
DOI: 10.1142/S0218213011000164

March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

International Journal on Artificial Intelligence Tools

Vol. 20, No. 2 (2011) 297–312
c© World Scientific Publishing Company

BFX: DIAGNOSING CONFLICTING REQUIREMENTS IN

CONSTRAINT-BASED RECOMMENDATION

MONIKA SCHUBERT and ALEXANDER FELFERNIG

Applied Software Engineering, IST, Graz University of Technology
Inffeldgasse 16b/II 8010 Graz, Austria

monika.schubert@ist.tugraz.at

alexander.felfernig@ist.tugraz.at

When interacting with constraint-based recommender applications, users describe their
preferences with the goal of identifying the products that fit their wishes and needs. In

such a scenario, users are repeatedly adapting and changing their requirements. As a

consequence, situations occur where none of the products completely fulfils the given
set of requirements and users need a support in terms of an indicator of minimal sets of

requirements that need to be changed in order to be able to find a recommendation. The

identification of such minimal sets relies heavily on the existence of (minimal) conflict
sets. In this paper we introduce BFX (Boosted FastXplain), a conflict detection algo-

rithm which exploits the basic structural properties of constraint-based recommendation

problems. BFX shows a significantly better performance compared to existing conflict
detection algorithms. In order to demonstrate the performance of BFX, we report the

results of a comparative performance evaluation.

Keywords: Constraint-based recommender systems; conflict detection; automated query
adaptation.

1. Introduction

Recommender systems are interactive applications that support users finding in-

teresting items from a large range of products in a personalized way (see Burke1).

These systems are becoming more and more popular due to the increasing size

and complexity of product assortments offered by online selling environments.

Widespread recommender applications use concepts of collaborative filtering (see

Konstan et al.11) or content-based filtering (see Pazzani et al.17). These approaches

are well applicable for simple products such as news, movies, music and so on. For

applications where the users refine their requirements in an interactive process (e.g.

in computers, mobile phones, financial services or holiday packages) constraint-

based recommenders are used (see Felfernig et al.2). These recommenders support

the identification of items (products and services) based on a given set of explicitly

defined requirements, knowledge about the item assortment, and knowledge about

which items should be selected/recommended in which context (see Burke1). For

the purposes of this paper we will assume that the product assortment is stored

297

http://dx.doi.org/10.1142/S0218213011000164


March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

298 M. Schubert & A. Felfernig

in a database table and customer requirements are represented as selection criteria

(constraints). These constraints can be seen as part of a conjunctive query. This is

a basic approach in the field of constraint-based recommendation.

Typically, we are interested in recommendations that fulfil all specified require-

ments. In order to retrieve the products that fulfil the given set of requirements

from the product table, a corresponding conjunctive query is generated and exe-

cuted on this table. The conjunctive query is a conjunction of the criteria derived

from the specified set of customer requirements. If a query does not return any

products, the system needs to calculate explanations (see Felfernig et al.3,5 and

O’Sullivan16) that indicate minimal sets of changes such that at least one item can

be suggested to the user. Existing approaches to handle these changes focus on

maximal succeeding sub-queries (see, e.g., McSherry14) or on minimal-cardinality

diagnoses (see Felfernig et al.3,5).

The remainder of this paper is organized as follows. In Section 2 we introduce

a introductory example from the domain of navigation systems. This example will

be used throughout the paper to explain the basic properties of the BFX algorithm

— the algorithm itself is introduced in Section 3. Evaluation results including a

comparison of existing conflict detection algorithms are presented in Section 4. In

Section 5 we discuss related work. We conclude the paper and give an impression

on future work with Section 6.

2. Introductory Example

In this section we are introducing a working example which will be used for

more demonstrative explanations throughout the paper. We are defining a product

table (navigationsystems) which contains seven different navigation systems (see

navigation-systems = {P1, P2, P3, P4, P5, P6, P7} in Table 1). Each of these naviga-

tion systems is described with the following attributes: price, route saving, maps,

touch screen and screen size. The price specifies the costs of the navigation system.

Route saving describes whether it is possible to save different routes in the system

in order to be able to view them again, for example, when interacting the next time

with the navigation system. The number of maps for different countries is specified

by maps. The attributes touch screen and screen size describe the screen in more

detail. The user can specify their requirements regarding each of these attributes.

