
Quasi-Finite Domains: Dealing with the Infinite in Mass
Customization

Albert Haag1

Abstract. In this paper we propose to relax finiteness in relational
tables and tabular constraints in a controlled way. We preserve the
syntactic representation of a row in a table as a tuple of symbols.
Some of these symbols refer to an atomic value as usual. Others,
which we call quasi-finite symbols (QF-symbols), refer to infinite
subsets of an underlying infinite domain. Practical examples for QF-
symbols are references to (uncountable) real-valued intervals and
wildcards representing countably infinite sets. Our goal is to provide
a simple and smooth extension of the tabular paradigm, predomi-
nant in business, that is compatible with compression of the table
to c-tuples [14] or to a variant decomposition diagram [11], and is
amenable to constraint processing, such as local propagation.

The approach is based on organizing the QF-symbols pertaining
to each product property in a specialization relation [8, 9]. A spe-
cialization relation is a partial ordering that expresses specificity of
meaning. A QF-symbol can be ignored in the presence of a more
special one.

To ensure that the sets represented by two distinct QF-symbols
pertaining to the same domain are disjoint, we further require that it
must be possible to represent the intersection and set-differences of
QF-symbols. In order to be able to remove duplicates implicated by
a disjunction of QF-symbols from result sets of queries, we require
that it is possible to represent their normalized set-union.

QF-symbols may refer to any objects as long as the above require-
ments are met, e.g. regular expressions (unary predicates), rectangles
(geometric shapes), etc.

1 Introduction

This work expands on a common theme: that data in tabular form is a
natural, non-proprietary medium for communicating between inter-
related business processes within an enterprise, as well as between
enterprises. We focus on mass customization (MC), which we take to
be mass production with a lot size of one. A non-configurable prod-
uct, amenable to mass production, can have product variants2. For
example, mass produced ballpoint pens come in several colors, but
are otherwise identical. The offered colors are in a one-to-one cor-
respondence with the manufactured ballpoint variants. The business
attributes are maintained once for the generic ballpoint pen. Only one
generic bill of materials that covers all possibilities needs to be main-
tained. For each variant the value of an additional product property,
color, is needed to determine which ink filling and matching cap is

1 Product Management GmbH, Germany, email: albert@product-
management-haag.de

2 We use SAP terminology pertaining to the handling of products and product
variants, citing [6] as a general reference. A brief sketch of the history of
the SAP Variant Configurator is given in [7]

used in assembling the variant3.
MC adds customization to this setting by placing the emphasis

on individualization, i.e. there will be many variants of a product
and the business is prepared to produce only a single unit of each
one on demand (lot size one). Accordingly, the product properties
that distinguish the variants are central and potentially numerous4.
In other work [13] we discuss the MC setting in more detail and
show that compression of variant tables, tables listing combinations
of product features, is a key element in managing the exponential
explosion of the number of variants caused by the increase in the
number of customization choices, which production technology
now enables. Here, we propose to add to the expressivity of
variant tables by presenting a quasi-finite (QF) framework that al-
lows dealing with infinite sets of choices within the tabular paradigm.

If the domains of all descriptive properties are finite, then the num-
ber of variants is finite as well. Leaving the reference to the under-
lying generic MC product aside, each variant is defined by a value
assignment to the properties, which we represent as a relational tuple
(r-tuple). If the number of offered variants is not large, these r-tuples
can be maintained as rows in a database table or spreadsheet, which
then acts as a product model comprised of a single tabular constraint.
If desired or needed, this overall variant table can conceptually be
split into smaller tables that together form a constraint satisfaction
problem (CSP). Each CSP variable corresponds to a product prop-
erty and each CSP solution to an offered product variant5. We refer
to any tabular constraint on product properties as a variant table.

Variant tables are a form of modeling that is very acceptable to
a business. Their downside is that they may not scale with a grow-
ing number of choices for individualization. However, we show in
[13] that expected regularities in the product variants will allow a
compressed form of the table to scale. Here, our choice of the com-
pressed form is a variant decomposition diagram (VDD) [10, 11],
and the associated c-tuples, a term adopted from [14] and used there
for a Cartesian product of sets of values.

However, infinite domains occur in MC practice, and neither ta-
bles of r-tuples nor classic CSP approaches allow infinite sets. In
this paper we propose to relax finiteness in variant tables, and by ex-
tension in the associated constraint processing, in a controlled way.
3 The SAP tables relevant for configuration are listed in [6], Appendix A
4 For simplicity of exposition, we disregard the possibility of needing to

deal with variant structures, i.e. variants that have variants as parts. Our
approach here addresses tabular data in general and could be extended to
variant structures if needed.

5 In practice, product models are not limited to use only tabular constraints.
However, the reasoning here shows that product variants could be exclu-
sively expressed in tables in the finite case. The single overall table listing
all variants can be seen the the result of compiling the product model, e.g.
to a decision diagram [2].

Our goal is to provide a simple and smooth extension of the tabular
paradigm that retains its acceptance in business, and, particularly, al-
lows compression to a VDD and c-tuples. We preserve the syntactic
representation of a row in a table as a tuple of symbols, while allow-
ing some of these, which we call quasi-finite symbols (QF-symbols),
to refer to infinite sets. A symbol for a real-valued interval, which
is uncountably infinite by definition, is an example of a QF-symbol.
A wildcard symbol that refers to an infinite domain is also a QF-
symbol. In contrast, a wildcard for a finite domain is just an alias for
the finite set of values. We treat this as “syntactic sugar” and equiva-
lent to the expanded set of values.

