Feature model analysis and

configuration: a 10 years journey with
configuration stops

David Benavides
benavides@us.es

Configuration workshop, Graz — Sept 2018
3 @davbencue

mailto:benavides@us.es
https://twitter.com/davbencue

a_mn ...

. . >
A Onom y C\a'iS Economy Class

"

Fr-HOCHIMINH C1TY
To:KUALA LUMPUR

HO TEN/ NAME

Graz

miercoles, 22:00
Despejado

Sevilla, Espana °C | °F
miércoles, 22:00
Despejado

29

Scope of the journey: software product lines

Mass
Customization

of Software
Products

O ‘SPL

Components 2000’s

.Objects 2
® 1980’s frameworks
Modules 1990’s
1970’s) _
o producing software to meet
Subroutines individual customer's needs with

1960’s near mass production efficiency “

Software product lines

Product Lines Approach (mass customization)

= <> e

Product 1 - Product 2 Product 3

Product 4 Product 5 Product 6

A more practical view of the
SPL framework

Domain engineering

—mmmsmsmmmmm == == ==-|-Features = - -

Application engineering

Domain

knowledge
—

Customer
needs

|

Problem Space

Domain analysis

Srapibimy

n o
waighwa| aigartv

- 3
B Thoe, Faarsr

| Drced | [Lrstomctec] [Fe | [0 | |G | [Brevmatfun] 18T | [Tiwwcea] on

WET ma Whighind r k
Croi = Do P | || Hasad

(incl, scoping,
variability modeling)

Solution Space

Domain implementation

ciom Waig i

wald pia |
i

i dom Edgal

——

&

requirements

Requirements analysis

I
Edge Trew
Drecwe
']

[CL LU D]

Saarn
w5
oS
o Agrrre
(=1
fre
Friem
rannl
SnaTRrtEn
Trerspaim

Fig. 1.1 An overview on software product-line engineering

From “Mastering Software Variability with FeaturelDE”

linel. validation and verification)

. Wiaight W m e Walghery
Mapping | Leuresdi B":;:""-‘; . E':,‘:#.ﬁ._qum_u
] L =tz m £ @ e . -k
| wald prim)i \11-“:“: -
| i Sywhwrn, oo, prini el " apeve: b
| ;
I
|
i (models,source code, ...)
I
: Common
----- :---- = =========-rimplementation = ——--==
I artifacts
I
| Product derivation
|
1
Feature L"Le
selection {’Hx‘- Praduct
- b /L -

How to model

variabpility?

Posmve

: base model
EXxpressing
<<
model Negative
variability

Inside the

model

Authentication

Get account
information

|
walternativen |

«option»

Customer Customer " |
Insert chip card Give fi int .
nsert chip ca ive fingerprin Print balance
Figure 5: Example of an alternative relationship Figure 6: Example of an optional relationship

Taken from Modeling variability by UML use case diagrams by Von der Massen et al.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.2206&rep=rep1&type=pdf

Posmve

: base model
EXxpressing
<<
model Negative
variability

Outside the

mOdEI Variability Model

Requirements i Components

Base models

Posmve

: base model
EXxpressing
<<
model Negative
variability

Assets

Positive
variability

Base model

Negative

variability

i i Decision efect
Do you require variant 1?
name: Question 1 expected value: boolean

A

i : .
: ! ! :
' 1 ! 1
! 1 ! 1
! 1 ']
1 ! 1
E - : i Visibility Lo @ Do you need variant 27 N
' 1
: | Feature 1 | | Feature 2 | ‘ Feature 3 H ' condition name: Question 2 expected value: boolean '
' 1
: i ' :
' 1 ' '
| \ H | Which variant do you need? E
E ‘Feature 5 || Feature 6| ' —| Feature 7 | lFeature 8 | |Feature gl E ' name: Question 2 expected value: list{string 1|string2|string3} !
1 A 1 ! '
' 1 | '

Feature modelling

Variatio ~Variatigr. .
SLLpeint2

P Variant 1 | rVariant 2 | r Variant 3 ‘
Orthogonal d .
H ils requires =
variability | - = o e
mOdelllng "'_f'vt?g%ﬂgi?l'n- PRt B

Ad-hoc solutions:
tables, textual
docs, ...