Table 1. An example assortment of navigation systems (the product table

navigation-systems = {P1, P2, P3, P4, P5, P6, P7}).

P1 P2 P3 P4 P5 P6 P7

price 140 160 170 200 140 190 180

route saving no no yes yes no no no
maps 5 6 2 10 4 1 5

touch screen no yes yes no yes no yes
screen-size 4.3 3.5 4.2 4.3 3.5 4.1 4.3



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

BFX: Diagnosing Conflicting Requirements 299

Table 2. Example customer (user) requirements CR = {c1, c2,
c3, c4, c5}. In this example the customer specifies their preferences

for each attribute.

price route-saving maps touchscreen screen-size

< 150 yes > 3 yes > 4.0

Each attribute ai has a corresponding domain dom(ai). For our example

products, the attribute domains are: dom(price) = {140, 160, 170, 180, 190, 200},
dom(route-saving) = {yes, no}, dom(maps) = {1, 2, 4, 5, 6, 10}, dom(touchscreen) =

{yes, no} and dom(screen-size) = {3.5, 4.1, 4.2, 4.3}. To complete our working ex-

ample, we also need a set of user requirements CR: c1: price < 150, c2: route

savings = yes, c3: maps > 3, c4: touch screen = yes and c5: screen size > 4.0 (see

Table 2). For this set of user requirements, a corresponding database query would

be as follows: SELECT * FROM navigation-systems WHERE price < 150 AND

route-savings = yes AND maps > 3 AND touch-screen = yes AND screen-size

> 4.0.

When we are executing this query on Table 1, no product is returned by the

query since there does not exist a navigation system which satisfies all user require-

ments. In such a situation we have to deal with the so-called no solution could be

found dilemma. In order to tackle this challenge, Felfernig et al.5 introduced an ap-

proach to support the user with repair proposals, which are minimal sets of changes

that if accepted by the user, guarantee the identification of at least one item that

completely satisfies the given set of requirements. An example for such a minimal

set of changes is to inform the user about the possibility to change the route-saving

option from yes to no and to change the touchscreen option from yes to no.

In order to be able to determine such minimal sets of changes, we need to cal-

culate minimal conflict sets (e.g. Junker,9 Mauss12). Such conflict sets have to be

calculated efficiently, since we are dealing with interactive recommendation sessions

where users are expecting an acceptable performance. In the following we are in-

troducing the BFX algorithm for identifying minimal conflict sets. The algorithm

manages to determine minimal conflict sets very efficiently which makes it extremely

useful for interactive settings.

3. The BFX Algorithm

In this section we are going to explain the BFX (Boosted FastXplain) algorithm.

This algorithm is an extension of the FastXplain algorithm that has been intro-

duced in Schubert et al.21 The performance improvements of BFX compared to the

FastXplain21 can be explained by the way minimal hitting sets are determined —

within both algorithms. As a result of the BFX algorithm we can suggest adapta-

tions to the user. In interactive settings these adaptations increases the usability as

it helps the user finding a way out of the no solution can be found dilemma.



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

300 M. Schubert & A. Felfernig

3.1. Preliminaries

Existing conflict detection algorithms (see Junker9) include an explicit consistency

checking step. In general settings consistency checking is very costly and there-

fore should be avoided. On the other hand these consistency checks make the al-

gorithm applicable for configurable products where the requirements of the user

configure the product itself. Recommender systems often deal a predefined solution

space such as a predefined set of products or items which is often represented in

a product table. This results in a characteristic structural property of constraint-

based recommendation problems namely that the set of products is finite and given

a-priori.

Compared to existing conflict detection algorithms (see Junker9 or Mauss12)

which do not take this structural property into account, the BFX algorithm takes

advantage from the knowledge about the underlying structure. The BFX algorithm

exploits — due to a given set of predefined products — all hitting sets for a given

set of customer requirements beforehand (for a detailed description see Jannach:7

Table 3 shows the data structure used for representing the mentioned (not neces-

sarily minimal) hitting sets. For example, the first column of Table 3 (1, 0, 1, 0, 1)

represents the hitting set {c2, c4} which indicates that at least c2 and c4 have to be

deleted or adapted in order to be able to identify at least one recommendation.

The standard approach to determine all conflict sets is to use an existing con-

flict detection algorithm (similar to QuickXplain9 or Mauss12) and build a hitting

set acyclic directed graph (see Reiter18). This graph is built by continuously re-

laxing the user requirements. A (minimal) conflict set is defined as follows (see

Definition 1).

