
Configuring Release Plans

A. Felfernig1 and J. Spöcklberger1 and R. Samer1 and M. Stettinger1 and
M. Atas1 and J. Tiihonen2 and M. Raatikainen2

Abstract. Release planning takes place (1) on the strategic
level where the overall goal is to prioritize (high-level) re-
quirements and (2) on the operational level where the major
focus is to define more detailed implementation plans, i.e., the
assignment of requirements to specific releases and often the
assignment of stakeholders to requirements. In this paper, we
show how release planning can be represented as a configu-
ration task and how re-configuration tasks can be supported.
Thus we advance the state-of-the-art in software release plan-
ning by introducing technologies that support the handling of
inconsistencies in already existing plans.

1 Introduction

Higher flexibility of software development and better satis-
fied customer requirements can be achieved by developing
and delivering software in an incremental fashion [8]. Release
planning is needed to support such development approaches
in a structured fashion. Release planning can be regarded
as a company-wide optimization problem where stakeholders
want to maximize the utilization of often limited resources
[8, 10, 11]. Planning often takes place on two levels [1]. First,
on a strategic level where the major task is to prioritize re-
quirements with regard to criteria such as business relevance
(profit), feasibility (risk)3, and related efforts [9, 11]. On an
operational level, a detailed planning takes place where re-
quirements are assigned to releases and often also to stake-
holders in charge of their implementation. The consequences
of poor release planning are low software quality, lost busi-
ness oportunities, more replanning efforts, and also project
cancellation [10].

Figure 1 depicts an overview of a release planning process.
First, requirements are prioritized on the basis of a utility
analysis [3]. Second, detailed planning takes place where re-
quirements are assigned to releases and a release planner is in
charge of assuring the consistency of the plan with regard to a
set of additional constraints related to dependencies between
requirements and further constraints imposed by stakeholders
(see the example release constraints depicted in Table 5).

The major contributions of this paper are the following.
First, we show how to represent a release planning problem
as a configuration task. In this context, we also show how re-
configuration can be supported on the basis of configuration

1 Graz University of Technology, Graz, Austria email:
{felfernig,spoecklberger,samer,stettinger,atas}@ist.tugraz.at

2 University of Helsinki, Finland email:
{juha.tiihonen,mikko.raatikainen}@helsinki.fi

3 We interpret profit as the value of a requirement for the user [7].

and diagnosis techniques. Second, we report the results of a
performance analysis that has been conducted on the basis of
different types of release planning (configuration) problems.

The remainder of this paper is organized as follows. In Sec-
tion 2, we sketch how utility analysis can be performed on the
basis of a given set of requirements. Thereafter, in Section 3
we show how release planning can be represented as a con-
figuration task and how re-configuration can be supported in
this context. In Section 4, we report the results of an evalua-
tion of the proposed approach. The paper is concluded with
a discussion of issues for future work.

2 Utility-based Prioritization of
Requirements

The prioritization of requirements can be performed on the
basis of a utility analysis, i.e., the evaluation and ranking of
requirements with regard to a predefined set of interest di-
mensions such as profit, effort, and risk [3]. In the line of the
two basic recommendation approaches in group recommender
systems [4], prioritization can be performed in two ways (see
Figure 1): (1) aggregated utilities based approaches collect
stakeholder-individual requirements evaluations with regard
to a set of interest dimensions, aggregate those evaluations,
and calculate requirement utilities thereof, (2) aggregated pri-
oritizations based approaches aggregate stakeholder-specific
prioritizations into the final prioritization. In the following,
we explain both approaches in more detail. The second vari-
ant assumes that each stakeholder provides a prioritization
(directly or in terms of utility evaluations) wheres the first
approach also allows prioritization in situations where not all
stakeholders evaluated each of the given requirements.

Prioritization with Aggregated Utilities. In this context,
multi-attribute utility theory can be applied to determine a
ranking (prioritization) of a given set of requirements (see Ta-
ble 1). First, each stakeholder si evaluates each individual re-
quirement with regard to interest dimensions. In our example,
we use the interest dimensions profit, effort, and risk, which
are typical interest dimensions in release planning. Interest
dimensions can have an assigned weight, for example, it is
more important to avoid risky release plans than maximizing
the potential profit.