LA 1] v.»"-requ:res

UML-based COVAMOF

<<optional>>
Feature 1
<<optional>> |
\ Feature 2
\‘ <<optional>>
Feature 3

Features layer

Variation point 1 Variation point 2

4 Dependency,

Realization

Variant 2 Variant 3 Variani 4

<<at-least-one>>
Feature 4 Architecture layer vgighon pointa ~ Vanation point 4
<<default>> <<optional>> <<optional>> A
Feature 5 Feature 6 Feature 7 Variant 5 Variant6 Variant 7

1
1
1
1
1
1
1
:
. Variant 1
1
1
1
1
1
1
1
1
1

Feature modelling

Feature models were first

iIntroduced by Kang et al. in 1990

Feature models

How to specify a particular product?

FEATURE

"An important part of
something”

“A prominent or distinctive
characteristic of a software
system”

Feature models

How to specify an SPL?

“Feature Model: A hierarchically arranged
set of features to represent all possible
products of an SPL”

Feature models

Mobile Phone
Feature Optional
\ L A L A

GPS Screen _ Media
7 - Alternative o
| Moose 1) /\- r
Excludes = | 1+
1—— PBasic Colour High resolution Camera MP3

Requires mp T___________'

ef3a pUre-systems IDE
an® eature

& F GPL-AHEAD /modelxml - Eclipse Platiorm
Fle Edt Nawgate Search Project Run Window Melp

FSe U K RO = - A e - | 100%
o (RSLMENDN K,
)
C— GraghProductLine
- == s = ——
Agonthms Grﬂ. Search Implementation
L 2 ® 8 M
{ * @ psflag famelrtemet
P a %@ ps fog: favetistwe
Connecled Cycle | Shortest GraphType llm DFS BPS WI E“ % @ psfiag: famewreabeCode
[Create Feature Above = (D prvarisble: TARGET_PLATFORY
2 € = (5) osmaretie: corf
Directed Weghted Rename (72) b e B
Connectad = Undrected A Search K Delete (Def)
Cycie = GraphType A OFS v
Shortest = Directed A Weighted , _'Iﬂ
7 Tashs (2 emes) P v x
. Reverse Feature Order 1 4] 1| pesergron]
Feature Diagram |Source | Feature Order - [0 ! cpenor stematves we ArPressesenser... Wi
- © ! open stemuves we UStne, RS20e WS
| & B | g
=\ -]
Tosks Conscle

)

First stop:
Automated
Analysis of

FM

Second stop:
Explanations
on FM
analysis

Third stop:
Testing on
FM analysis
tools

Forth stop:
Applications
of the
Automate

analysis of
feature
models

First stop:
Automated
Analysis of

FM

Challenge 1: Automated analysis of Feature

\Y[ee [=1ES

Computer-aided, extraction of useful information from feature models

Analysis
results

‘Q » Analysis Process » é

*

Analysis
operations

Analysis process

Analysis process

Analysis
result

H>EEEE» -
1

Analysis
operations

Logic

‘Q » Translation » k¥

Feature models as CSPs

Feature Model Constraint Satisfaction Problem

Fey - L g
09

Feature models as Propositional formulas

Kelationship PL. Mapping
1N
x PeC
E
<
g o CP
:
Z R Per(CovCyvov ()
EXENEY
= = (C) &= (=G, A a0, AP A
E /Q (Cy 3 (0 A —C, APY A
=l Ledle]le] | (€, e3(=Cy ATy Aen=C,_ APY)
IRt AR
=
7] (A nB)
s

Automated analysis of feature models:

Computer-aided extraction of information from FMs

Mobile Phone
Calls GPS Screen Media
f /(?\ /6\
|
|
|
1—— PBasic Colour High resolution Camera MP3

How many
products?

