
27 John: Yes.
28 Bot: Hotel booked!

Figure 1: An Example Conversation

the system should be able to generate a proposal for the user, sug-
gesting which hotel attribute or feature should be further constrained
to narrow down the number of relevant hotels. Here the chatbot could
randomly offer alternative features to choose from, or even better, it
could optimize the searching process by making use of an algorithm
to determine the attribute, which if constrained, leads to the largest
information gain. Note that we rely on a pure knowledge-based ap-
proach, i.e., we assume that no other filtering like collaborative or
content-based is available.

name distance category parking price
Hotel 1 med 5-stars false med
Hotel 2 med 5-stars true high
Hotel 3 med 3-stars true low
Hotel 4 long 3-stars true low
Hotel 5 med 5-stars false high
Hotel 6 short 4-stars true high
Hotel 7 long 2-stars false low
Hotel 8 med 5-stars false high
Hotel 9 long 3-stars true low
Hotel 10 long 2-stars false low
Hotel 11 short 4-stars true high
Hotel 12 short 3-stars false med
Hotel 13 med 5-stars true high
Hotel 14 short 3-stars false med
Hotel 15 long 3-stars false low
Hotel 16 long 3-stars true med
Hotel 17 med 3-stars true low
Hotel 18 med 2-stars false low
Hotel 19 long 2-stars true low
Hotel 20 long 4-stars true med

Table 1: Item set for type = hotel

In the following, we further discuss the details of how to overcome

the considered issues that arise during the recommendation process,
i.e., not being able to provide a recommendation due to inconsisten-
cies, and not being able to reduce the number of selection given the
current requirements. In this discussion we focus only on those parts
that are important for the case study for the sake of clarity. There-
fore, we further consider only the items of type hotel to be part of
the knowledge base, which we depict in Table 1. There we further
assume that each hotel possesses a simplified set of attributes, con-
taining the name of the hotel, its price, defining the price range (low,
medium, or high), its category with the domain {2-stars, 3-stars, 4-
stars, 5-stars}, the availability of parking space being either true or
false, and distance (short, medium, or long). Note that distance is
a special attribute, as it represents the distance to the starting point
introduced by the user in the current recommendation session and
thus it has to be recalculated on demand and not actually stored in
the knowledge base.

It is easy to see that the requirements specified by the customer in
Line 13 cannot be satisfied by the items from Table 1:

R1 = {r1 : distance = short; r2 : price = low},

as there is no low-priced hotel within distance = short in the given
assortment. Hence, we are interested in identifying that minimal set
of requirements that when changed, lead to a recommendation for the
customer. In our example, the situation is simple. The recommenda-
tion system determines that either r1 or r2 have to be relaxed (in
the sense that the chosen requirement will not be further taken into
consideration when computing the recommendation). Still, in more
complex scenarios, when the user query implies more requirements,
the solution is not so straightforward. For instance, if the query was:
” Find a low-priced, 4-stars hotel near this sight.”, then we would
have to deal with the following user requirements:

R2 = {r1 : distance = short; r2 : price = low;

r3 : category = 4− stars}.

There choosing r1 alone as inconsistent requirement would not solve
the problem, because, as one can see in Table 1, we still have no items
that satisfy both r2 and r3. Hence, in order to automatically identify
the minimal set of inconsistent requirements, we would have to make
use of logical reasoning methods that are able to determine causes for
inconsistencies, e.g., consistency-based reasoning, where we have to
describe the inconsistent requirements problem as a diagnosis prob-
lem. The idea is not new and state-of-the-art knowledge-based ap-
proaches like [6, 7, 14, 21] compute minimal sets of faulty require-
ments, which should be changed in order to find a solution. In this
paper, we take the idea and transfer it to the domain of chatbots. In
addition, we do not need to come up with conflicts for computing di-
agnoses but instead compute inconsistent requirements directly from
the given formalized knowledge. Furthermore, the idea of personal-
ized repairs is covered by asking the user directly which requirements
he or she prefers. We discuss the recommendation algorithm in detail
in Section 3.