Definition 1 (Conflict Set). A conflict set is defined as a subset CS =

{c1, c2, . . . , cm} ⊆ CR s.t. a query with the selection criteria specified in CS on

the product table P does not result in a solution. CS is minimal if there exists no

conflict set CS′ which is a proper subset of CS i.e. CS′ ⊂ CS.

In other words, a conflict set is a subset of the given user requirements such that

none of the items in P satisfies all constraints in CS. The minimal conflict sets for

our working example are {c1, c2}, {c2, c3, c4} and {c1, c4, c5}.
In order to resolve all conflict sets a corresponding hitting set directed acyclic

graph (HSDAG) (see Reiter18) can be constructed. In this graph the resolution

of all minimal conflict sets automatically corresponds to the identification of all

the existing minimal diagnoses. In our application context (constraint-based rec-

ommender applications), a minimal diagnosis is a minimal set of user requirements

that has to be deleted (or adapted) from the CR in order to retrieve at least one

product from the product table. The HSDAG for our working example is shown

in Figure 3 — the corresponding identified minimal diagnoses are {c1, c2}, {c1, c3},
{c1, c5}, {c2, c4} and {c2, c5}.



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

BFX: Diagnosing Conflicting Requirements 301

Due to the possibility of representing the relationship between customer require-

ments and products in the data structure exemplified in Table 3, we can further

improve the performance of the underlying diagnosis and conflict detection algo-

rithms. In the following we will introduce the basic concepts of BFX which is an

efficient algorithm for the determination of minimal conflict sets.

Table 3. Table of products and constraints with satisfaction

values (1 if the user requirement (constraint) is satisfied, 0
otherwise).

P1 P2 P3 P4 P5 P6 P7

c1(price < 150) 1 0 0 0 1 0 0

c2(routesaving) 0 0 1 1 0 0 0

c3(maps > 3) 1 1 0 1 1 0 1

c4(touchscreen) 0 1 1 0 1 0 1

c5(screensize > 4.0) 1 0 1 1 0 1 1

3.2. Identification of minimal conflict sets

The underlying data structure of our algorithm is a table representation of the

relation between the constraints CR = {c1, c2, ..., c5} and the products P =

{P1, P2, ..., P7} (see Table 3). If a constraint is satisfied by an item, a 1 (true)

is stored in the table. If the item can not fulfil the requirement (constraint) a 0

(false) is stored in the table. Table 3 shows this representation for our working ex-

ample. This table must be recalculated when user changes their requirements and

it has to be reduced if the user does not provide preferences for some of the product

attributes.

Fig. 1. Calculation of the total weight of the hitting set derived by product P1 used for the BFX

algorithm. This weight sums up all the row values which are part of the hitting set. The hitting
set consists of c2 and c4, the row values are 2 for c2 and 4 for c4 and the sum is 6. Thus the weight

of the hitting set {c2, c4} is 6.

The BFX algorithm focuses on the calculation of minimal conflict sets on the

basis of hitting sets that can be directly derived from the representation shown

in Table 3. Such an algorithm is extremely useful for interactive recommendation



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

302 M. Schubert & A. Felfernig

settings. The determined minimal conflicts can be directly presented to the user

who is responsible for deciding which requirements should remain the same and

which requirements should be changed (interactive repair scenario).In the remaining

sections of the paper we will discuss in detail the BFX algorithm and its underlying

ideas.

In order to calculate minimal conflict sets, FastXplain21 (which is the foundation

of BFX) exploits hitting sets from the product assortment and takes the one with

the lowest cardinality (lowest number of constraints in the hitting set). In our

working example this could be the hitting set {c2, c4} extracted from product P1.

If there are more than one hitting set with the same cardinality, the first one is

taken. In comparison to this the BFX calculates weights for the retrieval of the

’best’ hitting set. For the calculation of this weight the first step is to calculate the

sum of each row. In Figure 1 we can see that for the example given in Section 2 the

sum of the first row is 2 (r1 = 2), the second is 2 (r2 = 2), the third is 5 (r3 = 5),

the forth is 4 (r4 = 4) and the fifth is 5 (r5 = 5). Based of this calculation we can

calculate the total weight of each hitting set. This is done by summing up the row

value (rj) for each constraint that is part of the hitting set. For each constraint

that is part of the hitting set the value (vj) is 0 like in the table representation. For

the other constraints the value (vj) is 1 as in the table. On a more formal level we

can say:

weight(HSi) =
∑

(1− vj) ∗ rj .