Automated analysis of feature models:

Computer-aided extraction of information from FMs

Mobile Phone
Calls |- »| GPS Screen Media
| /‘\
|
|
| \
-) Colour High resolution Camera MP3

Yes, feature
“Basic” is dead

Analysis implementations

El EX

— JavaBDD

/Q

<

Different solvers, different performance

Time (ms}

B Time BOD B Time C5P OTime 24T

EMemaory BOD @Menary CSP 0 Memary SAT

]
50
0 I n Il
; i i i
0
NIENREN} I !
ol 1 1L 1 ALh
0 1 2 3 4 5 & 7 a4 9 40 11 12 13 12 15 1@ 17 18 18 XN M 2 23 24 25
Pementage of Dependendes

M0 11 12 13 14 15 18 17T 18 19 20 21 2 23 24 B
Percentage of Dependendes

General CSP

Memory complexity

Time complexity

Counting solutions

Type of variable

Advanced F

®» ® O O &

©

Automated analysis of SPL
Why it's an important problem?

Doing this by hand Is an error prone
task in large-scale feature models

Detecting properties at early stage of

development and along all the life
cycle

It's the base for other more
complicated tasks, I.e. product

configuration

Challenge 1: Automated analysis of SPL.:

Computer-aided, extraction of useful information from SPL models

] 1 Talz SIRE
~ _ = o =)
= “l 5 Q] 2lslglo f,l =
I HEHHEIREEE
I HHEHEHEEEE
AEIEN-AE 2813|3222 |2|2
23|23 |2 515|582 2|13|2|8
@ |u|o|=|= =l |7 |7 |28 |a|=]|=
Multi o support
Void feature model | A i + [+ + | | N i +| @ Ha | Rt i | [~ | o~
#Products ‘ + L ‘ + | + | + + I + | @ ~ |
Dead features = + -] + |+ | + = = | =
Valid product + |+]+ |+ | + + | + @ | + ~ |~
All products) + | & + + + + | @ =
Explanations + ‘ ~ ‘ + + | L4 + | + ~ ~ |
Refactoring + @ | + + + ~ | o~
Optimization ‘ ‘ | + | + || ~ ~ |
Commonality + <+ ~
Filter | + | | | + ~ |
Valid partial configuration | + | + @ =
Atomic sets ‘ + ‘ | + + | |
False optional features ~ | e
Caorrective explanations | | | + | | &
Dependency analysis @ | +
ECR \ 8|+ I I | | I
Generalization @ +
Core features ‘ ‘ + | | | | e |
Variability factor @ =
Arbitrary edit | | + | | | | |
Conditional dead featres + & 4
Homo geneity | | | | | + | | v
LCA +
Muti-step confi guration | | | | + | | |
Roots features B
Specialization +
Degree of orthogonality ‘ ~ ‘ | | I I | <
Redundancies | | | | | | | ~ «
Variant features ~
Wrong cardinalities J J I] | | ~] =)
Feature model notation B[C[B[B[B|B|[B|[B[B|[B|[C[B[B[C[C[B[B[B[B[B[B[B|[C[B|B[B|[C[B|[B[B[C[C[C[B[B[B|[B[B[B|[C|[C]|B :
Extended feature model | | + | + + |+ |+ | + + | + ||+ + | /\4
Formalization + + |+ |+ |+ + | + + + iF i+ + + + + + iF
+ Supported ~ Nosupport & Supported(first reference) S No support { first reference) B Basic feature model C Cardinality-based feature models
Table 3: Summary of operations and support