The approach we take here is illustrated by example in Section 4
and based on the following ideas6:

• Each property domain is defined by a finite set of symbols:

– a finite domain by its values, which we refer to as r-symbols,

– an infinite domain by one or more (disjoint) QF-symbols.

• We represent a value assignment to the product properties as a
tuple of symbols. If the tuple contains only r-symbols, it is an r-
tuple. If it also contains QF-symbols, we call it a QF-tuple. Both
r-tuples and QF-tuples are interpreted a special cases of a c-tuple,
where an r-symbol in the tuple is treated as a singleton set.

• We adapt the concept of a specialization relation from [8, 9] to
QF-symbols. When queries or constraint solving need to consider
two different QF-symbols for the same property simultaneously,
they can ignore both symbols and focus instead on the more spe-
cial symbol for their set intersection.

• Only a finite number of QF-symbols is needed, which can be de-
rived in advance from the product model (e.g. the property do-
mains and the variant tables)7.

• Compression to a VDD, and through that to c-tuples, can be done
as in the finite case, if we can ensure certain requirements are met.

One difference between a QF-symbol and an r-symbol is that the
former still allows choice, i.e. it can be specialized or restricted
further when required. The consequence is that some constraints
may need to be formulated in non-tabular form, e.g. to express that
for two real-valued properties length and width it should hold that:
length ≥ width. These constraints can be seen as inter-property
predicates. Whereas we discuss unary intra-property predicates as
QF-symbols, we will not deal with other inter-property predicates in
this paper, except to note in passing that restricting real-valued in-
tervals with numeric linear (in)equalities is an established technique
(see Section 8.2) that can be smoothly integrated with our intended
processing.

We show how configuration queries over variant tables with QF-
symbols can be meaningfully supported. We also believe that the
concept of specialization relations is an important bridge to con-
straint processing in general. The idea of defining a specialization
relation via the subset-relation can be inverted: given a set of sym-
bols from the column of a table that correspond to elements of a
partial order, such that a unique greatest successor and a unique least
common predecessor exists for any two elements, these symbols can
be treated in a like manner to QF-symbols for purposes of queries
and constraint processing, if we are willing to interpret the partial
order as a specialization relation.

6 This extends the simple processing of real-valued intervals and wildcards
proposed in [10, 11] for a set-labeled VDD.

7 If further QF-symbols are generated dynamically externally, the special-
ization relation will have to be extended dynamically. Nevertheless, at any
given time a finite number of symbols will be needed.

As stated, the goal of this work is to smoothly extend the tabular
paradigm, not to compete with other dedicated problem solving
approaches, and we do not make any such comparisons here.
The quasi-finite (QF) approach has not yet been tried in the field.
Therefore, we cannot present results. Given that the VDD processing
remains syntactically alike to the finite case, and given our positive
experiences with specialization relations in other endeavors, we
are confident that performance is not the issue. Instead, it will be
a primary concern to establish usefulness in practice and evaluate
acceptance by the business community.

The paper is structured as follows:

• We summarize a database approach to configuration in Section 2
and the topic of compression to VDDs and c-tuples in Section 3.

• We illustrate all ideas using an extensive example based on an MC
T-shirt in Section 4.

• Constructing VDDs from QF-tuples is akin to constructing them
from c-tuples. This topic is beyond the scope of this paper. How-
ever, we summarize the basic problem of ensuring disjoint c-tuples
(QF-tuples) in Section 5.

• We look at the motivating examples of QF-symbols and how they
meet our requirements in Section 6 in some detail.

• We discuss queries to variant tables with QF-symbols in Section
7.

• We present our ideas on specialization relations and their relation
to constraint processing in Section 8. In particular we show that
local propagation works seamlessly.

• We also believe that using QF-symbols (and perhaps c-tuples in
general) directly in the definition of a product variant has business
benefits, which we discuss in Section 9.

• We provide a summary and an outlook in Section 10.

2 Configuration in the Database Paradigm
The easiest MC business setting is when the business offering is a
small finite set of product variants actually represented in extensional
form in a relational database table or spreadsheet. Even when this is
not possible, due to the size such a table would have, tabular con-
straints can be used to define the valid variants.

The extensional form of a tabular constraint naturally supports var-
ious data queries such as (1) and (2), here formulated in SQL, which
are the most relevant for configuration as discussed in [11]8.

The query in (1) returns a result set of all variants matching the
user’s criteria9. The k product properties are denoted by v1, . . . , vk.
The variant table is denoted as 〈vtab〉. 〈Rj〉 denotes a subset of the
domain Dj for product property vj . The values of interest to a user
when configuring can be communicated in the WHERE clause.

SELECT * FROM 〈vtab〉
WHERE 〈v1〉 IN 〈R1〉 AND . . . 〈vk〉 IN 〈Rk〉; (1)

The query in (2) returns the domain restriction for property vj
under the WHERE clause.

SELECT DISTINCT 〈vj〉 FROM 〈vtab〉
WHERE 〈v1〉 IN 〈R1〉 AND . . . 〈vk〉 IN 〈Rk〉; (2)

8 While the approach here may be extended to cover further SQL queries, this
is beyond the scope of this paper.

9 In the SQL syntax, an IN term in the WHERE clause need not be specified
where no restriction is intended. However, for purposes of representing a
query condition as a c-tuple (see Section 3), we will substitute Rj = Dj
for an omitted IN term

These queries can also be done to further filter the result sets of
previous queries (see [11, 10]).

To sum up: tabular constraints in extensional form can be evalu-
ated using database queries. In [11] we have shown that this extends
to tables represented as VDDs in a way that also guarantees the effi-
ciency of the queries. We now have to show here how to handle the
queries (1) and particularly (2) in conjunction with QF-symbols.

