
International Journal of Software Engineering and Knowledge Engineering
Vol. 10 No. 4 (2000) 449–469
c©World Scientific Publishing Company

UML AS DOMAIN SPECIFIC LANGUAGE FOR

THE CONSTRUCTION OF KNOWLEDGE-BASED

CONFIGURATION SYSTEMS

ALEXANDER FELFERNIG, GERHARD E. FRIEDRICH and DIETMAR JANNACH

Institut für Wirtschaftsinformatik und Anwendungssysteme
University of Klagenfurt
9020 Klagenfurt, Austria

{felfernig,friedrich,jannach}@ifi.uni-klu.ac.at

In many domains, software development has to meet the challenges of developing highly
adaptable software very rapidly. In order to accomplish this task, domain specific, formal
description languages and knowledge-based systems are employed. From the viewpoint
of the industrial software development process, it is important to integrate the construc-
tion and maintenance of these systems into standard software engineering processes. In
addition, the descriptions should be comprehensible for the domain experts in order to
facilitate the review process.

For the realization of product configuration systems, we show how these require-
ments can be met by using a standard design language (UML-Unified Modeling Lan-
guage) as notation in order to simplify the construction of a logic-based description of
the domain knowledge. We show how classical description concepts for expressing config-
uration knowledge can be introduced into UML and be translated into logical sentences
automatically. These sentences are exploited by a general inference engine solving the

configuration task.

Keywords: Knowledge representation, automated reasoning.

1. Introduction

Shorter product cycles, lower prices of products, and higher customer demands have

created big challenges for the product development process. A successful approach

to master these challenges is to employ knowledge-based systems with domain spe-

cific, high level, formal description languages which allow a clear separation between

domain knowledge and inference knowledge. These techniques can be exploited to

(partially) automate the generation of software solutions.

Unfortunately, in many cases, such high level, formal description languages are

not integrated in the industrial software development process. In addition, these

descriptions are difficult to communicate to domain experts for reviewing purposes.

This makes it demanding for software development departments to incorporate such

technologies into their standard development process. Therefore, our goal is to make

449

450 A. Felfernig, G. E. Friedrich & D. Jannach

such descriptions more accessible both for the software engineering practitioners and

domain experts with a technical background.

As an application domain we introduce product configurationa systems which

show a high industrial demand. Examples of applications of configuration systems

can be found in the telecommunication industry, computer industry or automotive

industry.

A configuration task can be characterized through a set of components, a de-

scription of their properties, namely attributes and possible attribute values, con-

nection points (ports), and constraints on legal configurations. Given some cus-

tomer requirements, the result of computing a configuration is a set of components,

corresponding attribute valuations, and connections satisfying all constraints and

customer requirements.

Product configuration creates big challenges on software development:

• The complexity of the task requires the sophisticated knowledge of technical

experts.

• The configuration knowledge base has to be adapted continuously because of

changing components and configuration constraints.

• Configurator development time and maintenance time are short and strictly lim-

ited. Development of the product and the product configuration system has to

be done concurrently.

In order to enhance the usability of formal descriptions we employ UML [5] for

two reasons. First, UML is widely applied in industrial software development as

a standard design method. Second, we had excellent experiences in using UML-

designs for validation by technical domain experts. The key idea of our approach is

twofold: First, we extend the static model of UML by broadly used configuration-

specific modeling concepts. Second, we define a mapping from these concepts to

a configuration language based on first-order-logic. Consequently, the construction

of a logic-based description of the domain knowledge is simplified. We employ

the extension mechanism of UML (stereotypes) to express domain-specific modeling

concepts, which has shown to be a promising approach in other areas [17]. The

semantics of the different modeling concepts are formally defined by the mapping

of the notation to logical sentences.