In the following, we now discuss the other particular situation,
where a recommender would have to deliver too many items match-
ing the customer’s requirements. In order to determine which at-
tribute selection is the best one for accelerating the searching pro-
cess, we suggest computing the entropy of the items’ attributes at the

3
name distance category parking price
Hotel 3 med 3-stars true low
Hotel 4 long 3-stars true low
Hotel 7 long 2-stars false low
Hotel 9 long 3-stars true low
Hotel 10 long 2-stars false low
Hotel 15 long 3-stars false low
Hotel 17 med 3-stars true low
Hotel 18 med 2-stars false low
Hotel 19 long 2-stars true low

Table 2: Solution list for the user query distance = {med, long}, price =
low

first place. Using entropies for finding the best next selection in or-
der to accelerate the overall search process is not new. For example,
De Kleer and Williams [3] introduced a measurement selection al-
gorithm for obtaining the next best measurement in order to reduce
the diagnosis search space. In our case, we have a similar situation
and adapt using Entropies for our purpose. Further not that entropy
is a measure commonly used in decision and information theory to
quantify choice and uncertainty. For more details on Shannon’s in-
formation entropy, we refer the interested reader to [24].

Let us consider our case study. In this example, the user query
R = {distance = {med, long}; price = low} leads to the solu-
tion list given in Table 2. There we have a set of 9 hotels with the
attributes distance, category, parking, and price. In order to fur-
ther reduce the number of hotels provided by the recommender, we
have to identify the next attribute that should be further constraint by
the user. In case of entropy used for selection, we have to compute
the entropy for each attribute first. For more details on Shannon’s
information entropy we refer the reader to [24]. For computing the
entropy of an attribute X , we make use of the following formula
from [24] where P (xi) is the probability that attribute X takes value
xi:

H(X) = −
∑
i

P (xi) logP (xi) (1)

Entropy has several interesting properties. Among them, as Shan-
non mentions in [24], H = 0 if and only if all the P (xi) but one are
zero. Thus only when we are certain of the outcome does H vanish,
otherwise H is positive. In the other extreme case, for a given n, H is
a maximum and equal to logn when all the P (xi) are equal to 1/n.

Let us now make use of entropies for selecting the next best at-
tribute. Hence, we compute the attributes’ entropies as follows:

H(distance) = −P (med) logP (med)− P (long) logP (long)

= −1/3 log(1/3)− 2/3 log(2/3)

= 0.92

H(category) = −P (3s) logP (3s)− P (2s) logP (2s)

= −5/9 log(5/9)− 4/9 log(4/9)

= 0.99

H(parking) = −P (t) logP (t)− P (f) logP (f)

= −5/9 log(5/9)− 4/9 log(4/9)

= 0.99

H(price) = −P (low) logP (low)

= 9/9 log(9/9)

= 0

From these figures we see that we obtain the maximum entropy
for the attributes category and parking, whereas the minimum en-
tropy is computed for price. In order to make the best choice, the
recommendation system offers the attribute with the largest entropy
value, i.e., category or parking in our case, to the user and asks him
or her to further constrain it via selecting a certain attribute value. If
the number of the remaining recommendations still exceeds a prede-
fined maximum number of recommendations, the described solution
reduction process based on entropy continues with the second best
entropy attribute as already described above. In the next section, we
describe an algorithm implementing this process in more detail and
also integrate it within a whole recommendation process loop.

3 EntRecom Algorithm
Before stating our recommendation algorithm, which is based on a
diagnosis algorithm that is close to ConDiag [20], and on a method
that applies Shannon’s information entropy [24] for the attributes, we
introduce and discuss basic definitions. We first formalize the incon-
sistent requirements problem, by exploiting the concepts of Model-
Based Diagnosis (MBD) [3, 22] and constraint solving [4].