3 C-Tuples, Table Compression, and Decision
Diagrams

The discussion of compression in this section is illustrated with
examples using a simple T-shirt in Section 4.

In the finite case a variant can be represented as an r-tuple. If we
substitute sets for values in this tuple, the tuple is no longer relational,
but represents the Cartesian set of all r-tuples that can be formed as
combinations using values from the sets. We call such a Cartesian
tuple a c-tuple10. As a tuple we denote it by C = 〈C1, C2, . . . , Ck〉,
where Cj ⊂ Dj and Dj is the domain of the product property vj ∈
{v1, . . . , vk}. As a Cartesian set it would be written as C = C1 ×
C2 × . . .× Ck.

In the context of the above definition, we don’t care whether an
element Cj of a c-tuple is finite or infinite. Note that the set of r-
tuples represented by a c-tuple is uncountable if one of the sets in the
c-tuple refers to a real-valued interval.

The WHERE clause with the k IN operators in (1) and (2) itself
describes a c-tuple 〈R1, . . . , Rk〉, which expresses the set of values
the user (the problem solving agent) believes in. We will refer to this
c-tuple as the query condition. We will allow a query condition to be
any c-tuple from our variant domain.

C-tuples offer a way to compress tables. For example, if the set of
all variants is totally unconstrained, this can be represented by a sin-
gle c-tuple, which is the Cartesian product of the product domains.
With constraints, there will be more c-tuples, but often a c-tuple rep-
resentation is much more compact than the extensional form [12].
For this reason, c-tuples are already used both formally and infor-
mally in configuration practice.

In the case of finite domains, a set of c-tuples can be further com-
pressed to a decision diagram (DD). We use the form of a Variant
Decomposition Diagram (VDD). As introduced in [10, 11], a VDD is
a binary rooted Directed Acyclic Graph (DAG), where each node has
a label denoting the assignment of a property to a value (r-symbol).
Here we will allow QF-symbols in node labels as well. Each node has
two emanating links, HI and LO, which we characterize as follows
given a fixed ordering of the product properties: v1, . . . , vk:11

• the HI-link of a node points to a node for the next product property
vj+1 or to the terminal sink > (true) from last column nodes.

• the LO-link points to an alternate value assignment for the same
product property vj or to the terminal sink ⊥ (false).

We will call a chain of nodes linked via LO-links an l-chain. If
more than one QF-symbol appears in an l-chain, the QF-symbols

10 We adapt the term from [14], which investigates direct compression to
c-tuples.

11 Under these assumptions, a multi-valued decision diagram (MDD), a more
widely known form of a DD [3, 1], can be mapped to a VDD. This is further
detailed in [11]

must denote disjoint sets, in order to allow a unique decision for a
node, given a value assignment.

Nodes in an l-chain that all have a common HI-link represent the
disjunction of their value assignments and could be merged into one
set-labeled node. In [10, 11] we introduced a VDD with set-labeled
nodes, where a node was labeled with a finite set of r-symbols rep-
resenting a disjunction of value assignments. Since any node labeled
with such a finite set can be re-expanded into an l-chain of regular
VDD nodes nodes that assign the symbols one at a time, we do not
propose to use VDDs with set-labeled nodes in practice. We use them
here in Section 4 to simplify the exposition.

A VDD is functionally equivalent to the extensional form of the
table it represents from the perspective of the queries (1) and (2)
relevant for configuration, see [11]. The extension of these queries
to include QF-symbols is the topic of Section 7. A VDD can also
support counting the number of tuples in a table or a result set of a
query and access a tuple directly by its position in the table/result set.

4 T-Shirt Example

4.1 Classic Finite T-Shirt Variants

In [10] the concepts of representing a variant table using a VDD are
illustrated using an example of a simple T-Shirt. We use this exam-
ple here both to illustrate the concepts discussed so far, and also to
illustrate the proposed extension to infinite sets.

The simple T-shirt has the three properties Imprint (v1), Size (v2),
and Color (v3) with the finite domains:

• {MIB(Men in Black), STW (Save the Whales)}
• {L(Large),M(Medium), S(Small)}
• {Black,Blue,Red,White}

Only 11 variants are valid due to constraints that state that MIB
implies Black and STW implies ¬S(Small). Table 1 is the exten-
sional form of the variant table, which is small enough to be used as
the only and definitive representation of the variants for the purposes
of both business and configuration. It encodes the underlying CSP as
a single tabular constraint.

The query (1) can be used to filter the variants to the set match-
ing any given selection criteria (query condition) 〈R!, . . . , Rk〉. For
example, if the user needs a small (S) sized T-shirt, there is only one
solution (the first row in Table 1). Alternatively, if a Red T-shirt is de-
sired, there are two variants that satisfy this (eighth and ninth rows),
and the domains are restricted as follows: Imprint ∈ {STW},
Size ∈ {Medium,Large}, and Color ∈ {Red} by applying the
query (2) for each property in turn.

Table 1. Simple T-shirt

Imprint Size Color
MIB S Black
MIB M Black
MIB L Black
STW M Black
STW L Black
STW M White
STW L White
STW M Red
STW L Red
STW M Blue
STW L Blue

Figure 1 depicts a VDD with set-labeled nodes for Table 1. The
HI-links in each path from the root to the sink > in the VDD in
Figure 1 define a c-tuple. The set of all c-tuples that can be formed is
disjoint and is a way to represent Table 1 in compressed form. Table
2 lists the two c-tuples needed to represent the 11 variants.