The proposed development process for valid configuration knowledge bases is

shown in Fig. 1. First, a conceptual model of the configurable product is designed

(1) using the modeling language UML. After syntactic checks of the correct usage

of the concepts (2), this model is then non-ambiguously transformed to logical

sentences (3) which are exploited by a general configuration engine for computing

configurations of products. Consequently, the configurator is based on a declarative,

aProduct configuration should not be confused with Software Configuration Management,
although there are some similarities concerning components and relationships between components.

UML as Domain Specific Language 451

%XLOG
SURGXFW PRGHO

'RPDLQ NQRZOHGJH
+DYDLODEOH FRPSRQHQWV/ FRQVWUDLQWV, &KDQJHV

$YDLODEOH PRGHOLQJ
FRQFHSWV

+. 2&/ &RQVWUDLQWV,

&KHFN V\QWDFWLF
XVDJH RI FRQFHSWV

:HOO0IRUPHGQHVV UXOHV
IRU VWHUHRW\SHV
+GHILQHG LQ 2&/,

*HQHUDWH .QRZOHGJH
%DVH

7UDQVIRUPDWLRQ
UXOHV

&DOFXODWH YDOLG
FRQILJXUDWLRQV XVLQJ D
FRQILJXUDWLRQ HQJLQH

6SHFLILF XVHU0
UHTXLUHPHQWV

W\SH+D/;, ⇒
∃ W\SH+E/&, ∧ 11
W\SH+D/;, ⇒

∃ FRQQ+;/E/&1G,1

9DOLGDWH UHVXOWV
+'LDJQRVLV,

([SHUW NQRZOHGJH
+FRPSOHWH2SDUWLDO
FRQILJXUDWLRQV,

5HYLVLRQ RI SURGXFW PRGHO

$FFHSW .QRZOHGJH %DVH

5HSUHVHQWDWLRQ
LQ ;0,

Fig. 1. Constructing a valid configuration knowledge base.

logic based, explicit representation of the configuration knowledge. Finally, the

resulting knowledge base is validated by the domain expert (4) using test runs on

examples. In the case of unexpected results, the product model can be revised on

the conceptual level (5). If the knowledge base is correct (6), it can be employed in

productive use.

The contributions of this paper are broadening the scope of formal approaches as

well as the applicability of logic-based, declarative technology within the standard

software development process. In addition, we facilitate rapid application devel-

opment, and enhancement of the validation and maintenance tasks, because these

tasks are performed on a conceptual level.

The rest of the paper is organized as follows. After giving a motivating exam-

ple (Sec. 2), we describe the underlying logical model of a configuration problem

(Sec. 3). In Sec. 4 we describe typical modeling concepts for product configuration,

their representation in UML and the transformation to logical sentences. Section 5

describes the components of the prototype development environment. Finally, Sec. 6

and 7 contain related work and conclusions.

2. Motivating Example

The following example shows how a configurable product can be modeled using

an UML static structure diagram. This diagram describes the generic product

452 A. Felfernig, G. E. Friedrich & D. Jannach

Motherboard-2
<<ComponentT ype>>

CPU-586
<<ComponentT ype>>

CPU-486
<<ComponentT ype>>

{value=350

{value=450

HD-Capacity
<<R es ource>>

Server-OS-1

vers ion = {1.0, 2.0}

<<ComponentT ype>>

IDE-Unit
<<ComponentT ype>>

SCSI-Disk
<<ComponentT ype>>

AT-Bus-Slo
<<P ort>>

SCSI-Unit
<<ComponentT ype>>

1..61..6

Motherboard-1
<<ComponentT ype>>

33

SCSI-Controller
<<ComponentT ype>>

PCI-Slot
<<P ort>>

33

PCI-Connector
<<P ort>>

1..10..1 1..10..1

<<connected with>

{value = 3000
<<produces>>

<<requires>
CPU

<<ComponentT ype>>

Floppy-Unit

dis ks ize = {3.5, 5.25}

<<ComponentT ype>>

HD-Unit
<<ComponentT ype>>

{default}

Motherboard
<<ComponentT ype>>

Application

built : Date

<<ComponentT ype>>

PC
<<R ootComponent>>

1..21..2

Software-Package
<<ComponentT ype>>

0..10..1

Server-OS

built : Date

<<ComponentT ype>>

<<requires>

<<consumes>>

Server-OS-2
<<ComponentT ype>>

Dev-Environment
<<ComponentT ype>>

<<consumes>>

<<incompatible>>

Fig. 2. Product model of a configurable PC.