The inconsistent requirements problem requires information on
the item catalog (i.e., the knowledge-base of the recommendation
system) and the current customer’s requirements. Note that the
knowledge-base of the recommender may be consistent with the cus-
tomer’s requirements (i.e., the customer’s query) and an appropriate
number of recommendations can be offered. In this case, the recom-
mendation system shows the recommendations to the customer and
no further algorithms have to be applied. Otherwise, if no solutions
to the recommendation problem were found, then the minimal set of
requirements, which determined the inconsistency with the knowl-
edge base, have to be identified and consequently offered to the user
as explanation for not finding any recommendation. The user can in
this case adapt the requirement(s) (relax it/them). Here we borrow the
idea from MBD and introduce abnormal modes for the given require-
ments, i.e., we use Ab predicates stating whether a requirement i is
should be assumed valid (¬Abi) or not (Abi) in a particular context.
The Ab values for the requirements are set by the model-based di-
agnosis algorithm so that the assumptions together with the require-
ments and the knowledge-base are consistent. In the following, we
define the inconsistent requirements problem and its solutions.

We start stating the inconsistent requirements problem:

Definition 1 (Inconsistent Requirements Problem) Given a tuple
(KB,REQ) where KB denotes the knowledge base of the recom-
mender system, i.e., the item catalog, and REQ denotes the cus-
tomer requirements. The Inconsistent Requirements Problem arises

4
when KB together with REQ is inconsistent. In this case we are
interested in identifying those requirements that are responsible for
the inconsistency.

For our example introduced in Section 2, there is a knowledge
base KB capturing the rows of the Table 1. This can be formalized
as follows: (name = Hotel 1 ∧ distance = med ∧ category =
5 − stars ∧ parking = false ∧ price = med) ∨ (name =
Hotel 2∧distance = med∧category = 5−stars∧parking =
true ∧ price = high) ∨ We have formalized knowledge stat-
ing equations, i.e., saying that distance cannot be short and med
at the same time, i.e., distance = short ∧ distance = med→ ⊥.
In addition, there are two requirements REQ = {R1, R2}, and for
each requirement a variable AbR1, AbR2 stating whether the require-
ment should be considered or not. The requirements R1, and R2
themselves can be defined using the following logical representation
AbR1 = 0 → (distance = short), and AbR2 = 0 → (price =
low) respectively. Obviously, when assuming all AbRi (for i = 1, 2)
to be 0, we obtain an inconsistency because there is no hotel match-
ing the requirements. Therefore, an explanation for such inconsisten-
cies is needed.

A solution or explanation to the inconsistent requirements prob-
lem can be easily formalized using the analogy with the definition of
diagnosis from Reiter [22]. We first introduce a modified representa-
tion of (KB,REQ) comprising (KBD, REQ) where KBD com-
prises KB together with rules of the form AbR for each requirement
R in REQ. The solution to the Inconsistent Requirements Problem
can now be defined using the modified representation as follows:

Definition 2 (Inconsistent Requirements) Given a modified rec-
ommendation model (KBD, REQ). A subset Γ ⊆ REQ is a valid
set of inconsistent requirements iff KBD∪{¬AbR|R ∈ REQ\Γ}∪
{AbR|R ∈ Γ} is satisfiable.

A set of inconsistent requirements Γ is minimal iff no other set
of inconsistent requirements Γ′ ⊂ Γ exists. A set of inconsistent
requirements Γ is minimal with respect to cardinality iff no other set
of inconsistent requirements Γ′ with |Γ′| < |Γ| exists. From here
on we assume minimal cardinality sets when using the term minimal
sets.

For our example, inconsistent requirements are {R1} and {R2}.
In both cases there are hotels available and we do not obtain an in-
consistency any more. In the following, we describe the algorithm
for providing recommendations in the context of chatbots.