David Benavides, Sergio Segura, Antonio Ruiz Cortés: Automated analysis of
feature models 20 years later: A literature review. Inf. Syst. 35(6): 615-636 (2010)

https://doi.org/10.1016/j.is.2010.01.001

AFL

SPL

invariant() : Boolean

is-valid(p Product) : Boolean
valid-products() : Set<Product=
N[} : Matural

void() : Boolean

N .SFL fullic :Configuration) : Boolean
Partia_l[c :;onﬁguralk_:nn:- E .Boolsa n
model : Model |SPL characteristic model | e oy - SotProcict>

equivalent{spl2 :SPL) : Boolean
- T . . spacia]i_zaﬁgn[q)lE :SPL) : Boolean
features : F| Feature | SPL feature set] genaralization(2pt2 :SPL) : Boolean
arbitrary-adit{spl2 :SPL) : Boolean
core() : Set<Feature=
dead|) : Set<Fy =
D model = features et S e
s - : - unique() : SetFeatures
tomic-sets() : Set=Set<Feature==
H H H :or?i;:rati:goommonalivy[c g:n nfiguration) : Real
[other invariants can be added in the CML] total-variabity : Fes
partiabvaniability() : Real
homo geneity() : Real

1 a }

O
i

model | 1 seatres | 1.

Model Feature
is-instance-ofp -Product] © Boolean LY

features() : Set<Feature>

~ _: Product «— SPL -
Vp : Product; spl : SPL e oL
p = spl = -

(p C spl.features N p=kspl.model) Vo - Sel<Procit

} [

model | 1 seamres | 1.0

Model Feature

ig-instance-of (p : Product) : Boolean
features() : Set<Feature=

Fig. 3 UML class diagram of the FLAME architecture

Amador Duran, David Benavides, Sergio Segura, Pablo Trinidad, Antonio
Ruiz Cortés: FLAME: a formal framework for the automated analysis of
software product lines validated by automated specification testing. Software
and System Modeling 16(4): 1049-1082 (2017)

https://doi.org/10.1007/s10270-015-0503-z.

o
2/2/2 %a/

V2

Y

1y, G B)y,

T

Zy

1,

Y 7 P
Y, &

Name:

Domain:
Value: 50

Name: memory Name: cost
Domain: Integer) .
Value: 32 : Domain: Real
me: memory Value: 250
Domain: Integer -V'. :
Value: 256 ' 4_\1’

» David Benavides, Pablo Trinidad Martin-Arroyo, Antonio Ruiz Cortés: Automated
Reasoning on Feature Models. CAISE 2005: 491-503

* F Roos-Frantz, D Benavides, A Ruiz-Cortés, A Heuer, K Lauenroth
Quality-aware analysis in product line engineering with the orthogonal variability
model. Software Quality Journal

https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/s11219-011-9156-5

Second stop:
Explanations
on FM
analysis

Challenge 2: Explanations on the Automated

analysis of SPL

Deductive
reasoning
A <1..1> :]
—{ Is valid? | >
No
R1[R
— [

Explanations

P f >[Why not?

Abductive
reasoning

Challenge 2: Explanations on the Automated
analysis of SPL

Ch 2.1 with feature models

Mobile Phone
Calls GPS Screen Media
I
I
I
1—-= Basic Colour High resolution Camera MP3
+ 1

Pablo Trinidad, David Benavides, Amador Duran, Antonio Ruiz Cortés, Miguel Toro: Automated

error analysis for the agilization of feature modeling. Journal of Systems and Software 81(6):
883-896 (2008)

https://doi.org/10.1016/j.jss.2007.10.030

i)
)
©
o
S
)
S
-
]
qv)
)
Y
L
b=
=
S
90
L
O

Feature Model Level

errors
dead features, ...

explanations

Implementation Level

constraints

Abi=1— ...