structure, i.e., all possible variants of the product. The set of possible products

is restricted through a set of constraints which relate to customer requirements,

technical restrictions, economic factors, and restrictions according to the production

process.

For presentation purposes we introduce a simplified model of a configurable

PC as working example. We use standard UML-concepts as well as newly in-

troduced domain-specific stereotypes, whereby their usage is restricted through

OCL-constraints (Object Constraint Language) in the UML-metamodel. The basic

structure of the product is modeled using classes, generalization and aggregation

of the well-defined parts (component-types) which the final product can consist of.

The applicability of these object-oriented concepts for configuration problems has

been shown in [15]. Additionally, positive application tests were conducted in the

telecommunication domain.

2.1. Typical modeling concepts for configurable products

The following concepts are typical for models of configurable products: The set

of valid PC-configurations is restricted through stereotyped requires-relations and

incompatible-relations between different component types. In our example, the

usage of a CPU-586 also requires the existence of a special type of motherboard

(motherboard-1).

UML as Domain Specific Language 453

For some configuration domains, not only the quantity and the kind of employed

components are important but also how different components are connected to each

other. Components can be connected through connection points (ports). One

port can only be connected to exactly one other port. In the example, an SCSI-

Controller may be connected to a PCI-Slot of a motherboard of type “Mother-

board-1” via a PCI-Connector. The ports and connection relations are modeled

through stereotyped classes and associations. The multiplicities of the “connected

with” association denote that a PCI-connector must be connected to a PCI-slot,

whereas a PCI-slot can possibly be connected to a PCI-connector.

A further enhancement of the model is expressed through resources which

impose additional constraints on the possible product structure. Some components

can contribute to a resource whereas others are consuming some of the resources. In

an actual configuration the resources must be balanced, i.e., the consumed resources

must not exceed the provided resources.

The contribution and consumption of a resource is modeled through relations

“consumes” and “produces”. A tagged value denotes the actual value of production

and consumption. In our example, the harddisk-capacity of the system must be

greater or equal to the capacity consumed by the installed software.

2.2. Calculating configurations

After having defined the configurable product, the actual configuration can take

place. The user (the customer) can provide some input data and specify the re-

quirements for the actual variant of the product.

Let the customer requirement be that the application “Dev-Environment” has

to run on the system, i.e., that this component has to be part of the final product.

Starting from this input, a configuration system builds a valid solution (Fig. 3)

meeting these requirements. The configuration system realizes that only one op-

erating system is compatible with the desired software and deduces that only this

PC-1

Floppy-Unit-1
(disksize=3.5)

SCSI-Unit-1 Motherboard-1 Software-Package-

SCSI-Disk-1 PCI-Connector-1

CPU-1

Dev-Environment-1

SCSI-Controller-1

PCI-Slot-1

Server-OS-1
(version=1.0)

...

Fig. 3. A configured product as instance model.

454 A. Felfernig, G. E. Friedrich & D. Jannach

operating system can be part of the configuration. After having added the operating

system, the selection of additional hardware components (CPU, Motherboard) is

determined. An SCSI-unit is chosen as a hard disk unit since it is marked as

default. The configurator adds one floppy-drive and one SCSI-disk if we suppose

that we want a configuration with a minimal set of components. The configurator

establishes the needed connections and checks whether the resources are balanced.

In the case of unbalanced resources, additional disks may have to be added.