F T

1:(3, MIB)|7

2:(3, STW)|6

10:(2, [Large, Medium, Small])|312:(2, [Large, Medium])|5

6:(1, Black)|211:(1, [Black, Blue, Red, White])|4

Figure 1. VDD of T-shirt with set-labeled nodes

Table 2. C-tuples for simple T-shirt

Imprint Size Color
MIB S;M;L Black
STW M;L Black;White;Red;Blue

4.2 T-Shirt with Infinite Domains

To illustrate the use of infinite sets, we modify the example to allow
an arbitrary user-provided image as an imprint on a white T-shirt. An
image is identified at runtime via a file name. The file name must
refer to a processable graphic, which is taken to mean that only a
jpg or a tiff format can be accepted. Hence, the domain is the in-
finite set of all legal file names that match the regular expression
〈img-filename〉 = ∗.jpg| ∗ .tiff.

We also add a property Scale to capture a factor to be used to scale
the image printed on the T-shirt. For the vintage prints MIB and STW
we require Scale = 1. For the user-provided images, the scale can
be arbitrarily chosen by the user as a floating point number in the
range 0.5 to 1 (the interval [0.5, 1.0]).

Table 3 lists the c-tuples needed to describe this setting. The prod-
uct property Scale has here been placed as the first property v1. The
other properties are now v2 (Imprint), v3 (Size), and v4 (Color).

Table 3. C-tuples for simple T-shirt with infinite domains

Scale Imprint Size Color
1.0 MIB S;M;L Black
1.0 STW M;L Black;White;Red;Blue
[0.5, 1.0] 〈img-filename〉 S;M;L White

Table 4. Split c-tuples for simple T-shirt with infinite domains

Scale Imprint Size Color
1.0 MIB S;M;L Black
1.0 STW M;L Black;White;Red;Blue
[1.0] 〈img-filename〉 S;M;L White
[0.5, 1.0) 〈img-filename〉 S;M;L White

We now discuss how to construct a VDD with set-labeled nodes
for these c-tuples. Figure 2 shows the result12 .

1. We construct a root node ν1 labeled 〈v1, [1.0]〉 starting with the
first c-tuple. This node will be used for both the first and second
c-tuples in Table 3.

2. We construct the l-chain (chain of LO-links) for the root node:

• We pointed out in Section 3 that nodes linked in an l-chain need
to have disjoint set labels. This is illustrated here. It will be a
problem if we label ν2 with [0.5, 1.0] (third c-tuple), because
then the value Scale = 1.0 does not allow deciding uniquely
for either ν1 or ν2. So we split [0.5, 1.0] into the two disjoint
c-tuples.

[1.0] 〈img-filename〉 {S,M,L} White

[0.5, 1.0) 〈img-filename〉 {S,M,L} White

• Table 4 shows all the c-tuples to be handled in constructing
the VDD. The new third c-tuple is covered by ν1. We label the
second node ν2, linked from ν1 via its LO-link, with the half-
open interval [0.5, 1.0) from the fourth c-tuple. This handles
the first column.

3. We next process the rest of the three tuples in Table 4 that start
with C1 := [1.0]. We create:

• ν3, the target for the HI-link of ν1, labeled with 〈v2,MIB〉
• ν4, the target for the LO-link of ν3, labeled with 〈v2, STW 〉
• ν5, the target for the LO-link of ν4, labeled with
〈v2, 〈img-filename〉〉

4. It is straightforward to handle the third column for the above three
c-tuples: nodes ν3, ν4, and ν5 have their HI-links pointing to
nodes ν6, ν7, and ν8, respectively with the labels depicted in Fig-
ure 2:

• The first of the c-tuples allows only the color Black (node ν9).

• The second allows all colors (node ν10), and

• the third allows only the color White (node ν11).

This completely handles the first three c-tuples.

5. It is now trivial to finish the VDD. Node ν2 still needs to be pro-
cessed with respect to the last (fourth) c-tuple. But the columns
two to four are identical to those in the third c-tuple. Node ν5 was
already constructed for this.

We note that we skirted the issue that the product property Im-
print (v2) allows both values from a finite list, e.g. {MIB,STW},
as well as arbitrary “additional” values (〈img-filename〉). This is not

12 To reduce the size needed to display the graph, the terminal sink ⊥ has
been omitted. Conceptually, it terminates all chains of LO-links. Also, the
nodes ν1, ν2, . . . νn are identified by “n1”, “n2”, . . . “nn”

T

n1:(1, [1.0])

n2:(1, [0.5, 1.0)) n3:(2, MIB)

n5:(2, <filename>)

n4:(2, STW) n6:(3, [L, M, S])

n8:(3, [L, M, S])

n7:(3, [L, M])

n9:(4, Black)

n10:(4, [Black, Blue, Red, White])

n11:(4, White)

Figure 2. VDD of T-shirt with non-finite set-labeled nodes

uncommon in practice where a “standard” solution is modeled with
a predefined finite domain, but additional values are allowed (see
[6]). The sets {MIB}, {STW} and 〈img-filename〉 are effectively
treated as disjoint by the VDD due to the constructed l-chain of nodes
ν3, ν4, and ν5). This could be formally ensured by augmenting the
QF element 〈img-filename〉 to 〈img-filename〉 ∩ ¬{MIB,STW}
(see Section 6).
Lastly, we informally discuss some exemplary queries. QF queries
are the subject of Section 7. The query to Table 1 for small (S) T-
Shirts yielded a result set consisting of one r-tuple (the first row). The
domains for the three product properties were restricted to {MIB},
{S}, and {Black}. The same query condition against Table 4 yields
three c-tuples (the first, third and fourth c-tuple). Each of these c-
tuples in the result set must be intersected with the query condi-
tion to eliminate the sizes medium (M) and large (L) that are in
the c-tuples but excluded by the query condition. Consequently, the
domains for the four product properties are restricted to [0.5, 1.0]
{MIB, 〈img-filename〉}, {S}, and {Black,White}13.