Constraints model
N /

{Re}
Feature Model A
_festure Model
]
> COMPS ={R;}
- SD={...} diagnosis
'g OBS={...} A={Re}
c
E Diagnosis model
o A
Y
ﬂrariables \
i, Ab, solutions

{Fj%Vj,Abi—PVi}

Challenge 2: Explanations on the Automated

analysis of SPL

Ch 2.2 with configurations E E M E E

Jules White, David Benavides, Douglas C. Schmidt, Pablo Trinidad, Brian Dougherty, Antonio

Ruiz Cortés: Automated diagnosis of feature model configurations. Journal of Systems and
Software 83(7): 1094-1107 (2010)

Alexander Felfernig, Rouven Walter, José A. Galindo, David Benavides, Seda Polat Erdeniz,

Muslim Atas, Stefan Reiterer:_ Anytime Diagnosis for Reconfiguration. J. Intell. Inf. Syst. 51(1):
161-182 (2018)

https://doi.org/10.1016/j.jss.2010.02.017
https://doi.org/10.1007/s10844-017-0492-1

1.Invalid Configuration:

Automobile | O1=1

=1 ___— T Os=I

Brake Control Software

03=0 /ON=]

Brake ECU

Os=1 /O\Q:O

ABS Controller Non-ABS Controller

1 Mbit/s CAN Bus| [250kbit/s CAN Bus

2.Diagnostic CSP:

8 T

fl=1>@2=1).

4.Valid Configuration:

~-

3.Recommendations: Deselect 1 Mbit/s CAN Bus, de=1

Select 250kbit/s CAN Bus, S7=1

Automobile | f; =1

o)
o
N
©

O

k%)
| -
O]

=
)

'3
n
c

O
e
©
|
-

D

U—
-
o
O

c

=
=

N

™

=

@)

f2=1/\’ fs=1

Brake Control Software

f3=0/©_ fa=1

Brake ECU

fo:Q/O\ fr=1

ARBS Controller Non-ABS Controller

1 Mbiv/s CAN Bus| | 250kbit/s CAN Bus

Third stop:
Testing on
FM analysis
tools

Functional Testing

How to detect faults in feature model analysis

Input Feature Model Analysis Tool

‘ﬁ) { Translation } > ‘

« SAT, CSP, DL, OWL... %
» Large programs.

Time-consuming
Error-prone

Functional Testing

P1={AC} MR' P1={Ac} MR P1 = {A.C,F} MR P1={A,CF}
P2 ={AB,C} P2={ABCD} wp pP2={ABG} » P2 ={AB,CD,F} W PL={ACH
P3 ={A,B,CE} P3 = {A,B,C,D,F} P3 = {A,B,C,E,F} P2 ={A,B,C,D,F}
P4={AB,CD,E} P4 = {A,B,C,E,F} P4 = {A,B,C,D,E,F} P3 ={AB,CEF}
P5 = {A,B,C,D,G} P4 = {A,B,C,D,E,F}
P6 = {A,B,C,E,G} P5 ={A,B,C,E,F,H}
P7 ={A,B,C,D,E,G} P6 = {A,B,C,D,E,F,H}

P8 = {A,B,C,D,E,F}

~ Operation N/ Expected output
H@?ﬁgaﬁﬁ@g@?ﬁ%&iﬁﬁ} it YereSeumpreSaBti8adbusin
anyr re: Vaaak? 023

Sergio Segura, Robert M. Hierons, David Benavides, Antonio Ruiz
Cortés: Automated metamorphic testing on the analyses of feature
models. Information & Software Technology 53(3): 245-258 (2011)

https://doi.org/10.1016/j.infsof.2010.11.002

Challenge 3.1: Functional Testing

FM FMW’ Metamorphic relation
>
é # products(FM ") =# products(FM) A VP'(P'e products(FM ') < 3P € products(FM) -
% B] 8] D] (pf e features(P) AP'=P U{f}) v (pf ¢ features(P) A P'=P))
g # products(FM ') =# products(FM) + filter (FM ,{pf },) A VP'(P'e products(FM') <
g EI EI EI 3P € products(FM)-P'=P v (pf € features(P) AP'=P U{f}))
g # products(FM ') =# products(FM) + (#C —1)# filter(FM ,{pf},¢) A
:ZZ .) N VP'(P'e products(FM ') < 3P e products(FM) -
g B | B] D][E] (pf € features(P) Adc e C-P'=P u{c}) v (pf ¢ features(P) A P'=P))

products(FM ") =# products(FM) + (27¢ —1)# filter(FM ,{pf},¢#) A
x & VP'(P'e products(FM ") < 3P < products(FM) -