The next section shows a formal definition of a configuration problem that serves

as a basis for many existing configuration systems. In Sec. 4, we show how the

conceptual product model can be transformed to a logic theory for a configuration

system built upon these definitions.

3. Configuration Problem

The following definition of a configuration problem is based on a consistency-based

approach. A configuration problem can be seen as a logic theory that describes a

component library, a set of constraints, and customer requirements. Components

are described by attributes and ports. Ports are used as connection points between

components [18]. The result of a configuration task is a set of components, their

attribute values, and connections that satisfy the logic theory.

This model has proven to be simple and powerful in describing general con-

figuration problems and serves as a basis for configuration systems as well as for

representing technical systems in general ([12, 13, 18, 19]). The model will now be

treated more formally.

The formulation of a configuration problem can be based on two sets of

logic sentences, namely DD (domain description) and SRS (System Requirements

Specification). We restrict the form of the logical sentences to a subset of range

restricted first-order-logic with a set extension and interpreted function symbols.

In order to assure decidability, we restrict the term-depth to a fixed number. Ad-

ditionally, domain-specific axioms for configuration are defined, e.g., one port can

only be connected to exactly one other port.

DD includes the description of the different component types (types), named

ports (ports), and attributes (attributes) with their domains (dom).

An example from the PC-configuration:

types = {pc,cpu,motherboard,. . .}.
attributes(server-os-1) = {version}.
dom(server-os-1,version) = {1.0,2.0}.
ports(pc) = {hd-unit-port, motherboard-port,. . .}.
ports(motherboard) = {pc-port,cpu-port,. . .}.
Additionally, constraints are included, reducing the possibilities of allowed com-

binations of components, connections and value instantiations.

SRS includes the user-requirements on the product which should be configured.

These user-requirements are the input for the concrete configuration task.

UML as Domain Specific Language 455

The configuration result is described through sets of logical sentences

(COMPS, ATTRS, and CONNS). In these sets, the employed components, the

attribute values (parameters), and the established connections are represented.

� COMPS is a set of literals of the form type(c, t). t is included in the set of types

defined in DD. The constant c represents the identification for a component.

� CONNS is a set of literals of the form conn(c1, p1, c2, p2). c1 and c2 are com-

ponent identifications from COMPS, p1(p2) is a port of the component c1(c2).

� ATTRS is a set of literals of the form val(c, a, v), where c is a component-

identification, a is an attribute of that component, and v is the actual value of

the attribute (selected out of the domain of the attribute).

Example for a configuration result:

type(p1,pc).

type (m1,motherboard-1).

type(c1,cpu-586).

conn(p1,motherboard-port,m1,pc-port).

conn(c1,motherboard-port,m1,cpu-port).

Note that component p1 of type pc has a port named “motherboard-port” re-

served for connections to a motherboard. This port is defined in the domain de-

scription.

Based on these definitions, we are able to specify precisely the concept of a

consistent configuration:

Definition: (Consistent Configuration). If (DD, SRS) is a configuration prob-

lem and COMPS, CONNS, and ATTRS represent a configuration result, then the

configuration is consistent exactly iff DD ∪ SRS ∪ COMPS ∪ CONNS ∪ATTRS
can be satisfied.

Additionally we have to specify that COMPS includes all required components,

CONNS describes all required connections, and ATTRS includes a complete value

assignment to all variables in order to achieve a complete configuration.

This is accomplished by additional logical sentences which can be generated

using DD, COMPS, CONNS, and ATTRS. A configuration, which is consistent and

complete w.r.t. the domain description and the customer requirements, is called a

valid configuration. A detailed formal exposition is given in [7].

4. Transformation Rules

In order to allow automatic construction of the knowledge base from the conceptual

model, we have to clearly define the semantics of the employed concepts. We achieve

this by defining transformation rules from the conceptual model to the logical model

described in Sec. 3.