In such a setting, the distribution of weights could be sim-
ilar to the one defined in Table 2. Second, on the basis of a
given set of evaluations and a specification of the importance
of individual interest dimensions, requirements can be ranked
according to Formula 1 where imp(d) denotes the importance
of interest dimension d and contrib(r, d) denotes the contri-

Figure 1. Utility-based prioritization and constraint-based configuration of release plans. Requirements can be prioritized on the basis
of a group-based utility analysis (MAUT – multi-attribute utility theory [3]). The resulting prioritization can be determined on the basis
of aggregated utilities or aggregated prioritizations. Release plans are generated on the basis of a given prioritization and corresponding

release constraints defined by stakeholders.

bution of requirement r to dimension d.

utility(r) = Σd∈Dimimp(d)× contrib(r, d) (1)

When applying Formula 1 to the entries in Table 1 and
Table 2, we are able to derive a ranking of the requirements
R = {r1, r2, .., rn} as depicted in Table 3.

In this paper, we directly evaluate requirements with regard
to interest dimensions (on a rating scale [1..10]). Especially
for the dimensions effort and profit, alternative evaluation
scales can be defined which are then mapped to a utility scale
(e.g., [1..10]). For example, instead of evaluating effort directly
on a scale [1..10], effort could be specified in man-months
which are then translated into a corresponding utility scale.
In the context of our examples, high values for profit denote a
high associated profit, whereas high values for effort and risk
denote low associated effort and risk estimates.

Prioritization with Aggregated Prioritizations. First, multi-
attribute utility theory can be applied to determine
stakeholder-individual requirement utilities (priorities) (see
Table 4). Each stakeholder si evaluates individual require-
ments with regard to the pre-defined interest dimensions.
Alternatively, stakeholders can specify prioritizizations ”di-
rectly”, i.e., without a utility-based pre-evaluation. Second,
requirement utilities can be determined on the basis of For-
mula 2 where s represents a stakeholder, d ∈ Dim represents
an interest dimension, and r is a requirement. We assume
a globally defined specific weight for the individual interest
dimensions (see Table 2).

utility(r, s) = Σd∈Dimimp(d)× contrib(r, d, s) (2)

Stakeholder-individual prioritizations (see Table 4) have to
be aggregated. One approach to support this aggregation is to
apply basic social choice based preference aggregation func-
tions such as Borda Count where the winner is the require-
ment with the best total ranking score where each requirement
rank is associated with a score 0 .. #requirements-1 (see Table
6).4

Testing Prioritizations. A prioritization derived on the basis
of a utility analysis can be tested for plausibility. For exam-
ple, stakeholders can specify specific prioritization constraints
that have to hold in the final prioritization. Such tests could

4 For an overview of different types of preference aggregation func-
tions we refer to [4].

be applied, for example, when different departments are co-
operating in a prioritization process and specific constraints
have been pre-defined by upper-level management. Such con-
straints can be regarded as test cases for the prioritization
process (see Definition 1).

Definition 1: Consistent Prioritization: given a prioritiza-
tion P = {p1 : r1 = v1, p2 : r2 = v2, .., pn : rn = vn} for
requirements REQ = {r1, r2, .., rn} (vi ∈ domain(ri)) and a
set of test cases T = {t1, t2, .., tk}. Then P is a consistent
prioritization if P ∪ ti is consistent ∀ti ∈ T .

Consistent prioritizations determined on the basis of a util-
ity analysis can be regarded as input for release planning. In
the following, we show how prioritizations can be exploited in
the context of release planning and how release planning can
be represented as a constraint-based configuration task.

3 Constraint-based Release Configuration

Constraints ri = vi (vi ∈ domain(ri)) representing individ-
ual requirement prioritizations can be used as one input of a
release configuration problem [5] by generating release assign-
ment constraints following the rule ∀{pi : ri = vi, pj : rj =
vj} ∈ P (i 6= j) : vi > vj → relrj ≥ relri. Since r1 > r2

holds in our working example, we can derive the constraint
pc : relr2 ≥ relr1 as an input for our release configuration
task (see Definition 2). We denote the set

⋃
pci derived from

a prioritization P as PC.
Definition 2: Constraint-based Release Configuration Task :

a constraint-based release configuration task can be defined
as a tuple (R,PC,RC) where R = {relr1, relr2, .., relrn} is
a set of variables representing potential assignments of re-
quirements to releases (domain(relri)=[0..n] – 0 refers to re-
quirements not assigned to a release), PC = {pc1, pc2, .., pcm}
represents a set of prioritization constraints5, and RC =
{rc1, rc2, .., rcl} is a set of release constraints.