Similarly, the query to Table 1 for Red T-Shirts yielded a result set
consisting of two r-tuples (the eighth and ninth row). Against Table 4
the result set consists of one (the second) c-tuple. After intersection
with the query condition the four product properties are restricted to
[1.0] {STW}, {M,L}, and {Red}.

Instead, if the query condition simply specifies a file name for a
particular image, my-img.jpg, then the last two c-tuples would be the
result set. They agree completely except in the first column. As there
is no need for the split here (as there was when constructing the orig-
inal VDD), the two tuples could be combined into one14:

〈[0.5, 1.0], 〈img-filename〉, {S,M,L},White〉
13 Formed by collecting all symbols occurring for each column and calculat-

ing the the union. The result of the union of the two intervals is normalized
(see Section 6)

14 This reduction is actually required where we want the tuples in a result set
to be distinct, i.e. to have been normalized.

The result set intersected with the external condition is then:

〈[0.5, 1.0], {my-img.jpg}, {S,M,L},White〉

If the query formulates the additional restriction Scale ∈
[0.25, 0.75], then the result set intersected with the external condi-
tion is:

〈[0.5, 0.75], {my-img.jpg}, {S,M,L},White〉

5 Excursion on the Construction of VDDs from
C-Tuples

A c-tuple C can be decomposed into its head (the first element C1)
and its tail T, which is also a c-tuple. We denote this by C := C1|T:

C := 〈C1, . . . , Ck〉 = C1|〈C2, . . . , Ck〉 = C1|T (3)

When constructing a (partial) VDD from a list of c-tuples
C1, . . .Cm an l-chain for the head (root) node is constructed us-
ing the first elements C11, C21, . . . , Cm1. As discussed in Section 3
and evident from the example in Section 4.2 these elements must be
disjoint.

If there are two c-tuples Ci,Ci′ with the same tail, i.e.

Ci = Ci1|T and Ci′1 = Ci′1|T

then their first elements must be merged to yield one c-tuple

C′ = (Ci1 ∪ Ci′1)|T

We can ensure disjointness of any other pair of c-tuples Ci,Ci′

with differing tails

Ci = Ci1|Ti and Ci′1 = Ci′1|Ti′

by replacing them with the three c-tuples Ca,Cb,Cc in (4) (a c-tuple
with an empty element is considered empty and can be disregarded):

Ca = (Ci1 \ Ci′1)|Ti

Cb = (Ci′1 \ Ci1)|Ti′

Cc = (Ci1 ∩ Ci′1)|(Ti ∪Ti′) (4)

As the example in Section 4.2 shows, the c-tuple heads show up
directly as labels of set-labeled nodes. We already stated that a set-
labeled node labeled with a finite set of symbols (r-symbols or QF-
symbols) can be expanded to an l-chain of regular VDD nodes.

6 Operations with Non-Finite Elements in
C-Tuples

As the discussion in Section 5 and the example in Section 4 make
clear, it will be necessary to both split and combine c-tuples when
constructing a VDD and result sets. Therefore, we need the follow-
ing operations on c-tuple elements Cij , Ci′j pertaining to the same
product property vj :

• set intersection: Cij ∩ Ci′j
• set union: Cij ∪ Ci′j
• negation with respect to the overall domain: ¬Cij := Dj \ Cij
• set difference: Cij \ Ci′j = Cij ∩ ¬Ci′j

For finite sets this is a given. For QF-symbols that are used in the
labels of VDD nodes, we must ensure that these operations are well
defined and fit in our QF framework.

In the following subsections we look at this in detail for the infinite
elements we propose to add:

• Real-valued intervals
• Unconstrained countably infinite sets
• Sets of exclusions, particularly finite exclusion sets.

Where the domain underlying negation needs to be made clear we
will denote negation as:

¬C := C
D

= D \ C

6.1 Real-Valued Intervals and the Xnumeric
Datatype

We denote a real-valued interval using conventional mathematical
notation, e.g. [a, b) for a half-open interval with a closed lower bound
a and an open upper bound b. This is the set of all real numbers x
such that x >= a ∧ x < b. We allow lower and upper infinity,
denoted by− inf and + inf , with open bounds. A single real number
x can be encoded as a singleton interval [x]. All other interval bounds
can be open or closed

We define an xnumeric to be a finite list of real-valued intervals
representing the union of its elements in a normalized form. Normal-
ized means that the intervals in the list are disjoint, separable, and in
ascending order, e.g. the set of intervals {[0.5, 1.0), [1.0]} is disjoint
and ascending, but it is not separable. In normalized form it is just
[0.5, 1.0]. (Remark: The interval {[0.5, 1.0), (1.0, 2.0]} is separable
and thus normalized, because its two intervals are separated by the
“gap” of the singleton interval [1.0].)

For xnumerics it is straightforward to ensure normalization. First,
any intervals that are non-disjoint or not separable can be merged
into one interval. Since the remaining intervals are disjoint, they can
be ordered. Hence the union of two xnumeric is just the set union fol-
lowed by normalization. The intersection is just the list of pairwise
intersections. Because the xnumeric is ordered due to normalization,
this operation is efficient in the sense that it is not necessary to actu-
ally intersect all pairs.

The set union of two intervals is not necessarily again an interval,
hence we need the concept of an xnumeric.

The unconstrained xnumeric is the interval (− inf,+ inf). The
negation of an xnumeric is the set difference to this unconstrained
set. It is formed by inverting the finite number of “gaps” between the
intervals in the xnumeric. For example

¬{[0.5, 1.0), (1.0, 2.0]} = {(− inf, 0.5), [1.0], (2.0,+ inf)}

Remark: a finite set of real number values can be represented as
an xnumeric using singleton intervals. All interaction with finite sets
is covered by the above operations defined for xnumerics.

