
Liquid Democracy in Group-based Configuration
Muesluem Atas and Thi Ngoc Trang Tran and Ralph Samer

and Alexander Felfernig and Martin Stettinger
Institute of software technology, Graz University of Technology, Graz, Austria,

email: {muesluem.atas, ttrang, rsamer, alexander.felfernig, mstettinger}@ist.tugraz.at

Davide Fucci
University of Hamburg, Hamburg, Germany

email: fucci@informatik.uni-hamburg.de

Abstract. Group-based configuration systems support scenarios
where a group of users configures a product/service. In those group-
based configuration scenarios where the knowledge of some group
members regarding items is insufficient, an advice of experts is nec-
essary in order to help members to evaluate products or services. This
paper introduces a novel approach which takes advantage of the con-
cept of liquid democracy that allows the delegation of group mem-
ber votes to experts. Concerning the application of liquid democ-
racy, we propose a new approach based on Multi-attribute Utility
theory (MAUT)-based evaluation used to calculate the utility of con-
figurable items. Compared to the traditional approach, the proposed
MAUT-based evaluation focuses on the role of experts by assigning
higher weights to them. Additionally, the respective expertise level of
the experts is taken into account. Consequently, the main contribution
of this paper consists in the improvement of group-based configura-
tion by taking liquid democracy aspects into consideration.

1 Introduction
Configuration [5, 12] is an important application area of Artificial
Intelligence that enables users to configure complex items described
by many dimensions (attributes). Typical examples of such items
include release plans [10], tourism packages [13], furnitures [6], and
financial services [7, 11]. While most existing configuration systems
focus on the support of single users, there also exist scenarios where
items can be jointly configured by groups of users, e.g., requirements
engineering scenarios where a group of stakeholders configures
software release plans. In such scenarios, group-based configuration
systems have been recognized as being useful tools that help to
identify configurations which satisfy preferences of all group
members [4]. When interacting with group-based configuration
systems, each group member explicitly articulates his/her preference
with respect to different item dimensions. Preferences declared by
group members are then checked for consistency. As soon as all
user preferences are consistent with each other as well as with the
knowledge base, the constraint solver will be able to find items
that satisfy the preferences of all group members. After this, utility
values for each item can be calculated, for example, on the basis of
Multi-attribute Utility theory (MAUT) [3]. Such an approach takes
into account the preferences of group members with respect to the
dimensions of items and the importance of dimensions from the
users’ point of view. The item achieving the highest utility value will

then be recommended to the group.

In the context of group-based configuration, sometimes, some
group members may be unable to evaluate the dimensions of a given
set of items due to a knowledge gap. Hence, in order to precisely
evaluate items, group members have to invest much effort in order
to collect necessary information as well as to analyze items [14]. In
such a situation, group members could ask for advice from people
who are experts in the item domain of interest. The consultation of
experts helps to precisely identify evaluations of items and thereby
further facilitates the entire configuration process. The preference
configuration of group members in this context can be interpreted
and considered as a liquid democracy paradigm which provides an
alternative decision making model to make better use of collective
intelligence [14]. The liquid democracy concept empowers group
members to either play an active role (i.e., active users who directly
vote items) or a passive role (i.e., passive users who delegate their
rating power to experts) in the voting process [2].

Recently, a variety of studies regarding liquid democracy have
been conducted for the purpose of making better use of the so-called
”wisdom of the crowds” [14]. For instance, Boldi et al. [2] propose
a Facebook application that enables each user to select one of
his/her friends as the expert of a music genre. The expert then helps
him/her to select some pieces of music. Johann et al. [8] introduce
the applicability of liquid democracy and e-democracy concepts to
address challenges of a massive and continuous user participation in
the context of requirements engineering. Zhang et al. [14] propose
an efficient statement voting scheme that unifies two basic stages
of liquid democracy, i.e., delegation and voting. During the vot-
ing/delegating phase, each voter can either vote for candidate(s) or
delegate his/her voting power to another voter. Each voter is assigned
with a temporal ID which is encrypted and distributed in such a
way that guarantees the anonymity of the delegation/voting process.
Although up to now, there exist many studies with regard to liquid
democracy, to some extent it is still unclear how liquid democracy
can be applied in the context of group-based configuration. Two
emerging questions are: (i) ”How does the system recommend
experts to a user who has not enough knowledge about items?”
and (ii) ”How to calculate the utility on the basis of emphasizing
the importance of experts who were chosen by stakeholders?”.
To the best of our knowledge, there does not exist any research