456 A. Felfernig, G. E. Friedrich & D. Jannach

These logical sentencesb restrict the set of possible configurations, i.e., instance

models which strictly correspond to the class diagram defining the product struc-

ture. The result of the transformation is a set of first-order logical sentences that

form a domain description which can be used by a configura- tion system.

4.1. Component-types

Component-types describe the predefined parts which a product is built of. We

use a stereotype class for representing components since some limitations on these

classes have to hold (e.g., there are no methods, attributes are limited to simple data

types and enumerations). For each component-type in the UML-model, we extend

the domain description as follows. In the following, GREP denotes the graphical

representation of the UML product model.

Definition:

� Given a component-type c in the graphical representation (GREP) then c ∈ types.
� Given an attribute a of component-type c in GREP then a ∈ attributes(c).
� Given a domain d of an attribute a of component-type c in GREP then

dom(c, a) = d.

4.2. Generalization

Subtyping in the configuration domain means that attributes, ports and constraints

are inherited to the subtype. We assume disjunctive semantics for generalization

which is also the default semantics in UML, i.e., in a configuration only one of the

given subtypes will be instantiated. Additionally, no multiple inheritance is allowed

in order to facilitate comprehensible semantics.

Definition: Let u and d1, . . . , dn be classes where u is the superclass of d1, . . . , dn
and c is the set of all direct and indirect superclasses of u in GREP then for i =

1, . . . , n

� the domain description is extended as follows:

type(ID, di)⇒ type(ID, u).

type(ID, u)⇒ type(ID, d1)∨, . . . ,∨type(ID, dn).
type(ID,X)∧ type(ID, Y) ∧X ∈ {d1, . . . , dn} ⇒
Y ∈ ({u} ∪ c) ∨X = Y.

� If a ∈ attributes(u) then a ∈ attributes(di).
� If p ∈ ports(u) then p ∈ ports(di).

Example for extensions to the knowledge base (Generalization of CPU’s):

type(ID,cpu-486)⇒ type(ID,cpu).

type(ID,cpu)⇒ type(ID,cpu-486)∨ type(ID,cpu-586).

bWe employ a logic programming notation where variable names start with an upper case letter
or are written as “−”. The variables are all-quantified if not explicitly mentioned. We use the
unique name assumption except for skolem constants.

UML as Domain Specific Language 457

4.3. Part-refinement

UML differentiates between shared and composite aggregation. The semantic differ-

ence between aggregation and composition in the UML-Semantics-Definition gives

some room for interpretation.

In the case of configuration modeling, semantics can be defined as follows: If a

component is a compositional part of another component, we require strong owner-

ship and it can not be part of another component at the same time. If a component

is a non-composite part of another component, we say that this component can

be shared among different other components. The multiplicity of the aggregation

denotes how many parts the aggregate can consist of and between how many ag-

gregates a part can be shared if the aggregation is non-composite.

The aggregation relationship is modeled in the component-port-model through

introduction of ports for connecting the aggregate with its parts (see Fig. 4).

For the following definitions no cycles in the part-of structure are allowed. In

the component-port-model connections may only be established between ports and

each port can be connected to exactly one other port.

p1 (PC)

m1 (Motherboard-1

c1 (CPU)

floppy-
unit-ports

hd-unit-port software-
package-
port

pci-slot-
port

at-bus-slot-
port

pc-port motherboard-port

cpu-port
motherboard-port

Fig. 4. Aggregation in the component port model.

4.4. Composite aggregation

First, we extend the port definitions of the affected component-types. Ports are

defined for the aggregate in the amount of the upper bound of the multiplicity of

458 A. Felfernig, G. E. Friedrich & D. Jannach

the part. Only one port is added to the part component-type to connect it with

the aggregate. The ports are named according to the name of the aggregation. If

no association name is specified, the name of the opposite component-type is used.

The name can denote different roles which a part can play in the aggregate.