Algorithm 1 EntRecom takes a knowledge base, a set of customer
requirements, and the maximum number of recommendations, and
computes all recommendations. Algorithm 1 is an iterative algorithm
that starts with deriving a constraint model CM from the knowl-
edge base KB and the customer requirements REQ. Such a con-
straint representation captures the semantics of the provided knowl-
edge base and requirements. Following the ideas presented in [20],
we use a constraint solver both to directly compute the recommenda-
tions and to determine the inconsistent requirements. Still, in contrast
to ConDiag, which guarantees to compute all the minimal diagnoses
up to a predefined cardinality, we are interested here only in the min-
imal cardinality diagnosis, that in our case translates to the minimal
set of inconsistent requirements.

Therefore, in Step 2, we check the consistency of our model by
calling CSolver, a constraint solver taking the set of constraints CM

Algorithm 1 EntRecom(KBD, REQ, n)

Input: A modified knowledge base KBD , a set of customer
requirements REQ and the maximum number of recommendations
n
Output: All recommendations S

1: Generate the constraint model CM from KBD and REQ
2: Call CSolver(CM) to check consistency and store the result

in S
3: if S = ∅ then
4: Call MI REQ(CM, |REQ|) and store the inconsistent re-

quirements in IncReqs
5: Call askUser(IncReqs) and store the answer in

AdaptedReqs
6: CM = KB ∪ (REQ \ IncReqs ∪AdaptedReqs)
7: go to Step 2
8: end if
9: while |S| > n do

10: Call GetBestEntrAttr(AS) and store the result in a
11: AS = AS \ a
12: Call askUser(a) and store the answer in va
13: S = R (S, va))
14: end while
15: return S

and returning the set of recommendations S. If no recommendation
was found (the empty set is returned), then we have to identify the
minimal set of inconsistent requirements. For this purpose, we call
algorithm 2 MI REQ(CM, |REQ|) . Algorithm 2 starts with as-
suming one faulty requirement (i = 1) and continues to search, if
necessary, up to the number of existing requirements. The constraint
solver is this time called restricting the solutions to the specific car-
dinality i (see Line 2). In Line 3, the function P is assumed to map
the output of the solver to a set of solutions. The termination criteria
before reaching |REQ| is given in Line 4, where a non-empty so-
lution obtained from the satisfiability check is returned as result. In
case no solution is found, the empty set is returned (Line 8).

Algorithm 2 MI REQ(CM, |REQ|)

Input: A constraint model CM and the cardinality of the require-
ments set |REQ|
Output: Minimal set of inconsistent requirements

1: for i = 1 to |REQ| do

2: M = CM ∪

{
|REQ|∑
j=0

abj = i

}
3: ∆S = P (CSolver(M))
4: if ∆S 6= ∅ then
5: return ∆S

6: end if
7: end for
8: return ∅

When being back into the EntRecom algorithm, we call the func-
tion askUser in order to adapt the inconsistent requirements ac-

5
cording to customer preferences. Afterward the constraint model is
updated, by mapping the new adapted requirements, and the solver
is called once again for checking consistency. In Step 9, the algo-
rithm checks repeatedly if the cardinality of the computed recom-
mendations is greater than the predefined maximum number of rec-
ommendations. Within this loop, we first determine the attribute with
the best entropy, by calling function GetBestEntrAttr and store
the result in a. Note that the entropy of each attribute is computed
considering the values from the current set of solutions S. Next, we
update the remaining set of attributes, then ask the user again about
the preferred values of attribute a, and store the answer in va. In Step
13, function R keeps only the recommendations where attribute a
takes values from va. Algorithm 1 obviously terminates, assuming
that CSolver terminates.

Algorithm 3 GetBestEntrAttr(AS)

Input: The set of attributes AS , containing the attributes and their
domains accessible using the function dom.
Output: ares the attribute with the highest entropy

1: ares = null, ent = −1
2: for a ∈ As do
3: e =

∑
x∈dom(a)−P (x) logP (x) compare Equation 1

4: if ent < e then
5: ent = e
6: ares = a
7: end if
8: end for
9: return ares

Algorithm 3 GetBestEntrAttr determines the first attribute hav-
ing the highest entropy. The algorithm uses the set AS providing the
the domain da for each attribute a ∈ AS . GetBestEntrAttr iterates
over the set of attributes. In every step it calculates the entropy for
the current attribute a. If this attribute has a higher entropy than the
entropies of the previously selected attributes, this value is stored in
ent. In addition, the attribute itself is stored in ares. After the end of
the iteration cycle, the attribute with the highest entropy value stored
in ares is given back as result. Obviously, the algorithm terminates
providing a finite set of attributes.