Figure 1 exemplifies this based on product P1. The hitting set of P1 is {c2, c4}.
The value of the row c2 is 2 and the value of the row c4 is 4. Thus the weight of the

hitting set {c2, c4} is 6 which represents the weight of this hitting set alternative. We

select the hitting set with the lowest weight. This is the hitting set {c1, c2} for our

working example. Based on the selected hitting set we can build a directed acyclic

graph similar to the hitting set acyclic direceted graph — HSDAG (see Reiter18),

where the nodes are sets of products and the edges are labeled with constraints (the

graph of the example for the FastXplain is shown in Figure 2 and for the BFX the

tree is shown in Figure 3). The root node consists of all products from the product

table. After adding the edges labeled with the elements of the hitting set to the

root node we calculate the product set for the children. Consequently, we exclude

all products from the assortment which do not satisfy the constraint. For example

for the constraint c2 only the products {P3, P4} fulfil this constraint.

In the next step we start with the reduced set of products of the first child (for

the FastXplain this is c2 and for the BFX it is the constraint c1 in our working

example). As a detailed illustration of the FastXplain algorithm is given in Schubert

et al.21 we are focusing only on the BFX algorithm in the following description.

The hitting set with the lowest weight for the remaining product set {P1, P5} is

{c2, c4}. We add all constraints of this diagnosis to the tree. For every leaf in the

tree we identify the remaining products of the set. When calculating the remaining



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

BFX: Diagnosing Conflicting Requirements 303

Fig. 2. Directed acyclic graph built to identify all minimal conflict sets using hitting sets. This
graph is constructed by the algorithm FastXplain. The path to every leaf marked with ok is a

minimal conflict set.

Fig. 3. Directed acyclic graph built to identify all minimal conflict sets using hitting sets. This

graph is constructed by the algorithm BFX. The path to every leaf marked with ok is a minimal
conflict set.

products for the branch {c1, c2} no product is left. This means the path {c1, c2} is

a minimal set. We ensure the minimality of the set by performing a breadth-first

search in the directed acyclic graph.

For calculating all minimal conflict sets, this method has to be continued until

each leaf has either an empty set of remaining products or the path to the leaf is not

minimal (the set of constraints of the path is a superset of another minimal conflict

set). If we expand the tree further to calculate all minimal conflict sets, we would

get the following minimal conflict sets as a result: MCS = {c1, c2}, {c1, c4, c5} and

{c2, c4, c3}.
When we take a look at Figure 2 and Figure 3 we can see that the directed

acyclic graph calculated by the BFX algorithm (Figure 3) is smaller compared to



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

304 M. Schubert & A. Felfernig

the one constructed by FastXplain21 (Figure 2. This is based on the weight which

tries to eliminate as many products as possible.

3.3. The Algorithm

In this section we dive into a more formal description of BFX. BFX was inspired

by the FastXplain21 and HSDAG18 thus we keep the same level of description. The

input values for the BFX are a root node for the tree and the product table (like

Table 3). The root node is the main reference to the resulting tree which holds all

information. The result of the algorithm (all minimal conflict sets) is stored in one

global variable MCS, which is empty at the beginning.

Algorithm 1 BFX(root, p)

{Input: p - table of constraints and products}
{Input: root - the root node of the resulting tree}
{Global: MCS - set of all minimal conflict sets}
d← getMinWeightHittingSet(p)

for all constraint c from d do

p′ ← reduce(c, p)

child← addChild(c, p′)

if p′ = {} then

child← ok

if path(child) /∈ MCS then

MCS ← path(child)

return

end if

end if

if ∃ cs ∈ MCS : cs ⊆ path(child) then

child← closed

end if

if child 6= closed then

BFX(child, p′)

end if

end for

In the first step the algorithm calculates the hitting set with the lowest weight

(getMinWeightHittingSet) as shown in Figure 1. In the example tree of Figure 3

this set is {c1, c2}. If there exists more than one diagnosis with the same weight

the first one is chosen. For all constraints of this diagnosis a set of products (P ′)

containing all products that satisfy this constraint is calculated (reduced). In our

working example this is the set {P1, P5} for the constraint c1 and for the constraint

c2 it is {P3, P4}. Based on this reduced set of products combined with the constraint



