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Scope of the journey: software product lines
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Software product lines

Product Lines Approach (mass customization)

= <> e

Product 1 - Product 2 Product 3

Product 4 Product 5 Product 6



A more practical view of the
SPL framework

Domain engineering
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Fig. 1.1 An overview on software product-line engineering

From “Mastering Software Variability with FeaturelDE”
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How to model

variabpility?
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Inside the

model

Authentication

Get account
information

|
walternativen |

«option»

Customer Customer " |
Insert chip card Give fi int .
nsert chip ca ive fingerprin Print balance
Figure 5: Example of an alternative relationship Figure 6: Example of an optional relationship

Taken from Modeling variability by UML use case diagrams by Von der Massen et al.



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.2206&rep=rep1&type=pdf
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Outside the
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i i Decision efect
Do you require variant 1?
name: Question 1 expected value: boolean
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Feature modelling

Feature models were first

iIntroduced by Kang et al. in 1990




Feature models

How to specify a particular product?

FEATURE

"An important part of
something”

“A prominent or distinctive
characteristic of a software
system”




Feature models

How to specify an SPL?

“Feature Model: A hierarchically arranged
set of features to represent all possible
products of an SPL”



Feature models
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Challenge 1: Automated analysis of Feature
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Computer-aided, extraction of useful information from feature models
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Feature models as CSPs

Feature Model Constraint Satisfaction Problem
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Feature models as Propositional formulas
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Automated analysis of feature models:

Computer-aided extraction of information from FMs

Mobile Phone
Calls GPS Screen Media
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How many
products?




Automated analysis of feature models:

Computer-aided extraction of information from FMs
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Yes, feature
“Basic” is dead
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Different solvers, different performance

Time (ms}

B Time BOD B Time C5P OTime 24T

EMemaory BOD @Menary CSP 0 Memary SAT

]
50
0 I n Il
; i i i
0
NIENREN} I !
ol 1 1L 1 ALh
0 1 2 3 4 5 & 7 a4 9 40 11 12 13 12 15 1@ 17 18 18 XN M 2 23 24 25
Pementage of Dependendes

M0 11 12 13 14 15 18 17T 18 19 20 21 2 23 24 B
Percentage of Dependendes

General CSP

Memory complexity

Time complexity

Counting solutions

Type of variable

Advanced F

®» ® O O &

©




Automated analysis of SPL
Why it's an important problem?

Doing this by hand Is an error prone
task in large-scale feature models

Detecting properties at early stage of

development and along all the life
cycle

It's the base for other more
complicated tasks, I.e. product

configuration




Challenge 1: Automated analysis of SPL.:

Computer-aided, extraction of useful information from SPL models
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Explanations + ‘ ~ ‘ + + | L4 + | + ~ ~ |
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Optimization ‘ ‘ | + | + || ~ ~ |
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Filter | + | | | + ~ |
Valid partial configuration | + | + @ =
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Table 3: Summary of operations and support

David Benavides, Sergio Segura, Antonio Ruiz Cortés: Automated analysis of
feature models 20 years later: A literature review. Inf. Syst. 35(6): 615-636 (2010)
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Fig. 3 UML class diagram of the FLAME architecture

Amador Duran, David Benavides, Sergio Segura, Pablo Trinidad, Antonio
Ruiz Cortés: FLAME: a formal framework for the automated analysis of
software product lines validated by automated specification testing. Software
and System Modeling 16(4): 1049-1082 (2017)
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Name:

Domain:
Value: 50

Name: memory Name: cost
Domain: Integer ) .
Value: 32 : Domain: Real
me: memory Value: 250
Domain: Integer -V'. :
Value: 256 ' 4_\1’

» David Benavides, Pablo Trinidad Martin-Arroyo, Antonio Ruiz Cortés: Automated
Reasoning on Feature Models. CAISE 2005: 491-503

* F Roos-Frantz, D Benavides, A Ruiz-Cortés, A Heuer, K Lauenroth
Quality-aware analysis in product line engineering with the orthogonal variability
model. Software Quality Journal
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Second stop:
Explanations
on FM
analysis




Challenge 2: Explanations on the Automated

analysis of SPL

Deductive
reasoning
A <1..1> : ]
—{ Is valid? | >
No
R1[R
— [

Explanations

P f >[ Why not?