which provides an in-depth view of the correct application of liquid
democracy in group-based configuration. In this paper, we present
an insight of the application of liquid democracy in group-based
configuration and propose a novel approach of a MAUT-based
evaluation that takes preferences of group members/experts into
account and thereby assigns a higher importance to the experts.

The remainder of the paper is organized as follows. In Section 2,
we describe a group-based configuration scenario in requirements
engineering which is used as a working example throughout the pa-
per. In Section 3, we discuss how liquid democracy can be applied
to group-based configuration in order to transfer the rating power
from group members to experts. Section 4 presents a new approach
of MAUT-based evaluation to calculate the utility value of a require-
ment. Section 5 discusses how requirements can be assigned to re-
leases based on their utility value, their effort estimation, existing
dependencies between requirements, and the capacity of releases. Fi-
nally, Section 6 draws a brief conclusion and provides some ideas for
future work.

2 Working example
For demonstration purposes, we introduce a group configuration sce-
nario occurring in a small requirements engineering example project
where we configure a release plan. In this context, we define a set
of requirements (R1, R2, R3, and R4) for developing a sport watch.
These requirements are defined by a group of engineers with long-
standing experience and practical knowledge in requirements engi-
neering. Each requirement is described by an id, a title, and a textual
description (see Table 1).

Id Title Description

R1
Evaluation
Software

To evaluate the collected training data, an evalua-
tion software is required. The evaluation software
requires the connection and the access to the clock’s
internal memory. The evaluation should contain
measured information regarding the distance, the
height, the average heart rate, and the calorie con-
sumption.

R2

Data-
Storage
Function

To evaluate the measured data, a storage service is
required. The internal memory is used for saving
the measured information, such as the distance, the
height, the average heart rate, and the calorie con-
sumption. The stored data will be used by the eval-
uation software.

R3 GPS
To identify the position, a GPS sensor is used. Based
on the measured position and time information, the
speed and the distance can be measured.

R4
Display
lighting

The sport watch needs a display lighting to be oper-
ated at dusk.

Table 1. Example requirements for the development of a sport watch. Each
requirement is described by an id, a title, and a textual description.

In this example, we assume a situation where a group of five stake-
holders (i.e., users) reads requirements, evaluates them regarding dif-
ferent dimensions of requirements, and assigns them to different re-
leases (i.e., release planning configuration). We defined two different
releases which are shown in Table 2.

Given the sets of requirements and releases, we assume that each
stakeholder evaluated requirements with regard to the following
dimensions: risk, effort, and profit. The dimension of risk indicates
”the estimated risk for developing a requirement”, effort represents
”the estimated total work done for developing a requirement”, and
profit corresponds to ”the estimated profit of a requirement”. These

Releases Capacity (in hours) Start date End date
Release 1 260 2020-05-01 2020-07-01
Release 2 260 2020-07-15 2020-09-15

Table 2. Defined releases for the development of a sport watch. Each re-
lease is described by the start date, the end date, and the capacity. The ca-
pacity indicates the planned effort of a release in hours.

dimensions are evaluated using ratings. Thereby, the ratings can lie
in the range between 1 and 5, where an evaluation of 5 indicates
a requirement with low risk, high profit, and low effort and an
evaluation of 1 represents a requirement with high risk, low profit,
and high effort.