Second, we derive logical sentences stating that, if an aggregate is in the config-

uration, components in the amount of at least the lower bound of the multiplicity

of the part must be added too. Each part must be connected to (be part of) exactly

one aggregate if the multiplicity of the aggregate is “1..1”. If athe multiplicity is

“0..1”, which is the only other possibility defined in UML, then no connection has

to be established.

Definition: Let w and p be two component-types in GREP where p is a com-

positional part of w and ub is the upper bound and lb is the lower bound of the

multiplicity of the part. Let name be the name of the association. We have to

extend our configuration description in a way that:

{name1, . . . , nameub} ⊆ ports(w).

name ∈ ports(p).

Example:(define ports for the pc for connect to the floppies; define one pc-port

for the floppy) {floppy-1,floppy-2} ⊆ ports(pc).

pc ∈ ports(floppy).

At least lb parts must exist and be connected and the following constraint is derived:

type(ID,w) ⇒ ∧i=1,...,lb ((∃IDi, Port−parti) type(IDi, p) ∧ conn(ID,Port−parti,

IDi,name)∧ Port−parti ∈ {name1, . . . , nameub}) ∧ID1 6=, . . . , 6= IDlb.

The parts have to be connected with the aggregate:

type(ID−part, p) ⇒ ∃ (ID−agg, Port−part) type(ID−agg, w) ∧ Port−part ∈
{name1, . . . , nameub}∧ conn(ID−part, name, ID−agg, Portpart).

Example:(At least one floppy must exist; each existing floppy

must be part of a PC)

type(ID, pc)⇒ ∃ (F,Port) type(F,floppy) ∧ conn(ID,Port,F,pc) ∧ Port

∈ {floppy-1,floppy-2}.
type(ID,floppy) ⇒ ∃ (P,Port) type(P,pc) ∧ conn(ID,pc,P,Port) ∧ Port

∈ {floppy-1,floppy-2}.

4.5. Shared aggregation

In the case of shared aggregation, additional ports have to be defined for the part,

because the part can be part of (connected to) more than one aggregate. Connec-

tions have to be established according to the lower bound of the multiplicity.

Definition: Let w and p be two component-types in GREP where p is an aggregate

part of w and ubpart is the upper bound and lbpart is the lower bound of the

UML as Domain Specific Language 459

multiplicity of the part and ubagg is the upper bound and lbagg is the lower bound

of the multiplicity of the aggregate. Let name be the name of the associations. We

have to extend our configuration description in a way that:

{name1, . . . , nameubpart} ⊆ ports(w).

{name1, . . . , nameubagg} ⊆ ports(p).

We denote the set {name1, . . . , nameubagg} as ports(p, name).

A constraint is derived stating that at least lbpart ports have to be connected

with different parts:

type(ID,w) ⇒ ∧i=1,...,lbpart ((∃IDi, Port−parti, Port−aggi)

type(IDi, p)∧ conn(ID, Port−parti, IDi, Port−aggi) ∧ Port−parti
∈ {name1, . . . , nameubpart} ∧ Port−aggi ∈ {name1, . . . , nameubagg})
∧ID1 6=, . . . , 6= IDlbpart.

At least lbagg ports of the part have to be connected with the aggregate. If the

lower bound is zero, then no connections are established:

type(ID, p)⇒ ∧i=1,...,lbagg ((∃IDi, Port−aggi, Port−parti)type(IDi, w)∧
conn(ID, Port−aggi, IDi, Port−parti) ∧ Port−aggi
∈ {name1, . . . , nameubagg} ∧ Port−parti ∈ {name1, . . . , nameubpart})
∧ID1 6=, . . . , 6= IDlbagg.

The following additional constraints have to be added to the domain description

to define the semantics of aggregation clearly. First, if a component is a compo-

sitional part of an aggregate, it can not be a part of any other component at the

same time. Second, an instance of a component-type being part of any part-of

relationship must be connected to an instance of an aggregate type.