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

BFX: Diagnosing Conflicting Requirements 305

ci a node in the tree is created and added to the root node (addChild). If the set

of products is empty a minimal conflict set (path from the root node of the tree

to the child) is found. The minimality is ensured by the breadth-first search of the

algorithm. If the path to the child is a minimal conflict set, the child is marked

as “ok” and no further investigation is needed for this leaf. If this path is not an

element of MCS (set of all minimal conflict sets) yet, then it is added.

If the path or a subset of it is already a minimal conflict set, then there is no

need to expand the node anymore, because the conflict set found would not be

minimal. In this situation the child is marked as “closed”. In all other cases the

tree is constructed further in breadth-first manner. In the example this expansion

would be the node c4 on the first level. When calculating all minimal conflicts sets

a tree is created where all paths to the leafs marked with “ok” are minimal conflict

sets. Otherwise (for non-minimal conflict sets) the leafs are marked with “closed”.

4. Performance Evaluation

In this section we discuss the performance of the BFX algorithm. We first look on

the best and the worst case of the algorithm. A table which represents those two

cases are shown in Figure 4. The best case for the BFX algorithm is when there

exists only one hitting set (see right part of the Figure 4). In this situation the

algorithm only needs one step. On the other hand the worst case is if the number

of different hitting sets is large. An example for such a situation can be seen on

the left side of Figure 4. In this situation the algorithm needs number of constraint

iterations. In recommender systems the tables are variable. Thus we evaluated the

performance of the BFX algorithm in different settings with different character-

istics. In order to analyze the runtime we compared the BFX algorithm with the

algorithms FastXplain21 and QuickXplain.9 All algorithms are implemented in Java

1.6 and all experiments were performed on a normal desktop PC (Intel R©CoreTM2

Quad CPU Q9400 CPU with 2.66GHz and 2GB RAM). The QuickXplain9 algo-

rithm calculates one minimal conflict set at a time. In order to calculate all minimal

conflict sets using the QuickXplain we combined it with HSDAG (Hitting Set Di-

rected Acyclic Graph) of Reiter.18 With this combination the QuickXplain is called

at every point in the HSDAG. The resulting tree is similar to the one that is con-

structed by the BFX, with the major difference that the QuickXplain approach

calculates the minimal conflict sets directly and stores in one level of the tree. In

comparison to this the BFX stores the diagnoses in one level.

The crucial point of the performance of the QuickXplain9 is the consistency

checking. One possibility to check the consistency is to use a theorem prover. An-

other one is to use a database when operating on a product table. If no product is

returned, then the consistency checking failed. Another possibility for this calcula-

tion is to create a table consisting of the constraints and products (see Table 3).

From this table it can be determined if at least one product of the assortment ful-

fils all constraints of the set that need to be checked. A product fulfils the current



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

306 M. Schubert & A. Felfernig

Fig. 4. On the left hand we can see the worst problem that can occur for the BFX algorithm.
The algorithm needs n iterations for this problem. On the right a problem is demonstrated where

the BFX algorithm performs best (one iteration is needed).

constraints if for this product (column) all selected rows (depending on the set of

constraints) are set to 1.

In our evaluation we want to compare the BFX with the version of the

QuickXplain9 which has the best performance according to the structural prop-

erties (product table) of recommender systems. We evaluated all versions (usage

of a theorem prover, consistency checking through the database and using the

table data structure) for different settings and the results have shown clearly that

the version with the consistency checking using the table data structure containing

the constraints and items (similar to Table 3) is the one with the best performance.

We used the version of QuickXplain9 with the best performance for our evaluation.

4.1. Different number of items

One critical point when analysing algorithms for recommendation problems is the

suitability for a large number of items. The typical number of items depends on the

domain of the recommender system. To study if the algorithm BFX is feasible for

a large spectrum of applications we compared the runtime to the one of FastXplain

and QuickXplain for 10 and 20 user requirements and an increasing amount of

items. In our test cases on an average 50% of the attributes of an item fulfil the

user constraint.