The evaluation of stakeholders with regard to different dimensions
of requirements is shown in Table 3. In this table, some group mem-
bers did not sufficiently evaluate dimensions of a requirement (i.e.,
some dimensions were not evaluated by stakeholders). For instance,
the first stakeholder (S1) did not evaluate the profit of the require-
ment R2. In addition, there also exist some stakeholders who did not
evaluate any dimension of a requirement. For instance, the fourth
stakeholder (S4) did not evaluate any dimension of the requirement
R1. A possible reason for the existence of such missing evalua-
tions can be lacking expertise or knowledge of some stakeholders
regarding the meaning of some requirements. In this scenario, those
stakeholders who do not know much about the content of some
requirements have to invest a lot of effort in order to acquire enough
necessary knowledge and to analyze the requirements. This triggers
a high cost of the requirement evaluation process. Alternatively,
the stakeholder could ask for the advice of some experts to provide
more precise evaluations with regard to dimensions of requirements.
In other words, the stakeholder directly passes his/her evaluation
power to experts by using liquid democracy (see Section 3). In the
context of requirements engineering, the expert can be a requirement
engineer who has longstanding experiences and practical knowledge
of requirements. The consultation of experts helps to precisely
evaluate the dimensions of items.

Alternatively, in some cases empty evaluations could be trigged
by the reason that the stakeholder does not want to evaluate some
dimensions of a requirement. Moreover, he/she also does not want
to delegate the rating power to anyone else. In this scenario, group-
based configuration systems will automatically check the quantity
of complete evaluations of requirements and the configuration phase
is only complete if this quantity is high enough. In this example, we
assume that the quantity of complete evaluations should be equal to
or greater than 80% of the total number of all evaluations. In other
words, the configuration phase will not be finished until the quantity
of available evaluations reaches 80%.

In addition to that, when evaluating a requirement, stakeholders
can assign different weights to dimensions. Thereby, the weight is re-
ferred to as the importance of a dimension, i.e., the higher the impor-
tance of a dimension, the higher the weight. Different stakeholders
could assign different weights to the same dimension. For instance,
one stakeholder (e.g., developer) assumes that the effort of a require-
ment is the most important dimension, whereas another stakeholder
(e.g., project manager) evaluates the profit to be the most important
dimension of a requirement. In order to limit the scope of this pa-
per, some simplifications have to be made. For the sake of simplicity,
we assume that the importance (i.e., weight) of all dimensions for all
stakeholders is equal and all dimensions have a weight of 1 from the

Stakeholders Requirement 1 (R1) Requirement 2 (R2) Requirement 3 (R3) Requirement 4 (R4)
Risk Profit Effort Risk Profit Effort Risk Profit Effort Risk Profit Effort

S1 5 3 4 2 - 4 4 4 4 2 - -
S2 3 3 - 2 - 3 2 5 - 2 5 4
S3 3 4 3 5 - 4 2 3 3 4 2 -
S4 - - - 4 - 2 2 4 4 1 3 -
S5 3 3 4 - - 4 2 - 4 4 3 4

Table 3. Evaluations of stakeholders with regard to the defined requirements in Table 1. Each requirement is represented by the three following dimensions:
risk, profit, and effort. Each evaluation is in the range of 1 to 5, where the evaluation of 5 indicates a requirement with low risk, high profit, and low effort and
the evaluation of 1 represents a requirement with high risk, low profit, and high effort. Evaluations which were not provided by stakeholders are represented as a
dash symbol (”-”).

stakeholders’ point of view (i.e., ∀ s ∈ stakeholders, weight(s, risk)
= weight(s, profit) = weight(s, effort) = 1).

3 Application of Liquid Democracy

Liquid democracy is a hybrid voting model of participative
democracy which combines direct and representative democracy
approaches in order to empower electors [1, 9]. While direct democ-
racy allows electors to directly vote for an item, representative
democracy enables electors to select representatives (or experts) and
empower them to vote for items. One of the major issues of direct
democracy is the insufficient knowledge of the voter about some
items. As a consequence, these voter may provide unprecise evalua-
tions or may even not be able to assess them in a reasonable way. In
sharp contrast to direct democracy, representative democracy allows
a stakeholder to elect an expert who plays the role of a representative
to vote for items. However, representative democracy is also known
to show a weakness in terms of representativeness. In particular,
this is true for scenarios where many voters delegate their voting
power to only one expert. That means, the expert’s opinion usually
represents the idea of many voters and hence, it triggers a situation
in which the evaluation of the expert partly reflects the opinion of a
stakeholder. In this context, liquid democracy has been recognized
as a mixed approach which takes advantage of the strength of direct
and representative democracy. Liquid democracy enables voters to
either directly vote items or delegate their voting rights to an expert.
Consequently, this key benefit of liquid democracy serves as main
motivation to apply this voting model.