An xnumeric is a list of QF-symbols (intervals) representing their
set union. A set-labeled node for an xnumeric can be expanded to an
l-chain of nodes with interval labels.

6.2 Countably Infinite Sets and Domains
Examples of countably infinite domains are the list of all integers or
all strings. This requires that each product property is associated with
an immutable datatype. We consider a domainD or anyC ⊂ D to be
qualified by a unary predicate (condition) that filters out disallowed
values at run-time (e.g. a regular expression for a string). Any value
fulfilling the predicate (e.g. any string matching the regular expres-
sion) is an acceptable value. Examples for qualifying predicates for
an integer datatype are: positive p, even p or odd p.15

15 In the absence of more specialized predicates, 〈true〉 is taken as the default
predicate.

A unary predicate can be represented by its name (a symbol),
which serves as the QF-symbol identifying it. In the example in Sec-
tion 4.2, we used the notation 〈img-filename〉 to refer to a regular
expression for legal file names.

The set operations translate into logical operations for predicates.
The union of two infinite sets qualified by predicates π1 and π2 is just
a set qualified with the disjunction π1 ∨ π2. Similarly, intersection
translates to π1 ∧ π2, and negation to ¬π1.

Again, we require normalization to reduce a complex logical
expression by removing any redundant elements. It has yet to be
determined what works best in practice here. From a theoretical
view, we might require a disjunctive normal form (DNF). The
overall predicate could then be represented as a list (finite set) of
conjunctions. A set-labeled node for such a list can be expanded to
an l-chain of nodes, as for xnumerics. Each such node would be
labeled by a conjunction of predicates, which would be treated as an
indivisible QF-symbol.

We must also deal with set unions between finite sets and count-
ably infinite sets. In the example in Section 4, the standard imprints
for the T-shirt formed a finite set {MIB,STW}, but “additional
values” were then allowed, which were specified by the QF-symbol
〈img-filename〉. The domain of the property imprint is just the union
of these sets. Generally, the domain D for a product property with a
non-xnumeric datatype is D = {F, π} := F ∪ π, where F is a finite
set of values, π a predicate representing an countable infinite set, and
both F and π respect the datatype assigned to the product property.16

The set-operations then become:

• set intersection: {F, 〈π〉} ∩ {F ′, 〈π′〉} = {F ∩ F ′, 〈π ∧ π′〉}
• set union: {F, 〈π〉} ∪ {F ′, 〈π′〉} = {F ∪ F ′, 〈π ∨ π′〉}
• negation: ¬{F, 〈π〉} := F

〈π〉 ∩ ¬〈π〉
• set difference: {F, 〈π〉} \ {F ′, 〈π′〉} = {F ′′,¬F ′, 〈π〉 \ 〈π′〉}

– where F ′′ is the finite set F \ F ′ ∪ F \ 〈π′〉, and

– the finite set ¬F ′ = F ′〈π〉 is an exclusion set of all values in
F ′ that lie in 〈π〉 (see Section 6.3).

6.3 Exclusions and Exclusion Sets
An exclusion of a value x from a property domainD is a way of stat-
ingD\{x}. It means that x is considered to be invalid, which we will
denote by ¬x. For real-valued domains, exclusions can be directly
formulated as xnumerics, e.g., {(− inf, x)(x,+ inf)}would exclude
the real number x. For a finite domain or an xnumeric domain, we can
simply positively represent the set D \ {x}. For a countably infinite
domain, we need further expressiveness. Given a countably infinite
domain D for a product property and a finite set of values E ⊂ D,
we introduce an exclusion set ¬E := E

D
:= D \ E. An exclusion

set ¬E can be merged with a unary predicate π by removing any val-
ues from E that do not satisfy the predicate π, i.e. ¬E ∩ 〈π〉 ⊂ ¬E
is a reduced exclusion set. In order to keep the exposition simple, we
will ignore this reduction and denote ¬E ∩ 〈π〉 also by ¬E.

For two exclusion sets ¬E,¬E′, the required set operations are
inverted:

• set intersection: ¬E ∩ ¬E′ = ¬(E ∪ E′)
• set union: ¬E ∪ ¬E′ = ¬(E ∩ E′)
• negation: ¬¬E = D \ (D \ ¬E) = E

16 Ideally, F and π will be disjoint. Either F or π can be empty. We define
the predicate 〈false〉 to represent the empty set.

• set difference: ¬E \ ¬E′ = E′ \ E

Finite exclusion sets are needed in order to meet our require-
ments of negation of finite sets against infinite domains. The
concept can also be extended to infinite exclusion sets. Indeed, a
negated unary predicate corresponds to such a set. For example, if
the set of all prime numbers is represented by the unary predicate
〈prime p〉, the ¬〈prime p〉 represents exclusion of all prime integers.

In either case, a reference to an exclusion set is treated as a QF-
symbol. For example, for a predicate π, ¬π is the symbol represent-
ing the exclusion of all values in π.

7 Queries on Quasi-Finite VDDs
In the classic finite case, the result set R of the query (1) is a finite set
of r-tuples. In the QF framework, it is a finite set of QF-tuples that
may contain both value symbols and QF-symbols. A QF-symbol in
the result set must be specialized to conform to the the query condi-
tion, e.g. by set intersection with the query condition. Problem solv-
ing (PS) must expect the remaining degree of non-determinism.