In order to evaluate the performance we compared the run time of all three

algorithms calculating all minimal conflict sets. This conflict set consisting of a

subset of user requirements can be used to help the user finding a solution for an

inconsistent setting. The usability of a system depends on the performance of the

underlying algorithm to help the user find a solution. Thus a fast computation of

at least one minimal conflict set is important.

Figure 5 shows the average runtime of the algorithms for calculating all minimal

conflict sets for 10 user requirements and 500, 1000, 2000, 4000 and 8000 items. Each



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

BFX: Diagnosing Conflicting Requirements 307

Fig. 5. Runtime comparison of the algorithms BFX, FastXplain and QuickXplain to calculate

all minimal conflict sets (10 user constraints and an increasing number of items).

Fig. 6. Runtime comparison of the algorithms BFX, FastXplain and QuickXplain to calculate

all minimal conflict sets (20 user constraints and an increasing number of items).

test case was performed 50 times. In this figure we can clearly see that the BFX

algorithm outperforms the FastXplain and the QuickXplain algorithms. Figure 6

shows the performance of the same tests, using 20 different user requirements.

When we take a closer look to this Figure 6 we can see that 16000 items and 20

constraints the QuickXplain takes about 3 seconds to calculate the results for the

user. In interactive settings the user looses their attention when waiting for such a

long time. The BFX algorithm needs for the same problem less then one seconds

which makes this algorithm much more suitable for interactive settings.

Sometimes it is enough to calculate one minimal conflict set for helping the user

in their selection process. For example for a constraint-based decision process in

interactive settings. Thus we studied the performance of the algorithms. The con-

clusion is similar compared to the one for calculating all minimal conflict sets. The

performance of the BFX is similar to the FastXplain and slightly better compared

to the QuickXplain, but the difference in these runtimes was quite low compared

to the one where all minimal conflict sets are calculated. Based on this evaluation



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

308 M. Schubert & A. Felfernig

we can say that all three algorithms are suited for calculating one minimal conflict

set independent from the number of items. But when it comes to the calculation of

all minimal conflict set the BFX performs best.

4.2. Different number of constraints

In different recommender applications the number of constraints varies quite a

bit. Thus we also evaluated the influence of the number of user constraints on

the runtime. We used setting with 6, 8, 10, 12, 14, 16, 18 and 20 constraints. In

Figure 7 we show the runtime of the algorithms BFX, FastXplain and QuickXplain

using 1000 items calculating all minimal conflict sets. This Figure shows similar

to the Figures 5 and 6 that the BFX is faster compared to the FastXplain and

QuickXplain.

Fig. 7. Runtime comparison of the algorithms BFX, FastXplain and QuickXplain to calculate

all minimal conflict sets using 1000 items and an increasing number of constraints (6, 8, 10, 12,
14, 16, 18 and 20).

For a broader study we increased the number of items to 4000 and performed

the evaluation again. As shown in Figure 8 the relation between the runtimes does

not change a lot, although the overall runtime increased. When looking at Figure

8 we see that the difference is not that big between the BFX and the FastXplain.

This can be explained by the fact that the BFX is based on the FastXplain.21

4.3. Different number of minimal conflict sets

In some applications it is neither needed to calculate only one minimal conflict set

nor is it suited to calculate all minimal conflict sets — just a few are enough. Thus

we conducted a study using 2000 items and 10 user requirements (results can be

seen in Figure 9). The runtime of the QuickXplain algorithm increases with the

number of minimal conflict sets. This is based on the consistency checks for the

calculations. In comparison to this the runtime of BFX and FastXplain are nearly



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

BFX: Diagnosing Conflicting Requirements 309

Fig. 8. Runtime comparison of the algorithms BFX, FastXplain and QuickXplain to calculate

all minimal conflict sets using 4000 items and an increasing number of constraints (6, 8, 10, 12,

14, 16, 18 and 20).

Fig. 9. Runtime comparison of the algorithms BFX, FastXplain and QuickXplain to calculate

an increasing number of minimal conflict sets using 2000 items and 10 constraints.

independent (only very slightly increasing) of the number of minimal conflict sets.

Thus no matter if only one or a few minimal conflict sets are needed, the BFX and

FastXplain are suited for all settings. Summarizing we can say that the BFX and the

FastXplain can be used to calculate one minimal conflict set as well as to calculate

all minimal conflict sets. Both types of calculations are used in constraint-based

recommender systems.