In this paper, we use a liquid democracy approach in order to com-
plete evaluations of dimensions which were not evaluated by stake-
holders. As shown in Table 3, we can observe that stakeholders did
not evaluate all dimensions of requirements. In this example, we as-
sume that stakeholders S2, S4, and S5 need experts to complete their
evaluations. Expert selection can be done by one of two approaches.
The first approach is to select only one expert for the three afore-
mentioned stakeholders. The second approach is to allow each group
member to select his/her own expert. In our example, we choose the
second approach where each stakeholder chooses different experts
for different requirements. For instance, regarding the requirement
which is related to the user interface, the stakeholder can choose an
expert who has experiences in user interface design. For the data
storage-related requirement, the stakeholder can choose an expert
who has knowledge of data management. In our approach, the expert
selection process is done automatically by the recommender system.
That means, experts on a specific topic are automatically identified
and recommended to the stakeholder. Alternatively, each stakeholder
is allowed to select experts who are not included in the recommended

list. In our approach, the recommender system suggests experts based
on the expertise level. In the context of requirements engineering,
the expertise level of an expert can be calculated based on the fol-
lowing criteria: working experience, skills, number of contributions
in requirements engineering projects, and number of delegations re-
ceived in the requirements engineering domain. The expertise level
is in range of 1 to 5. The expertise level of 5 indicates excellent topic-
related knowledge, whereas the expertise level of 1 represents limited
knowledge.

In this paper, we exemplify an expert recommendation process
with 5 experts in the requirements engineering domain. Table 4
shows a recommended list of experts ranked in a descending order
of the expertise level. In addition, stakeholders who want to delegate
evaluations to other experts can select different experts for different
requirements. As shown in Table 1, the development of the defined
requirements requires deep knowledge with regard to different areas.
Therefore, selecting an appropriate expert for each requirement helps
to increase the overall quality of requirements engineering. The ex-
pert selection for stakeholders S2, S4, and S5 are depicted in Table
5. In this table, we can observe that stakeholders select different ex-
perts for different requirements. For instance, stakeholder S2 requires
experts’ evaluations regarding the dimensions of requirements R1,
R2, and R3. The stakeholder S2 chooses Expert3 for R1, Expert2
for R2, and Expert4 for R3. Furthermore, we can observe that the
stakeholder S2 does not need any expert for R4 and this is repre-
sented by a dash symbol (”-”) in Table 5.

Experts Expertise-Level
(sport watch domain)

Expert2 4.5
Expert5 3.75
Expert4 3.15
Expert1 2.25
Expert3 2.05

Table 4. The expertise level in the sport watch domain. The expertise level
is in the range of 1 to 5, whereby 1 indicates limited knowledge and 5 indi-
cates excellent knowledge.

Stakeholders R1 R2 R3 R4

S2 Expert3 Expert2 Expert4 -
S4 Expert2 Expert2 - Expert2
S5 - Expert5 Expert2 -

Table 5. Experts chosen by stakeholders regarding different requirements.
The dash symbol ”-” represents a situation in which a stakeholder does not
need any advice of an expert.

After the selection of experts with respect to each requirement,
these experts evaluate the remaining requirement dimensions which

Stakeholders Requirement 1 (R1) Requirement 2 (R2) Requirement 3 (R3) Requirement 4 (R4)
Risk Profit Effort Risk Profit Effort Risk Profit Effort Risk Profit Effort

S1 5 3 4 2 - 4 4 4 4 2 - -
S2 3 3 3 2 3 3 2 5 3 2 5 4
S3 3 4 3 5 - 4 2 3 3 4 2 -
S4 2 3 3 4 4 2 2 4 4 1 3 5
S5 3 3 4 3 2 4 2 4 4 4 3 4

Table 6. Evaluations of stakeholders with regard to the defined requirements in Table 1. Each requirement is represented by the three following properties:
risk, profit, and effort. The evaluation is in the range of 1 to 5, where the evaluation of 5 indicates a requirement with low risk, high profit, and low effort and
the evaluation of 1 represents a requirement with high risk, low profit, and high effort. Evaluations which were not provided by stakeholders and experts are
represented as a dash symbol (”-”). Evaluations provided by experts are represented in bold text.

were not evaluated by the stakeholders S2, S4, and S5. The evalu-
ations which were given by experts are shown (in bold) in Table 6.
Next, the utility of each requirement has to be calculated and used
as one of the important criteria to assign requirements to releases.
The utility of each requirement is calculated based on Multi-attribute
Utility Theory (MAUT) (see Section 4).