Abductive
reasoning




Challenge 2: Explanations on the Automated
analysis of SPL

Ch 2.1 with feature models

Mobile Phone
Calls GPS Screen Media
I
I
I
1—-= Basic Colour High resolution Camera MP3
+ 1

Pablo Trinidad, David Benavides, Amador Duran, Antonio Ruiz Cortés, Miguel Toro: Automated

error analysis for the agilization of feature modeling. Journal of Systems and Software 81(6):
883-896 (2008)
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Challenge 2: Explanations on the Automated

analysis of SPL

Ch 2.2 with configurations E E M E E

Jules White, David Benavides, Douglas C. Schmidt, Pablo Trinidad, Brian Dougherty, Antonio

Ruiz Cortés: Automated diagnosis of feature model configurations. Journal of Systems and
Software 83(7): 1094-1107 (2010)

Alexander Felfernig, Rouven Walter, José A. Galindo, David Benavides, Seda Polat Erdeniz,

Muslim Atas, Stefan Reiterer:_ Anytime Diagnosis for Reconfiguration. J. Intell. Inf. Syst. 51(1):
161-182 (2018)



https://doi.org/10.1016/j.jss.2010.02.017
https://doi.org/10.1007/s10844-017-0492-1
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Third stop:
Testing on
FM analysis
tools




Functional Testing

How to detect faults in feature model analysis

Input Feature Model Analysis Tool

‘ﬁ ) { Translation } > ‘

« SAT, CSP, DL, OWL... %
» Large programs.

Time-consuming
Error-prone




Functional Testing

P1={AC} MR'  P1={Ac} MR P1 = {A.C,F} MR P1={A,CF}
P2 ={AB,C} P2={ABCD}  wp  pP2={ABG} » P2 ={AB,CD,F} W PL={ACH
P3 ={A,B,CE} P3 = {A,B,C,D,F} P3 = {A,B,C,E,F} P2 ={A,B,C,D,F}
P4={AB,CD,E} P4 = {A,B,C,E,F} P4 = {A,B,C,D,E,F} P3 ={AB,CEF}
P5 = {A,B,C,D,G} P4 = {A,B,C,D,E,F}
P6 = {A,B,C,E,G} P5 ={A,B,C,E,F,H}
P7 ={A,B,C,D,E,G} P6 = {A,B,C,D,E,F,H}

P8 = {A,B,C,D,E,F}

~ Operation N/ Expected output
H@?ﬁgaﬁﬁ@g@?ﬁ%&iﬁﬁ} it YereSeumpreSaBti8adbusin
anyr re: Vaaak? 023

Sergio Segura, Robert M. Hierons, David Benavides, Antonio Ruiz
Cortés: Automated metamorphic testing on the analyses of feature
models. Information & Software Technology 53(3): 245-258 (2011)



https://doi.org/10.1016/j.infsof.2010.11.002

Challenge 3.1: Functional Testing

FM FMW’ Metamorphic relation
>
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Performance Testing

How to know the performance of FM analysis
tools Iin pessimistic cases?

Execution time
Memory consumption

L D | e D
fﬁ} ‘}jﬁ‘; { } ! |

Sergio Segura, José Antonio Parejo, Robert M. Hierons, David Benavides,
Antonio Ruiz Cortes: Automated generation of computationally hard feature
models using evolutionary algorithms. Expert Syst. Appl. 41(8): 3975-3992
(2014)



https://doi.org/10.1016/j.eswa.2013.12.028

Challenge 3.2: Performance Testing

-

itness values
execution time, memory consumption)
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Challenge 3.2: Performance Testing

Encoding - Crossover - Mutation

A
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Mutation



Challenge 3.2: Performance Testing

> 30 minutes [ Evolutionary search
B Random search

27.9x10% nodes
25.3x108 nodes

6.7 minutes
4.2 minutes (x2)

0.2 seconds

Execution time in a CSP-based reasoner Memory consumption in a BDD-based reasoner



- But what’s the
application of all
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Computing
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Automated analysis of feature models: Quo vadis?
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Abstract

Feature models have been used since the 90s to describe software product lines as a
way of reusing common parts in a family of software systems. In 2010, a systematic
literature review was published summarizing the advances and settling the basis of
the area of automated analysis of feature models (AAFM). From then on, different
studies have applied the AAFM in different domains. In this paper, we provide an
overview of the evolution of this field since 2010 by performing a systematic mapping
study considering 423 primary sources. We found six different variability facets
where the AAFM is being applied that define the tendencies: product configuration
and derivation; testing and evolution; reverse engineering; multi-model variability-
analysis; variability modelling and variability-intensive systems. We also confirmed
that there is a lack of industrial evidence in most of the cases. Finally, we present where
and when the papers have been published and who are the authors and institutions
that are contributing to the field. We observed that the maturity is proven by the
increment in the number of journals published along the years as well as the diversity
of conferences and workshops where papers are published. We also suggest some
synergies with other areas such as cloud or mobile computing among others that can
motivate further research in the future.




Variability context facet

Some results from the literature

Product configuration _
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Research facet

Fig. 11: Visualization of the systematic map
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Tooling the Automated analysis of SPL
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Benchmarking and TesTing on the analysis of feature models
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Intermediate stop in the journey
(ICSR 2013)

Automated Analysis in Feature Modelling and
Product Configuration

David Benavides!, Alexander Felfernig?, José A. Galindo!, and Florian
Reinfrank?

! University of Seville
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{benavides, jagalindo}Qus.es
% Institute for Software Technology
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