The query (2) contains the keyword DISTINCT. This means any
duplicates must be removed from the result set for the particular col-
umn (property). We see replacing QF-symbols by their normalized
union akin to removing duplicates. Therefore, the symbols in the re-
sult set, both QF-symbols and r-symbols, must be replaced by their
normalized union, which ensures also that remaining symbols are
pairwise disjoint.

8 Constraint Processing with Quasi-Finite Symbols
8.1 Specialization Relations
Given two QF-symbols φ1, φ2 for the same CSP variable, we regard
φ2 to be more special than φ1 if φ2 denotes a subset of φ1. This
leads to a partial ordering (PO) of the symbols that occur in the vari-
ant tables, which we call a specialization relation, introduced and
motivated for another context in [9]. Generally, a specialization rela-
tion on a set of facts expresses specificity of meaning, characterized
by the following three properties:

• Problem solving (PS) need not consider an otherwise valid fact
in the presence of a more special one (procedural-subsumption
property). This property requires the acquiescence of PS.

• A fact is logically implied by any of its specializations (semantic-
compatibility property).

• Negation inverts specialization (symmetry-under-negation prop-
erty).

The facts we deal with in this paper are assignments of r-symbols
and QF-symbols to a CSP variable. The PS we consider consists of
queries to the table and constraint processing, particularly local prop-
agation of constraints. From the perspective of queries we addition-
ally need to be able to aggregate the result sets into a normalized
form, e.g. delete duplicate r-symbols, replace two QF-symbols by a
more general one representing their union, etc. We have shown in
Section 6 that the QF-symbols we primarily envision meet these re-
quirements.

We can also turn the reasoning around and define a PO of symbols
pertaining to the same property domain as a specialization relation if
we can show that it has the above properties and if we also guarantee
the following:

• There is a unique symbol ⊥ (false) that is a special of all other
symbols. This is a QF-symbol for the empty set.

• For any two symbols in the PO, there exists a unique symbol for a
greatest common successor/special (the “intersection”).

• For any two symbols in the PO, there exists a unique symbol for a
least common predecessor/general (the “normalized union”)17.

• There is a unique top-level symbol Ω that represents the entire
domain. For any symbol φ in the PO, there exists a symbol ¬φ in
the PO, such that the least common predecessor of φ and ¬φ is Ω
and the greatest common successor is ⊥. ¬φ denotes the negation
of φ.18

For example, we could arrange images in a PO and declare it a spe-
cialization relation, paying some attention to fulfill the requirements
in the spirit of the intended PS.

Specialization relations provide some conceptual and practical
benefits:

• They can be pre-calculated and stored in a graph. This may be
more performant than calculating intersections and unions on the
fly.

• They provide a general concept to adapt PS to QF-symbols: PS
must simply be prepared to specialize the assignment of a QF-
symbol to a CSP variable.

• They generalize to other objects, e.g. shapes, images, taxonomies,
etc.

8.2 Local Propagation with QF-Symbols
If a product model contains multiple constraints, local propagation
[4] can be used to restrict the domains of the product properties to a
state of arc consistency. Any domain restriction of a product prop-
erty is propagated to all constraints that reference the same product
property. The process continues until no further restrictions are pos-
sible. For a tabular constraint, the query (2) can be used to determine
the domain restrictions, which are then propagated (see Section 7).

The QF framework fits nicely in this scheme. A c-tuple com-
prised of finite sets of symbols that may include the normalized union
of QF-symbols may be used as a query condition. The domain re-
strictions that result from the query (2) with this query condition
may again contain the normalized union of QF-symbols. The c-tuple
formed from the resulting domain restriction for each column can be
smoothly propagated to other constraints.

If the product model is entirely made-up of tabular constraints, the
local propagation of QF-symbols is covered by our approach. It is
also straightforward to include constraints representing numeric lin-
ear (in)equalities when propagating real-valued intervals.19 Extend-
ing the propagation of QF-symbols yet further is a topic of future
work.

8.3 General Constraint Solving
Extending existing problem solvers to deal with QF-symbols, will
require an analysis of the particular methods employed. However, a

17 We had noted that the union of two QF-symbols need not itself be a QF-
symbol. Here, however, it is an advantage to be able to have a least com-
mon predecessor/general representing the union as part of the PO. A more
detailed treatment of specialization relations is deferred to a discussion us-
ing practical examples when they arise.

18 We need “negation” primarily to ensure a “set-difference” operation to
be able to split two symbols into a disjoint triple of symbols as in (4) in
Section 5.

19 This is implemented in the SAP product configurators ([6]).

main common idea is that constraint problem solving will make use
of the concept of specialization relations. Instead of exploring the
validity of a simple value assignment, an assignment of a variable
to a QF-symbol can be specialized. When considering such an as-
signment and a constraint on the same variable, the greatest common
special must be substituted in the assignment. A forced specializa-
tion to the empty set would invalidate an assignment. The solutions
found by constraint solving may contain (specialized) QF-symbols,
i.e. exhibit a degree of non-determinism that cannot be avoided and
is to be expected.

9 Indeterminism in Variants and Sub-Variants
A product variant is classically defined as an r-tuple, a value assign-
ment to each of its product properties, but this is neither ideal nor
sufficient in practice. Some degree of indeterminism in a variant is
needed when a variant is to be further specialized in a later business
process (e.g., at the customer’s site). For example, a pump may be
sold with a connection that fits several different sizes of hoses. The
end customer may have to make a manual adjustment for the partic-
ular hose they want to attach by cutting off a part of the provided
connector. The pump being sold to the customer by the business is
a variant of their MC “pump” product that allows further individual-
ization at the customer’s site.