With the provide algorithms a chatbot for recommendations can
be build that is able to deal with inconsistent requirements as well as
missing requirements in a more or less straightforward way making
use of previously invented algorithms. We are currently implement-
ing the algorithms into a chatbot environment in order to provide a
solid experimental platform for carrying out different case studies.

4 Related Work

The use of model-based reasoning and model-based diagnosis in par-
ticular in the field of recommender systems is not novel. Papers like
[7, 14, 21] compute the minimal sets of faulty requirements, which
should be changed in order to find a solution. There the authors com-
pute the diagnosis for inconsistent requirements, relying on the ex-
istence of minimal conflict sets. In [7], an algorithm that calculates
personalized repairs for inconsistent requirements is presented.The

algorithm integrates concepts of MBD with ideas of collaborative
problem solving, thus improving the quality of repairs in terms of
prediction accuracy. [21] introduces the concept of representative ex-
planations, which follow the idea of generating diversity in alterna-
tive diagnoses informally, constraints that occur in conflicts should
as well be included in diagnoses presented to the user. Instead of
computing all minimal conflicts within the user requirements in ad-
vance, [14] proposes to determine preferred conflicts ”on demand”
and use a general-purpose and fast conflict detection algorithm for
this task.

Among the authors who integrate diagnosis and constraint solv-
ing more closely, we may mention [5] and later on [26, 27], who
proposed a diagnosis algorithm for tree-structured models. Since all
general constraint models can be converted into an equivalent tree-
structured model using decomposition methods, e.g., hyper tree de-
composition [10, 11], the approach is generally applicable. [28] pro-
vides more details regarding the coupling of decomposition methods
and the diagnosis algorithms for tree-structured models. Further on
[23] generalized the algorithms of [5] and [26]. In [18] the authors
also propose the use of constraints for diagnosis where conflicts are
used to drive the computation. In [9], which is maybe the earliest
work that describes the use of constraints for diagnosis, the authors
introduce the using constraints for computing conflicts under the cor-
rectness assumptions. For this purpose they developed the concept of
constraint propagation. Despite of the fact that all of these algorithms
use constraints for modeling, they mainly focus on the integration of
constraint solving for conflict generation, which is different to our
approach. For presenting recommendation tasks as constraint satis-
faction problem, we refer to [15].

Human-chatbot communication is a broad field. It includes the
technical aspect as well as psychological and human aspects. Pa-
pers like [12, 31] show several approaches of implementing chat-
bots in several domains. [31] shows an artificial intelligence natural
language robot (A.L.I.C.E.), as an extension to ELIZA [32], which
is based on an experiment by Alan M. Turing in 1950 [30]. This
work describes how to create a robot personality using AIML, an ar-
tificial intelligence modelling language, to pretend intelligence and
self-awareness. In [12] the authors demonstrate the usage of chat-
bots in the field of tracking food consumption. Sun et al. [29] intro-
duced a conversational recommendation system based on unsuper-
vised learning techniques. The bot was trained by successful order
conversations between user and real human agents.

Papers like [8, 13, 16, 33] address the topics user acceptance and
experience. In [33] a pre-study shows that users infer the authenticity
of a chat agent by two different categories of cues: agent-related cues
and conversational-related cues. To get an optimal conversational re-
sult the bot should provide a human-like interaction. Questions of
conversational UX design raised by [8] and [19] demonstrate also
the need to rethink user interaction at all. The topic of recommender
systems with conversational interfaces is shown in [17], where an
adaptive recommendation strategy was shown based on reinforce-
ment learning methods.