4 Application of Multi Attribute Utility Theory
As already mentioned before, configurable items are usually de-
scribed by a set of dimensions. In this context, Multi-attribute Util-
ity Theory (MAUT) [3] is applied. In this paper, we propose a new
MAUT-based approach that calculates the utility of an item i accord-
ing to the evaluations of stakeholders (evaluation(s,d)) with regard
to dimensions d, the importance of these dimensions (w(s,d)) from
the stakeholders’ point of view, and the importance of stakehold-
ers/experts (w(s)). The final result of the MAUT evaluation is then
represented by the weighted average of all stakeholders’ evaluations
for the dimensions d. Formula 1 indicates that an experts’ evaluation
evaluation(e,d) for a dimension d is used in cases where a stake-
holders’ voting is delegated. Otherwise, a stakeholders’ own evalu-
ation will be taken into account for the MAUT calculation. In our
approach, compared to a stakeholder, an expert has a higher impact
on the overall utility of an item, i.e., the weight of an expert is twice
the weight of a stakeholder (see Formula 2). In addition, the expertise
level el(e) of an expert e is also considered in the weight calculation.
The total MAUT value (i.e., the utility value) of a requirement Ri is
then calculated by summing all dimension-specific MAUT values of
the requirement Ri (see Formula 3).

eval(s, d) =

{
evaluation(e, d) ifevaluation(s,d) delegated
evaluation(s, d) otherwise

(1)

w(s) =

{
weight(s) ∗ 2 + el(e) if evaluation(s,d) delegated
weight(s) otherwise

(2)

Utility(Ri) =

∑
s∈stakeholders

∑
d∈dims eval(s,d)∗w(s,d)∗w(s)∑

d∈dims w(s,d)∗w(s)

|stakeholders|
(3)

An example of the utility calculation of a requirement is presented
in Formula (4). In this example, for simplicity, we assume that all
stakeholders assign the same weight (i.e., the weight of 1) for all di-
mensions of requirements (∀s ∈ stakeholders, ∀d ∈ dimensions,
w(s, d)= 1). Additionally, we assume that each stakeholder has also

the same importance (∀s ∈ stakeholders weight(s)= 1).

Utility(R2) =

∑
s∈stakeholders

∑
d∈dims eval(s,d)∗w(s,d)∗w(s)∑

d∈dims w(s,d)∗w(s)

|stakeholders|

=
1

5

(2 ∗ 1 + 4 ∗ 1
1 + 1

+
2 ∗ 1 + 3 ∗ (1 ∗ 2 + 4.5) + 3 ∗ 1

1 + (1 ∗ 2 + 4.5) + 1

+
5 ∗ 1 + 4 ∗ 1

1 + 1
+

4 ∗ 1 + 4 ∗ (1 ∗ 2 + 4.5) + 2 ∗ 1
1 + (1 ∗ 2 + 4.5) + 1

+
3 ∗ (1 ∗ 2 + 3.75) + 2 ∗ (1 ∗ 2 + 3.75) + 4 ∗ 1

(1 ∗ 2 + 3.75) + (1 ∗ 2 + 3.75) + 1

)
=

1

5

(6
2
+

24.5

8.5
+

9

2
+

32

8.5
+

32.75

12.5

)
= 3.354

(4)

Similarly, MAUT values of other requirements are also calcu-
lated by using Formulae 1 - 3. The MAUT values of requirements
R1, R2, R3, and R4 are the following: MAUT (R1) = 3.266,
MAUT (R2) = 3.354, MAUT (R3) = 3.380 and MAUT (R4) =
3.326. After the calculation of requirement utilities, requirements
will be assigned to defined releases (see Section 5).