The number of sub-variants can be infinite, e.g. for the frequency
a radio receiver may be tuned to. As built, the property Frequency
would be described by a list of real-valued intervals for possible re-
ception bands, e.g. {[7.2, 7.45], [9.4, 9.9], [11.6, 12.1]} (MHz).

Allowing a variant to be defined by a c-tuple solves the above
problem. However, c-tuples that define variants must be distin-
guished from those that are merely the by-product of compression.
This would be an open MC business topic.

10 Summary and Outlook
This work extends a common theme: that data in tabular form is not
only natural for modeling variants, but also a natural, non-proprietary
medium for communicating between interrelated business processes
within an enterprise, as well as between enterprises. Compression of
tables is essential in MC for letting variant tables scale with a grow-
ing number of choices, which production technology now enables
[13]. C-tuples are a transparent yet powerful form of compression
that is transparent and upon which non-proprietary exchange formats
can be based. This is addressed in other work, e.g. [13]. Here, we
propose to add to the expressivity of variant tables by presenting a
quasi-finite (QF) framework that allows dealing with infinite sets of
choices within the tabular paradigm.

We believe the QF framework presented here meets these expec-
tations. The main idea is that problem solving will deal with the
QF-symbols representing infinite sets via specialization relations. In-
stead of exploring the validity of a value assignment of a value (fea-
ture) to a variable (product property), the assignment to a QF-symbol
can be specialized. A forced specialization to the empty set would in-
validate an assignment.

The discussed techniques involving c-tuples and VDDs using QF-
symbols has not yet been deployed in practice. The individual ingre-
dients: c-tuples, VDDs, and the management of partial orders (POs)
for specialization relations have all been applied with positive re-
sults. As already mentioned, the question of how to define practical
normalization of predicates is open. However, we believe that the
primary open issue is to verify that it actually meets the expectations

of MC business. This also includes evaluating the need of integrating
with other types of constraints, such as linear (in)equality constraints,
and the business value of indeterminism in product variants.

ACKNOWLEDGEMENTS
I would like to thank my daughter Laura and the reviewers for their
comments, which helped improve this paper considerably.

REFERENCES
[1] Jérôme Amilhastre, Hélène Fargier, Alexandre Niveau, and Cédric

Pralet, ‘Compiling csps: A complexity map of (non-deterministic) mul-
tivalued decision diagrams’, International Journal on Artificial Intelli-
gence Tools, 23(4), (2014).

[2] Henrik Reif Andersen, Tarik Hadzic, John N. Hooker, and Peter Tiede-
mann, ‘A constraint store based on multivalued decision diagrams’, In
Bessiere [5], pp. 118–132.

[3] Rüdiger Berndt, Peter Bazan, Kai-Steffen Jens Hielscher, Reinhard
German, and Martin Lukasiewycz, ‘Multi-valued decision diagrams for
the verification of consistency in automotive product data’, in 2012 12th
International Conference on Quality Software, Xi’an, Shaanxi, China,
August 27-29, 2012, eds., Antony Tang and Henry Muccini, pp. 189–
192. IEEE, (2012).

[4] C. Bessiere, ‘Constraint propagation’, in Handbook of Constraint Pro-
gramming, eds., F. Rossi, P. van Beek, and T. Walsh, chapter 3, Elsevier,
(2006).

[5] Christian Bessiere, ed. Principles and Practice of Constraint Program-
ming - CP 2007, 13th International Conference, CP 2007, Providence,
RI, USA, September 23-27, 2007, Proceedings, volume 4741 of Lecture
Notes in Computer Science. Springer, 2007.

[6] U. Blumöhr, M. Münch, and M. Ukalovic, Variant Configuration with
SAP, second edition, SAP Press, Galileo Press, 2012.

[7] A. Haag, ‘Chapter 27 - Product Configuration in SAP: A Retrospec-
tive’, in Knowledge-Based Configuration, eds., Alexander Felfernig,
Lothar Hotz, Claire Bagley, and Juha Tiihonen, 319 – 337, Morgan
Kaufmann, Boston, (2014).

[8] Albert Haag, ‘Konzepte zur praktischen handhabbarkeit einer atms-
basierten problemlösung’, in Das PLAKON-Buch, Ein Expertensys-
temkern für Planungs- und Konfigurierungsaufgaben in technischen
Domänen, eds., Roman Cunis, Andreas Günter, and Helmut Strecker,
volume 266 of Informatik-Fachberichte, 212–237, Springer, (1991).

[9] Albert Haag, The ATMS - an assumption based problem solving ar-
chitecture utilizing specialization relations, Ph.D. dissertation, Kaiser-
slautern University of Technology, Germany, 1995.

[10] Albert Haag, ‘Column oriented compilation of variant tables’, in Pro-
ceedings of the 17th International Configuration Workshop, Vienna,
Austria, September 10-11, 2015., eds., Juha Tiihonen, Andreas A.
Falkner, and Tomas Axling, volume 1453 of CEUR Workshop Proceed-
ings, pp. 89–96. CEUR-WS.org, (2015).

[11] Albert Haag, ‘Managing variants of a personalized product’, Journal of
Intelligent Information Systems, 1–28, (2016).

[12] Albert Haag, ‘Assessing the complexity expressed in a variant table’,
in Proceedings of the 19th International Configuration Workshop, La
Defense, France, September 14-15, 2017., pp. 20–27, (2017).

[13] Albert Haag and Laura Haag, ‘Empowering the use of variant tables in
mass customization’, in Proceedings of the MCP-CE 2018 conference,
Novi Sad, Serbia, September 19-21, 2018., p. (Submitted), (2018).

[14] G. Katsirelos and T. Walsh, ‘A compression algorithm for large arity
extensional constraints’, In Bessiere [5], pp. 379–393.