Examples of typically used release constraints are given in
Table 5. Further release constraints that will not be taken into
account in our working example are release capacity in hours,
total capacity in hours, release costs, total costs, assignment
of stakeholders to requirements, average risk level per release,
minimum market value per release, and further optimization

5 Hard prioritization constraints are often too strict in practice.
They can also be interpreted as preferences, i.e., solvers should
take these into account as much as possible.

requirement r1 r2 r3

profit effort risk profit effort risk profit effort risk

s1 3 3 4 7 8 6 1 2 1

s2 5 2 4 4 4 5 3 4 3

s3 6 3 2 5 5 7 4 1 4

average(AV G) 4.67 2.67 3.33 5.33 5.67 6.0 2.67 2.33 2.67

Table 1. Contribution (on a scale 1–10) of requirements R = {r1, r2, r3} to the interest dimensions Dim = {profit, effort, risk}.
Following the ”aggregated utilities” approach, utility analysis determines a prioritization. AV G is one possible aggregation function – for

further alternatives we refer to [4].

profit effort risk

importance(imp) 1 3 6

Table 2. Importance of interest dimensions in a specific requirements prioritization context.

r1 r2 r3

utility(ri) 32.66 58.34 25.68

prioritization 2 1 3

Table 3. Utility and prioritization of individual requirements R = {r1, r2, r3} with regard to the interest dimensions
Dim = {profit, effort, risk}. In this context, we assume that each requirement has its unique prioritization, i.e., prioritization(ri) =

prioritization(rj) → i = j.

criteria such as maximum profit, maximum customer value,
and minimum risk. For simplicity, Table 5 contains only bi-
nary constraints, however, these are generalizable to higher-
order constraints [2], for example, coupling(relra, relrb, relrc)
would be translated into relra = relrb ∧ relrb = relrc.

An example of a constraint-based release configuration task
is the following. This task includes the three requirements
from Section 2. Furthermore, three releases are available.

• R = {relr1, relr2, relr3}
• domain(relri) = [1..3]
• PC = {pc1 : relr2 ≤ relr1, pc2 : relr2 ≤ relr3, pc3 : relr1 ≤
relr3}

• RC = {rc1 : relr1 = relr2 , rc2 : relr1 = 1}

Definition 3: Constraint-based Release Configuration:
A constraint-based release configuration (solution) for a
constraint-based release configuration task can be represented
by a complete assignment RP = {relra = va, relrb =
vb, .., relrk = vk} where vk is the release number of require-
ment rk such that RP ∪ PC ∪RC is consistent.

In the context of our working example, an example of
a constraint-based release configuration is RP = {relr1 =
1, relr2 = 1, relr3 = 2}.

As it is often the case, prioritization as well as release plan-
ning is an iterative process [8]. As a consequence, prioritiza-
tions PC of requirements change (resulting in PC’) as well as
release constraints, i.e., RC is transformed into RC′. In such
contexts, situations can occur where RP ∪PC′∪RC′ becomes
inconsistent and we are in the need of a reconfiguration of
RP (resulting in RP ′). Consequently, a release reconfigura-
tion task has to be solved (see Definition 4).

Definition 4: Release Reconfiguration Task : A release re-
configuration task can be defined by a tuple (RP,PC′, RC′)
where PC′ represents a set of adapted prioritization con-
straints, RC′ a set of adapted release constraints, and RP ∪
PC′ ∪ RC′ is assumed to be inconsistent. The underlying
task is to identify a minimal set of constraints ∆ ⊆ RP
such that RP − ∆ ∪ PC′ ∪ RC′ is consistent. If parts of
RP have already been implemented, we can assume RP =
RPcompleted ∪ RPopen and the task is to identify a diagnosis
∆ with RPopen −∆ ∪RPcompleted ∪ PC′ ∪RC′ is consistent.

A reconfiguration for a given release reconfiguration task
can be defined as follows (see Definition 5).

Definition 5: Release Reconfiguration: A release reconfigu-
ration (solution) for a release reconfiguration task can be rep-
resented by an assignment RECONF = {relra = va′, relrb =
vb′, .., relrk = vk′} where relri = vi′ ∈ RECONF → relri =
vi ∈ ∆ and vi 6= vi′.

In this context, ∆ represents a diagnosis, i.e., a minimal
set of constraints that, if deleted from RP (RPopen), help to
restore consistency, i.e., RP −∆ ∪ PC′ ∪RC′ is consistent.