5 Conclusions

In this paper, we introduced and discussed a recommendation algo-
rithm based on the concepts of model-based diagnosis and Shannon’s

6
information entropy. The algorithm is intended to be used in a chatbot
environment for the tourism domain to handle the user responses via
a textual user interface. We presented the challenges to solve com-
mon problems in the decision process of a tourist who communi-
cates with such a chatbot. The identified challenges included the case
of too many offerings that are presented to the user during the rec-
ommendation process and the case of too less offerings, which are
caused by inconsistencies between the available knowledge of the
chatbot and the given user requirements obtained during a conversa-
tion session.

In the proposed approach, we use model-based diagnosis to re-
solve the inconsistent requirements problem and Shannon’s informa-
tion entropy for solving the issue of too large amounts of offerings
by presenting attributes and their values that can be chosen by the
user in order to restrict the number of recommendations. Both solu-
tions can be easily integrated within a chatbot environment guiding
the chatbot application during the recommendation process.

We are currently implementing the presented algorithms includ-
ing an integration with an existing chatbot environment dealing with
tourism recommender systems. The algorithm is purposed to be used
in several other industries and service domains as part of our future
work. In the future, we will use this implementation for carrying out
experiments and user studies with the objective to show that the ap-
proach can be effectively used in practical chatbot settings.

Acknowledgements
Research presented in this paper was carried out as part of the AS-
IT-IC project that is co-financed by the Cooperation Programme In-
terreg V-A Slovenia-Austria 2014-2020, European Union, European
Regional Development Fund.

REFERENCES
[1] Chatbot Market Size And Share Analysis, Industry Report,

2014 - 2025. https://www.grandviewresearch.com/
industry-analysis/chatbot-market. Accessed: 2018-05-
07.

[2] Gartner Top Strategic Predictions for 2018 and Beyond.
https://www.gartner.com/smarterwithgartner/
gartner-top-strategic-predictions-for-2018-and-
beyond. Accessed: 2018-05-07.

[3] Johan de Kleer and Brian C. Williams, ‘Diagnosing multiple faults’,
32(1), 97–130, (1987).

[4] Rina Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[5] Yousri El Fattah and Rina Dechter, ‘Diagnosing tree-decomposable cir-

cuits’, in Proceedings 14th International Joint Conf. on Artificial In-
telligence, pp. 1742 – 1748, (1995).

[6] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Stumptner, ‘Consistency-based diagnosis of configuration knowledge
bases’, 152, 213–234, (02 2004).

[7] Alexander Felfernig, Gerhard Friedrich, Monika Schubert, Monika
Mandl, Markus Mairitsch, and Erich Teppan. Plausible repairs for in-
consistent requirements., 01 2009.

[8] Asbjørn Følstad and Petter Bae Brandtzæg, ‘Chatbots and the new
world of hci’, interactions, 24(4), 38–42, (June 2017).

[9] Hector Geffner and Judea Pearl, ‘An Improved Constraint-Propagation
Algorithm for Diagnosis’, in Proceedings 10th International Joint
Conf. on Artificial Intelligence, pp. 1105–1111, (1987).

[10] Georg Gottlob, Nicola Leone, and Francesco Scarcello, ‘Hypertree De-
composition and Tractable Queries’, in Proc. 18th ACM SIGACT SIG-
MOD SIGART Symposium on Principles of Database Systems (PODS-
99), pp. 21–32, Philadelphia, PA, (1999).

[11] Georg Gottlob, Nicola Leone, and Francesco Scarcello, ‘A compari-
son of structural CSP decomposition methods’, Artificial Intelligence,
124(2), 243–282, (December 2000).

[12] B. Graf, M. Krüger, F. Müller, A. Ruhland, and A. Zech, ‘Nombot -
simplify food tracking’, volume 30-November-2015, pp. 360–363. As-
sociation for Computing Machinery, (2015). cited By 3.

[13] Jennifer Hill, W. Randolph Ford, and Ingrid G. Farreras, ‘Real con-
versations with artificial intelligence: A comparison between human-
human online conversations and human-chatbot conversations’, Com-
puters in Human Behavior, 49, 245 – 250, (2015).