£l BICTRIET [o ¢ features(P) A3S € o(C)- P'= PUS) v (pf ¢ features(P) A P'= PY))

@
@
5 - products(FM ") = products(FM)\ filter (FM ,{f},{g})
g | [B} -

>
B

products(FM ') = products(FM)\ filter (FM ,{f, g}, ®)

EXCLUDES

£
o)
&
o)

Performance Testing

How to know the performance of FM analysis
tools Iin pessimistic cases?

Execution time
Memory consumption

L D | e D
fﬁ} ‘}jﬁ‘; { } ! |

Sergio Segura, José Antonio Parejo, Robert M. Hierons, David Benavides,
Antonio Ruiz Cortes: Automated generation of computationally hard feature
models using evolutionary algorithms. Expert Syst. Appl. 41(8): 3975-3992
(2014)

https://doi.org/10.1016/j.eswa.2013.12.028

Challenge 3.2: Performance Testing

-

itness values
execution time, memory consumption)

Initial Hardest feature
population model found
N V

N V

i\
~—~

Crossover

Challenge 3.2: Performance Testing

Encoding - Crossover - Mutation

A

cTc [N T . o I

Mutation

Challenge 3.2: Performance Testing

> 30 minutes [Evolutionary search
B Random search

27.9x10% nodes
25.3x108 nodes

6.7 minutes
4.2 minutes (x2)

0.2 seconds

Execution time in a CSP-based reasoner Memory consumption in a BDD-based reasoner

- But what’s the
application of all

these???

Forth stop:
Applications
of the
Automate

analysis of
feature
models

Computing
https://doi.org/10.1007/500607-018-0646-1

@ CrossMark

Automated analysis of feature models: Quo vadis?

José A. Galindo" - David Benavides' - Pablo Trinidad’ -
Antonio-Manuel Gutiérrez-Fernandez’' - Antonio Ruiz-Cortés'

Received: 23 March 2017 / Accepted: 18 July 2018
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract

Feature models have been used since the 90s to describe software product lines as a
way of reusing common parts in a family of software systems. In 2010, a systematic
literature review was published summarizing the advances and settling the basis of
the area of automated analysis of feature models (AAFM). From then on, different
studies have applied the AAFM in different domains. In this paper, we provide an
overview of the evolution of this field since 2010 by performing a systematic mapping
study considering 423 primary sources. We found six different variability facets
where the AAFM is being applied that define the tendencies: product configuration
and derivation; testing and evolution; reverse engineering; multi-model variability-
analysis; variability modelling and variability-intensive systems. We also confirmed
that there is a lack of industrial evidence in most of the cases. Finally, we present where
and when the papers have been published and who are the authors and institutions
that are contributing to the field. We observed that the maturity is proven by the
increment in the number of journals published along the years as well as the diversity
of conferences and workshops where papers are published. We also suggest some
synergies with other areas such as cloud or mobile computing among others that can
motivate further research in the future.

Variability context facet

Some results from the literature

Product configuration _
and derivation 4 9 15 - 1 3
Testing and _
Reverse _
engineering 2 4 4 12 2 0
Multi-model
variability analysis ~ 2 2 3] 13 3 0
Variability _
Variahility—-intensive _
systems analysis 1 3 1 14) 0
Opi'nion Philosé)phical Soldtion Evaldation Valid'ation Exper'ience
Paper Paper Proposal Research Research Report

Research facet

Fig. 11: Visualization of the systematic map

Configuration Testing

Automated
analysis
of feature models ARELITgELE

Reverse
engineering

it
<
o8,
Variability intensive
systems

Modelling

Challenge 2:
Explanations
on FM
analysis

Tooling the Automated analysis of SPL

£ Contact

(> FaMa Framework

FaMa Test Suite

= BeTTy Framework

FLAME framework

FaMa Curent Projects.