The set ∆ can be determined on the basis of a model-based
diagnosis algorithm such as FastDiag [6] which returns a
minimal set of constraints that have to be deleted in order
to restore consistency. In order to assure the existence of a
diagnosis ∆, we have to assume the consistency of PC′∪RC′.

One could also be interested in identifying minimal sets of
changes ∆ in given prioritizations PC such that PC−∆∪RC
is consistent. Table 7 provides an overview of example (re-
)configuration services that can be provided in release configu-
ration scenarios. (1) proposed prioritizations (PC) have to be
checked with regard to their consistency with a defined set of
release constraints (RC). (2) Assuming the consistency of RC

requirement r1 r2 r3

profit effort risk utility (prio) profit effort risk utility (prio) profit effort risk utility (prio)

s1 3 3 4 36 (2) 7 8 6 68 (1) 1 2 1 13 (3)

s2 5 2 4 35 (2) 4 4 5 46 (1) 3 4 3 33 (3)

s3 6 3 2 27 (3) 5 5 7 62 (1) 4 1 4 31 (2)

Table 4. Contribution (on a scale 1–10) of requirements R = {r1, r2, r3} to the interest dimensions Dim = {profit, effort, risk}. High
values for profit denote a high associated profit, whereas high values for effort and risk denote low associated effort and risk estimates.

Following the ”aggregated predictions” approach, utility analysis determines stakeholder-specific prioritizations.

constraint formalization description

coupling(relra, relrb) relra = relrb
{relra, relrb} have to be implemented in

the same release

different(relra, relrb)
relra 6= relrb ∨ relra =

0 ∧ relrb = 0
{relra, relrb} have to be implemented in

different releases

eitheror(relra, relrb)
(relra = 0 ∧ relrb 6=

0)∨ (relra 6= 0∧ relrb = 0)
{relra, relrb} are exclusive

atleastone(relra, relrb) ¬(relra = 0 ∧ relrb = 0)
at least one out of {relra, relrb} has to

be assigned to a release

atleastonea(relra, relrb, a) ¬(relra 6= a ∧ relrb 6= a)
at least one out of {relra, relrb} has to

be assigned to release a

atmostone(relra, relrb) ¬(relra 6= 0 ∧ relrb 6= 0)
at most one out of {relra, relrb} has to

be assigned to a release

atmostonea(relra, relrb, a) ¬(relra = a ∧ relrb = a)
at most one out of {relra, relrb} has to

be assigned to release a

weakprecedence(relra, relrb)
relra ≤ relrb

relra must be implemented before relrb
or in the same release

weakprecedence(relra, relrb)
relra ≤ relrb ∧ relra > 0

relra must be implemented before relrb
or in the same release

strictprecedence(relra, relrb)
relra < relrb relra must be implemented before relrb

strictprecedence(relra, relrb)
relra < relrb ∧ relra > 0 relra must be implemented before relrb

valuedependency(relra, relrb)
¬(|relra − relrb| > k)

relra and relrb must be implemented in
nearly the same release

effortdependency(relra, relrb)
¬(|relra − relrb| > k)

relra and relrb must be implemented in
nearly the same release

fixed(relr, a) relr = a
requirement r must be implemented in

release a

nolaterthan(relr, a) relr ≤ a
requirement r must not be implemented

after release a

notearlierthan(relr, a) relr ≥ a
requirement r must not be implemented

before release a

Table 5. Example release constraints. For the constraint types valuedependency and effortdependency we assume a maximum
deviation of k.

r1 r2 r3

s1 2 1 3
s2 3 1 2
s3 3 1 2

score (BRC) 1 6 2
prioritization 3 1 2

Table 6. Aggregation of stakeholder-individual prioritizations
based on the Borda Count (BRC) aggregation function (highest
score receives 2 points, second highest score 1 point, and lowest

score receives 0 points [4]).

and the inconsistency of PC ∪RC, a minimal set of elements
in PC has to be identified such that PC−∆∪RC is consistent.
(3) Assuming the consistency of PC′ ∪RC′, a minimal set of
elements in RP has to be identified (i.e., a potential change
of the current release plan) such that RP − ∆ ∪ PC′ ∪ RC′
is consistent. (4) Given a diagnosis ∆ for RP (with regard to
PC′ ∪ RC′), a constraint solver can determine a solution for
RP −∆∪PC′∪RC′. (5) If there exists a test case t ∈ T with
inconsistent(t∪PC), a diagnosis ∆ represents a minimal set
of elements in PC such that PC −∆∪ t is consistent ∀t ∈ T .