5. Related Work

The concepts presented in this paper are extremely useful for constraint-based rec-

ommendation settings. Felfernig et al.4 introduced an integrated environment for

the development of constraint-based (knowledge-based) recommender applications.

This environment automatically generates recommender applications based on a



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

310 M. Schubert & A. Felfernig

corresponding graphical model. One major functionality of the corresponding rec-

ommender user interface is the determination of minimal conflict sets. This supports

the user in addressing the no solution could be found dilemma. Further descriptions

of knowledge-based recommendation environments can be found in (see Thompson

et al.,22 Mirzadeh et al.,15 Jiang et al.8). Many of those approaches rely on intel-

ligent mechanisms to proactively support the user in situations where no solution

can be found.

In the context of configuration problems Felfernig et al.5 have developed con-

cepts for identifying inconsistent user requirements. The idea was to determine min-

imal cardinality sets of requirements that need to be changed in order to be able to

find a solution. The calculation of repair sets is based on the calculation of minimal

conflict sets and diagnoses. The idea is to combine a conflict detection algorithm

such as QuickXplain9 with the hitting set algorithm used in model-based diagno-

sis (MBD) (see Reiter18) for the calculation of minimal diagnoses. Based on these

diagnoses repair actions can be identified. In Felfernig et al.6 MBD is applied for

the identification of faulty utility constraint sets in the context of knowledge-based

recommendation. In both scenarios, the BFX algorithm is not applicable since it is

not possible to construct the intermediate representation: configuration knowledge

bases are an implicit representation of the complete set of possible configurations;

the same holds for utility constraint sets.

The conflict sets exploited in Felfernig et al.3 are not necessarily minimal which

increases the runtime due to a larger Hitting Set Directed Acyclic Graph (HSDAG).

An efficient algorithm to identify minimal conflict sets is QuickXplain which has

been introduced by Junker.9 This approach is based on a recursive divide-and-

conquer strategy which calculates one minimal conflict set at a time. It is not

bounded to finite solution domains (like the product table of the constraint-based

recommender setting), but can be used for a broader range of over-constrained

problems (including finite and infinite variable domains). Mauss12 introduced an-

other algorithm to find minimal subsets (in finite and infinite solution domains)

that are responsible for an inconsistency. Compared to Junker9 that approach by

Mauss does not take the ordering into account. Besides that it does not calculate

all minimal conflict sets, but only one and with an extension more.

The approach described in Schlobach et al.19 uses pinpointing for the identifica-

tion of repairs for incoherent terminologies. These pinpoints prevent the algorithm

from calculating minimal hitting sets by using the superset to approximate mini-

mal diagnoses. To compute the pinpoints themselves, all minimal conflict sets are

needed. Compared to the minimal conflict sets used in Model-Based Diagnoses (see

Reiter18) are computed on demand.

Schubert et al.20 have developed an approach to calculate minimal conflict sets

for recommender settings based on product tables. This approach is inspired by the

concepts of network analysis and was developed especially for knowledge-based rec-

ommender systems. The evaluation in Schubert et al.20 compares the QuickXplain9

in a version where the consistency checks are done with a database. As the study



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

BFX: Diagnosing Conflicting Requirements 311

of this paper has shown, the table data structure to check the consistency is much

faster than using database queries, we decided to compare the runtime of the BFX

with the - to the best of our knowledge - fastest implementation of QuickXplain.9

6. Conclusions and Future Work

In this paper we presented an approach to identify minimal conflict sets for in-

consistent user requirements in constraint-based recommendation scenarios. The

efficient determination of minimal conflicts is crucial for the usability and accep-

tance of constraint-based recommender systems. We came up with the algorithm

BFX which is based on an intermediate representation derived from the user re-

quirements and the products of the assortment. One the basis of this intermedi-

ate representation we applied the Hitting Set Directed Acyclic Graph (HSDAG)

algorithm18 for the calculation of minimal conflict sets. The results of a perfor-

mance evaluation show that our approach performs significantly better than existing

state-of-the-art approaches such as QuickXplain.9

In a future work the BFX algorithm can be extended using personal-

ization strategies. This personalization could include strategies like similarity

(see McSherry13), the MAUT — multi attribute utility theory or any other col-

laborative problem solving concept.

References

1. R. Burke, Knowledge-based recommender systems in Encyclopedia of Library and
Information Systems, volume 69, pp. 180–200. New York, NY, USA, 2000.