5 Release Planning
In Section 4, we showed how the utility value of a requirement
can be calculated based on Multi-attribute Utility Theory (MAUT).
The higher the MAUT value, the sooner the requirement will be
implemented. In the context of requirements engineering, making a
recommendation of requirements is referred to as release planning,
i.e., to clarify which requirement should be implemented in which
release. In release planning, stakeholders have to estimate the
effort investing for each requirement. In our working example, the
effort is referred to as the invested time (in hour) to implement
a requirement. The higher the evaluation of effort, the lower the
invested time. We assume that an evaluation of 5 corresponds to an
effort of 50 hours and an evaluation of 1 corresponds to an effort
of 250 hours. In order to calculate the effort of a requirement, we
first calculate the average of evaluations with regard to the effort of
the requirement given by all stakeholders. After that, the effort (in
hour) is calculated using the Formula 5, where effort(Ri, s) is the
evaluation of the stakeholder s about the effort of the requirement Ri.

effort(Ri) =
(
5−

∑
s∈stakeholders effort(Ri, s)

|stakeholders| + 1
)
∗ 50

(5)

We exemplify the calculation of the effort of the requirement R1

as shown in Formula 6. The effort values of other requirements are
calculated in a similar way and presented in Table 7.

effort(R1) =
(
5− 4 + 3 + 3 + 3 + 4

5
+ 1
)
∗ 50 = 130 (6)

Requirements Average effort (effort in hours) Assigned release
R1 3.4 (130) Release 2
R2 3.4 (130) Release 1
R3 3.6 (120) Release 1
R4 4.33 (83.33) Release 2

Table 7. The assignment of requirements to releases based on the effort of
requirements, dependencies between requirements, their utility values, and
capacity of releases. The effort of each requirement in represented in the sec-
ond column of the table.

In our example, release planning is done based on four criteria: the
utility (MAUT) value, effort (measured in hours), the dependency be-
tween requirements, and the capacity of releases. Given the fact that
requirement R3 achieves the highest utility (i.e., MAUT (R3) =
3.380) and its estimated time effort of 120 hours, R3 turns out to be
the best candidate to be assigned to Release 1. Furthermore, it is rea-
sonable that requirement R2 should follow R3 and hence also be as-
signed to Release 1, as R2 shows the second highest utility and there
is still some remaining capacity left for Release 1 to cover R2 in this
release (i.e., capacity(Release 1) = 260 hours). Next, requirement R4

has to be assigned to a release. The assignment of requirement R4

to the first release is not possible, because of the limited capacity (
remaining capacity (Release 1) = 10 hours and effort(R4) = 83.33
hours). Therefore, requirement R4 is assigned to the second release.
Finally, requirement R1 is assigned to the second release. Based on
the description of requirements shown in Table 1, we can observe
that there is a dependency between R1 and R2 which is indicated as
follows: ”The evaluation software requires the access to the clock’s
internal memory”. In the context of requirements engineering, this
means that the first requirement R1 (i.e, evaluation software) can not
be implemented before R2 (i.e., data storage function) has been com-
pleted. However, in this scenario, the identified dependency will not
trigger any changes in the release planning since the release plan in
Table 7 shows that requirement R2 which is assigned to the first re-
lease (development period: from 2020-05-01 to 2020-07-01) will be
implemented before all the requirements assigned to the second re-
lease (development period: from 2020-07-15 to 2020-09-15). With
this final step, all requirements are assigned to releases and the re-
quirements engineering process is complete.

6 Conclusion and Future Work

In this paper, we introduced utility analysis concepts which focus on
liquid democracy. These concepts allow the manual delegation of a
stakeholder’s voting right to a domain expert. First, we described a
scenario for the development of a sport watch which is used as a
working example throughout this paper. Based on the working ex-
ample, we applied liquid democracy in order to receive consultations
from experts in situations where stakeholders do not have enough
knowledge with regard to certain requirements. Afterwards, we pro-
posed a novel approach of a MAUT-based evaluation which takes
into account users’ and experts’ evaluations and assigns higher im-
portance to expert consultations (i.e., evaluations). Finally, we pro-
posed a group-based configuration for release planning where re-

quirements were assigned to releases based on derived utility values,
effort estimations, existing dependencies, and release capacities.