ID service

1 consistency check of PC ∪RC
2 diagnosis of PC with regard to RC
3 diagnosis of PC with regard to test cases T
4 diagnosis of RP with regard to PC′ ∪RC′

5 reconfiguration of RP with regard to PC′ ∪RC′

6 diagnosis of RC

Table 7. Overview of example release (re-)configuration
services.

4 Evaluation

Beside performance analyses, there are different alternative
ways to evaluate the release planning related services men-
tioned in Table 7.

Release plans as outcome of a configuration process can be
evaluated with regard to different interest dimensions such as
profit, risk, and effort. The corresponding utility function is
the following (see Formula 3).

utility(RP) =
Σrelr∈RPΣd∈Dim

contrib(r,d)×imp(d)
relr

|relr ∈ RP |
(3)

An evaluation of the utility of release plans generated with
the Choco constraint solver6 is depicted in Table 8. A corre-
sponding performance evaluation is depicted in Table 9. For
each combination of |RC| × #releases, we randomly gener-
ated |RC| release constraints 10 times. In this context, we did
not optimize solution search on the basis of search heuristics
– this is regarded as a major task of our future work. In Table
8, we can observe a decreasing utility of release plans along
with an increasing size of RC. Table 9 shows increasing run-
times with an increasing size of RC and an increasing number
of releases.

6 choco-solver.org

#releases
|RC| 1 5 10 25 50 100

25 114.6 110.8 123.3 123.2 114.2 118.1
50 125.3 110.9 118.0 121.9 112.9 120.7
100 114.4 99.6 111.3 108.0 111.3 120.9
250 114.3 78.4 827.3 104.2 112.0 114.9
500 123.1 61.8 70.6 88.4 110.6 123.1
1000 112.3 63.1 50.7 71.7 95.3 109.4

Table 8. Avg. utility of release plans without optimization.

#releases
|RC| 1 5 10 25 50 100

25 54.0 19.9 16.5 77.2 142.5 587.9
50 36.1 22.1 33.3 53.5 142.5 622.4
100 75.0 84.1 85.0 144.1 654.2 641.9
250 300.8 721.9 829.4 1161.5 2094.2 3831.6
500 1110.3 2824.9 5053.4 6790.1 9372.7 16677.6
1000 5018.1 12537.6 23975.8 43738.5 58207.6 73785.1

Table 9. Avg. performance of release plan determination in ms.

Reconfigurations of release plans can be evaluated with re-
gard to the similarity between the new configuration and the
old configuration where a(S) denotes the set of variable as-
signments contained in solution S.

similarity(Sold, Snew) =
a(Sold) ∩ a(snew)

a(Sold) ∪ a(snew)
(4)

An evaluation of the similarity between reconfigurations
and original release plans is depicted in Table 10. For each
combination of |RC| × #releases, we randomly generated
|RC| release constraints and a corresponding release plan 10
times, randomly changed 10% of the (original) release con-
straints and determined a reconfiguration (for the given re-
lease plan). We can observe a decreasing similarity with a
corresponding increasing number of release constraints.

#releases
|RC| 1 5 10 25 50 100

25 .96 .99 1.00 1.00 1.00 1.00
50 .93 .97 .99 1.00 1.00 1.00
100 .87 .96 .97 .99 .99 1.00
250 .96 .87 .93 .98 .99 .99
500 .99 .76 .86 .95 .97 .99
1000 1.00 .75 .78 .90 .95 .97

Table 10. Avg. similarity of reconfigurations.

Diagnoses can be evaluated with regard to their degree of
conservativism (see Formula 5), i.e., the number of changes
needed in a constraint set C compared to the overall number
of elements in C. Furthermore, diagnoses can be evaluated
with regard to their relevance: the lower the total relevance
of constraints contained in a diagnosis (represented as the sum
of the individual relevances (rel(δi)) of constraints in ∆), the
higher the relevance of the ∆ (see Formula 6).

conservativism(∆, C) = 1− |∆||C| (5)

relevance(∆ = {δ1, δ2, .., δq}) =
Σδi∈∆rel(δi)

|∆| (6)

An evaluation of conservativism and relevance of generated
diagnoses is depicted in Table 11. For each combination of
|RC| ×#releases, we randomly generated |RC| release con-
straints 10 times, assigned importance values to these con-
straints, and randomly changed 10% of the constraints. The
resulting (inconsistent) constraint sets were diagnosed with
FastDiag [6]. The corresponding evaluation results are de-
picted in Table 11. We can observe a decreasing degree of con-
servativism with an increasing number of release constraints
RC.