[14] Dietmar Jannach. Finding preferred query relaxations in content-based
recommenders, 04 2008.

[15] Dietmar Jannach, Markus Zanker, and Matthias Fuchs, ‘Constraint-
based recommendation in tourism: A multiperspective case study’,
Journal of IT and Tourism, 11, 139–155, (2009).

[16] A. Khanna, M. Jain, T. Kumar, D. Singh, B. Pandey, and V. Jha,
‘Anatomy and utilities of an artificial intelligence conversational en-
tity’, pp. 594–597. Institute of Electrical and Electronics Engineers Inc.,
(2016). cited By 0.

[17] Tariq Mahmood, Francesco Ricci, and Adriano Venturini, ‘Learning
adaptive recommendation strategies for online travel planning’, Infor-
mation and Communication Technologies in Tourism 2009, 149–160,
(2009).

[18] Jakob Mauss and Martin Sachenbacher, ‘Conflict-driven diagnosis us-
ing relational aggregations’, in Working Papers of the 10th Interna-
tional Workshop on Principles of Diagnosis (DX-99), Loch Awe, Scot-
land, (1999).

[19] R.J. Moore, R. Arar, G.-J. Ren, and M.H. Szymanski, ‘Conversational
ux design’, volume Part F127655, pp. 492–497. Association for Com-
puting Machinery, (2017). cited By 1.

[20] Iulia D. Nica and Franz Wotawa, ‘ConDiag – Computing minimal diag-
noses using a constraint solver’, in Proc. 23rd International Workshop
on Principles of Diagnosis (DX), (2012).

[21] Barry O’Sullivan, Alexandre Papadopoulos, Boi Faltings, and Pearl
Pu, ‘Representative explanations for over-constrained problems’, 1, (07
2007).

[22] Raymond Reiter, ‘A Theory of Diagnosis from First Principles’, 32(1),
57–95, (1987).

[23] Martin Sachenbacher and Brian C. Williams, ‘Diagnosis as semiring-
based constraint optimization’, in European Conference on Artificial
Intelligence, pp. 873–877, (2004).

[24] C. E. Shannon, ‘A mathematical theory of communication’, Bell system
technical journal, 27, (1948).

[25] B. Abu Shawar and E. Atwell, ‘Using corpora in machine-learning chat-
bot systems’, in International Journal of Corpus Linguistics, vol. 10,
(2005).

[26] Markus Stumptner and Franz Wotawa, ‘Diagnosing Tree-Structured
Systems’, in Proceedings 15th International Joint Conf. on Artificial
Intelligence, Nagoya, Japan, (1997).

[27] Markus Stumptner and Franz Wotawa, ‘Diagnosing tree-structured sys-
tems’, Artificial Intelligence, 127(1), 1–29, (2001).

[28] Markus Stumptner and Franz Wotawa, ‘Coupling CSP decomposition
methods and diagnosis algorithms for tree-structured systems’, in Pro-
ceedings of the 18th International Joint Conference on Artificial Intel-
ligence (IJCAI-03), pp. 388–393, Acapulco, Mexico, (2003).

[29] Y. Sun, Y. Zhang, Y. Chen, and R. Jin, ‘Conversational recommenda-
tion system with unsupervised learning’, pp. 397–398. Association for
Computing Machinery, Inc, (2016). cited By 0.

[30] Alan M. Turing, Computing Machinery and Intelligence, 23–65,
Springer Netherlands, Dordrecht, 2009.

[31] R.S. Wallace, The anatomy of A.L.I.C.E., Springer Netherlands, 2009.
cited By 53.

[32] J. Weizenbaum, ‘Eliza-a computer program for the study of natural lan-
guage communication between man and machine’, Communications of
the ACM, 9(1), 36–45, (1966). cited By 1052.

[33] N.V. Wünderlich and S. Paluch, ‘A nice and friendly chat with a bot:
User perceptions of ai-based service agents’. Association for Informa-
tion Systems, (2018).