Within the scope of future work, we plan to integrate the proposed
approach in a requirements engineering tool named INNOSENSR1.
INNOSENSR is a modern innovative release planning tool which
makes use of intelligent techniques in order to facilitate the com-
plete requirements engineering process. In the current version of IN-
NOSENSR, stakeholders have to evaluate requirements without get-
ting any support from domain experts. In the future, we will integrate
our approach into INNOSENSR in order to increase the requirements
engineering quality.

Acknowledgment
The work presented in this paper has been conducted within the
scope of the Horizon 2020 project OPENREQ (732463).

REFERENCES
[1] Christian Blum and Christina Isabel Zuber, ‘Liquid democracy : Poten-

tials, problems, and perspectives’, The Journal of Political Philosophy,
24, 162–182, (2016).

[2] Paolo Boldi, Corrado Monti, Massimo Santini, and Sebastiano Vigna,
‘Liquid FM: recommending music through viscous democracy’, in Pro-
ceedings of the 6th Italian Information Retrieval Workshop, Cagliari,
Italy, May 25-26, 2015., (2015).

[3] J. S. Dyer, Maut - Multi-attribute Utility Theory, 265–292, Springer
New York, New York, NY, 2005.

[4] Alexander Felfernig, M Atas, TNT Tran, and Martin Stettinger, ‘To-
wards group-based configuration’, in International Workshop on Con-
figuration 2016 (ConfWS16), pp. 69–72, (2016).

[5] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha Tiihonen,
Knowledge-based Configuration: From Research to Business Cases,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1 edn.,
2014.

[6] A. Haag, ‘Sales configuration in business processes’, IEEE Intelligent
Systems and their Applications, 13(4), 78–85, (Jul 1998).

[7] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich, Recommender Systems: An Introduction, Cambridge Univer-
sity Press, New York, NY, USA, 1st edn., 2010.

[8] Timo Johann and Walid Maalej, ‘Democratic mass participation of
users in requirements engineering?’, in 23rd IEEE International Re-
quirements Engineering Conference, RE 2015, Ottawa, ON, Canada,
August 24-28, 2015, pp. 256–261, (2015).

[9] Anna Litvinenko, ‘Social media and perspectives of liquid democracy
on the example of political communication of pirate party in germany’,
in The Proceedings of the 12th European Conference on e-Government
in Barcelona, pp. 403–408, (2012).

[10] Gerald Ninaus, Alexander Felfernig, Martin Stettinger, Stefan Reiterer,
Gerhard Leitner, Leopold Weninger, and Walter Schanil, ‘Intellireq:
Intelligent techniques for software requirements engineering’, in Pro-
ceedings of the Twenty-first European Conference on Artificial Intel-
ligence, ECAI’14, pp. 1161–1166, Amsterdam, The Netherlands, The
Netherlands, (2014). IOS Press.

[11] Markus Stolze, Simon Field, and Pascal Kleijer, ‘Combining configu-
ration and evaluation mechanisms to support the selection of modular
insurance products’, in Proceedings of the 8th European Conference on
Information Systems, Trends in Information and Communication Sys-
tems for the 21st Century, ECIS 2000, Vienna, Austria, July 3-5, 2000,
pp. 858–865, (2000).

[12] Markus Stumptner, ‘An overview of knowledge-based configuration’,
Artificial Intelligence Community, 10(2), 111–125, (April 1997).

[13] TNT Tran, Müslüm Atas, Martin Stettinger, and Alexander Felfernig,
‘An extension of choicla user interfaces for configurable products’, RS-
BDA’16.

[14] Bingsheng Zhang and Hong-sheng Zhou, ‘Brief announcement: State-
ment voting and liquid democracy’, in Proceedings of the ACM Sympo-
sium on Principles of Distributed Computing, PODC ’17, pp. 359–361,
New York, NY, USA, (2017). ACM.

1 http://innosensr.com

http://innosensr.com

	Introduction
	Working example
	Application of Liquid Democracy
	Application of Multi Attribute Utility Theory
	Release Planning
	Conclusion and Future Work