#releases
|RC| 1 5 10 25 50 100

25 .84/1.0 .99/.2 .99/.1 1.00/0 1.00/0 1.00/0
50 .75/1.0 .99/.5 .99/.4 1.00/0 1.00/0 1.00/0
100 .62/1.0 .98/1.0 .99/.7 1.00/.2 1.00/0 1.00/0
250 .58/1.0 .86/1.0 .96/1.0 .99/.9 1.00/.8 1.00/.1
500 .56/1.1 .76/1.0 .89/1.0 .98/1.0 .99/.8 1.00/.8
1000 .55/1.2 .64/1.0 .76/1.0 .92/1.0 .97/1.0 .99/1.0

Table 11. Avg. conservativism and relevance (c/r) of diagnoses.

5 Conclusion and Future Work

In this paper, we have shown how to represent release plan-
ning as a configuration problem. This representation is a ma-
jor basis for supporting re-planning tasks, i.e., the adaptation
of plans that become inconsistent due to changing constraints
(e.g., a changing availability of resources). In this context, we
also focused on introducing concepts that support the auto-
mated adaptation of release plans (reconfiguration of release
plans) and different variants thereof such as the diagnosis of
release constraints and prioritization constraints. To show the
applicability of the presented concepts, we have presented ini-
tial evaluation results based on a couple of evaluation metrics.
Future work will include the development and evaluation of
different types of preference aggregation functions (see Sec-
tion 2) with regard to their capability of generating relevant
prioritizations. Furthermore, we will optimize the determina-
tion of release plans, reconfigurations, and diagnoses by inte-
grating intelligent search heuristics that help to improve the
quality of identified solutions. In this context, we will com-
pare constraint-based reasoning approaches with local search
based ones [8] with regard to efficiency and solution quality.

Acknowledgment

The work presented in this paper has been conducted within
the scope of the Horizon 2020 project OpenReq (732463).

REFERENCES

[1] D. Ameller, C. Farre, X. Franch, D. Valerio, and A. Cassarino,
‘Towards continuous software release planning’, in SANER
2017, pp. 402–406, Klagenfurt, Austria, (2017).

[2] F. Bacchus, X. Chen, P. van Beek, and T. Walsh, ‘Binary
vs. non-binary constraints’, Artificial Intelligence, 140(1–2),
1–37, (2002).

[3] J. Dyer, ‘Multi attribute utility theory’, International Series
in Operations Research and Management Science, 78, 265–
292, (1997).

[4] A. Felfernig, L. Boratto, M. Stettinger, and M. Tkalcic, Group
Recommender Systems – An Introduction, Springer, 2018.

[5] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-
based Configuration: From Research to Business Cases, Else-
vier/Morgan Kaufmann Publishers, 1st edn., 2014.

[6] A. Felfernig, M. Schubert, and C. Zehentner, ‘An Efficient Di-
agnosis Algorithm for Inconsistent Constraint Sets’, Artificial
Intelligence for Engineering Design, Analysis, and Manufac-
turing (AIEDAM), 26(1), 175–184, (2012).

[7] D. Greer, D. Bustard, and T. Sunazuka, ‘Prioritization of sys-
tem changes using cost-benefit and risk assessments’, in 4th
International Symposium on Requirements Engineering, pp.
180–187, Limerick, Ireland, (1999).

[8] D. Greer and G. Ruhe, ‘Software release planning: An evo-
lutionary and iterative approach’, Information and Software
Technology, 46(4), 243–253, (2004).

[9] H. Jung, ‘Optimizing value and cost in requirements analysis’,
IEEE Software, 15(4), 74–78, (1998).

[10] M. Lindgren, R. Land, C. Norström, and A. Wall, ‘Key as-
pects of software release planning in industry’, in 19th Aus-
tralian Conference on Software Engineering, pp. 320–329,
Perth, WA, Australia, (2008).

[11] G. Ruhe and M. Saliu, ‘The art and science of software release
planning’, IEEE Software, 22(6), 47–53, (2005).