= Communiy

Documentation

5IFAQ

(= News

(# FaMa Team

Powered by
© cwmsimple
Template by
CMSimple-Styles

Last update: February 17. 2016
14:34:04

L CEEERYRYY ()sa

To receive our Newsletter, please

Welcome add emai beion and press button.
L 1

FaMa-FW is a Framework for automated analyses of feature models integrating some of

the most commonly used logic representations and solvers proposed in the literature

(BDD, SAT and CSP solvers are implemented). FaMa is the first tool integrating different
solvers for the automated analyses of feature models.

Faa FY,

o

Automated analysis on feature models repository

News ss—

= FaMa1.12 Released
March 08, 2012

= FaMal.ll.? Released
april 24, 2001

= FaMa 1.1.1 Released
March 31, 2011

" FaMa 110 Released
January 30, 2011

“: FaMa 1.0.0 Final
July 21, 2010

8 stemap

& Print Version

G)isa

If you are interested in this tool, please feel free to make a request.

For more information, contact us at fama.support@gmail.com

Publications on automaled analysis of feaiure models

This work was partially supported by the European Commission (FEDER) and Spanish
Government under Web-Factories (TIN2006-00472) and SETI (TIN2009-07366) projects
and by the Andalusian Government under project ISABEL (TIC-2533).

0] Tost Suto 12 v

FAMA FW is free
software; you can
redistribute it and/or
modify it under the
terms of the GNU
Lesser General
Public License .

— OSGi

COMPLIANT

LGP

WWW.isa.us.es/fama

https://github.com/isa-group/FaMA

http://www.isa.us.es/fama
https://github.com/isa-group/FaMA

mO\Skit

MOdeling Software Kitt

FAMA Architecture

FaMa REE&CRNE 4

Z:1I@Benchmarking System +~

Publicinterfaces

w
| .
o
=Y :
—
QA 7
n
o

4 N [N\ [)
: First Best "
EWMT || FAMA Valid #Prod JaCoP || Choco perform c
O
Selector ‘B
C
Czarne . Explai E Java SATA 4;%
cki oski xplain rrors BDD] Atomic o
sets <
. =
L Metamodels JL Operations JL Reasoners J | Transformations <

Benchmarking and TesTing on the analysis of feature models

4)

Metamorphic test
data generation

- J

B, elly

https://betty.services.governify.io/

https://github.com/isa-group/BeTTy

-

-

Evolutionary FM
generation

~

J

-

-

Random FM
generation

~

J

-

o

Benchmarking
support

~

J

https://betty.services.governify.io/
https://github.com/isa-group/BeTTy

First stop:
Automated
Analysis of

FM

Second stop:
Explanations
on FM
analysis

Third stop:
Testing on
FM analysis
tools

Forth stop:
Applications
of the
Automate

analysis of
feature
models

Intermediate stop in the journey
(ICSR 2013)

Automated Analysis in Feature Modelling and
Product Configuration

David Benavides!, Alexander Felfernig?, José A. Galindo!, and Florian
Reinfrank?

! University of Seville
Av. de la Reina Mercedes S/N, 41012 Seville, Spain

{benavides, jagalindo}Qus.es
% Institute for Software Technology

Graz University of Technology

Inffeldgasse 16b/I1
Graz, Austria

{afelfern,freinfra}@tugraz.at

Doy N .

SRl Teyad eals

grators
E~anomy Class
D SSSSS—

Feature model analysis and

configuration: a 10 years journey with
configuration stops

David Benavides
benavides@us.es

Configuration workshop, Graz — Sept 2018
3 @davbencue

mailto:benavides@us.es
https://twitter.com/davbencue