2. A. Felfernig and R. Burke, Constraint-based recommender systems: Technologies and
research issues, in IEEE International Conference on Electronic Commerce, pp. 1–10,
2008.

3. A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-based diag-
nosis of configuration knowledge bases, Artificial Intelligence 152(2) (2004) 213–234.

4. A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, An Environment for the de-
velopment of knowledge-based recommender applications, International Journal of
Electronic Commerce (IJEC ) 11(2) (2006) 11–34.

5. A. Felfernig, G. Friedrich, M. Schubert, M. Mandl, M. Mairitsch, and E. Teppan,
Plausible repairs for inconsistent requirements, in Proceedings of the 21st International
Joint Conference on Artificial Intelligence, pp. 791–796, 2009.

6. A. Felfernig, G. Friedrich, E. Teppan, and K. Isak, Intelligent debugging and repair
of utility constraint sets in knowledge-based recommender applications, in Proceed-
ings of 13th ACM International Conference on Intelligent User Interfaces (IUI2008 ),
pp. 218–226, 2008.

7. D. Jannach, Finding preferred query relaxations in content-based recommenders,
Intelligent Techniques and Tools for Novel System Architectures (2008) 81–97.

8. B. Jiang, W. Wang, and I. Benbasat, Multimedia-based interactive advising technol-
ogy for online consumer decision support, Communications of the ACM 48(9) (2004)
93–98.

9. U. Junker, Quickxplain: Preferred explanations and relaxations for over-constrained
problems, in Proceedings of the 19th National Conference on Artificial Intelligence,
pp. 167–172, AAAI Press/The MIT Press, 2004.



March 16, 2011 9:31 WSPC-IJAIT S0218213011000164

312 M. Schubert & A. Felfernig

10. M. T. Gomez-Lopez, R. Ceballos, R. M. Gasca, and S. Pozo, Determination of pos-
sible minimal conflict sets using constraint databases technology and clustering, in
IBERAMIA, pp. 942–952, Springer-Verlag Berlin Heidelberg, 2004.

11. J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl,
Grouplens: Applying collaborative filtering to usenet news, Communication ACM
40(3) (1997) 1–10.

12. J. Mauss and M. Tatar, Computing minimal conflicts for rich constraint languages,
in Proceedings of the 15th European Conference on Artifical Intelligence, pp. 151–160,
2002, Lyon, France.

13. D. McSherry, Similarity and compromise, in Proceedings of the International Confer-
ence on Case-based Reasoning (ICCBR03 ), pp. 291–305, 2003.

14. D. McSherry, Maximally successful relaxations of unsuccessful queries, in Proceed-
ings of the 15th Conference on Artificial, Intelligence and Cognitive Science, Galway,
Ireland, pp. 127–136, 2004

15. N. Mirzadeh, F. Ricci, and M. Bansal, Supporting user query relaxation in a recom-
mender system, LNCS 3182, Zaragoza, Spain, pp. 31–40, 2004.

16. B. O’Sullivan, A. Papadopoulos, B. Faltings, and P. Pu, Representative explanations
for over-constrained problems, in Proceedings of the National Conference on Artifi-
cial Intelligence, pp. 323–328, 2007, Cork Constraint Computation Centre, University
College Cork, Ireland.

17. M. Pazzani and D. Billsus, Learning and revising user profiles: The identification of
interesting web sites, Machine Learning 27(3) (1997) 313–331.

18. R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32(1)
(1987) 57–95.

19. S. Schlobach, Z. Huang, R. Cornet, and F. van Harmelen, Debugging incoherent
terminologies, Journal of Automated Reasoning 39(3) (2007) 317–349.

20. M. Schubert, A. Felfernig, and M. Mandl. Solving over-constrained problems using
network analysis, Proceedings of International Conference on Adaptive and Intelligent
Systems, Klagenfurt, Austria, pp. 9–14, 2009.

21. M. Schubert, A. Felfernig, and M. Mandl. FastXplain: Conflict detection for
constraint-based recommendation problems, Trends in Applied Intelligent Systems:
23rd International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, Cordoba, Spain, pp. 621–630, 2010.

22. C. Thompson, M. Goeker, and P. Langley, A personalized system for conversational
recommendations, Journal of Artificial Intelligence Research 21 (2004) 393–428.