Definition: Let p, a1, . . . , an, c1, . . . , cm be component-types where p is an aggre-

gational part of a1, . . . , an and a compositional part of c1, . . . , cm in GREP. Let

name−agg1, . . . , name−aggn be the names of the aggregate associations in GREP,

and name−comp1, . . . , name−compm be the names of the composition associations.

Let all−part−of−portsbe{name−comp1, . . . , name−compm}
∪ports(p, name−agg1)∪, . . . ,∪ports(p, name−aggn).

To forbid other connections if one composite port is connected, the following

constraint has to hold:

type(ID, p) ∧ conn(ID,C,− ,−) ∧ C ∈ {name−comp1, . . . , name−compm}∧
D ∈ all−part−of−ports ∧ conn(ID,D,− ,−)⇒ C = D.

At least one of the ports must be connected.

type(ID, p)⇒ ∃(Port,X)Port ∈ all−part−of−ports∧
conn(ID, Port,X,−) ∧ type(X,W) ∧W ∈ {a1, . . . , an, c1, . . . , cm}.

460 A. Felfernig, G. E. Friedrich & D. Jannach

4.6. Presuppositions on the part-of hierarchy

For all of the following constraints on the product structure derived from GREP it

must be ensured that the involved components are within the same sub-configura-

tion w.r.t. the part-of hierarchy, i.e., the involved components must be connected

to the same instance of the component-type that repre-sents the common root for

these components. For a correct derivation of constraints, we postulate that the

involved component types have a unique common component-type as predecessor

and a unique path to this common root in GREP. All part-of relations within the

common subtree must be compositions in order to ensure uniqueness of the common

predecessor on the instance level. If this property is not satisfied, the meaning of the

modeling concepts is ambiguous since a part can be part of different substructures

in the part-of hierarchy. To eliminate this ambiguity, additional modeling concepts

can be defined, allowing the domain expert to express further problem specific

constraints.

For the derivation of constraints, we use the abbreviations (similar to macros)

navigation−expr and generating−expr, which represent a path-expression through

conn-predicates from a component to an instance of the common root. In the case

of generating−expr the variables are existentially quantified and the expression may

only be used on the right-hand-side of the implications.

For the definition of these two abbreviations, we view the class-model as a di-

rected graph, where the component-types are the vertices V and the part-of relations

are the edges E. We employ the graph using the inheritance property of ports, i.e.,

the inheritance of part-of relations, e.g., the component- type “CPU-586” has a

port inherited from “CPU” to connect it with the motherboard. Because of this

property, the part-of relations are inherited to the leave nodes of the generalization

hierarchy. Therefore, the generalization hierarchy does not need to be considered

for the construction of the path expression.

Let path(a, p) describe the path from component-type a to the common root p in

GREP through an ordered list of predicates of the form part−of(component-type-a,

component-type-b, association-name).

The following formula shows how navigation−expr and generating−expr are

defined.

Given path(a, p) = 〈part−of(a, y, name−y), . . . , part−of(z, p, name−p)〉
in GREP then navigation−expr(ID−a, P) is defined as

conn(ID−a, name−y, ID−y,−)∧, . . . ,∧conn(ID−z, name−p, P,−).

and generating−expr(ID−a, P) is defined as

∃(ID−y, . . . , ID−z)conn(ID−a, name−y, ID−y,−)

∧, . . . ,∧conn(ID−z, name−p, P,−).

P is a variable identifying an instance of the type of common root.

Example (Path of conn-predicates from cpu-586 to the PC-component-type):

If path(cpu-586,pc) = 〈part−of(cpu-586, motherboard,−),

UML as Domain Specific Language 461

part−of(motherboard, pc,−)〉 is the path from a CPU-586 to the PC

in GREP then navigation−expr(ID−cpu, P) is conn(ID−cpu,

motherboard, ID−motherboard,−) ∧ conn(ID−motherboard, pc, P,).c

4.7. Requires

A relation a requires b in GREP denotes that the existence of an instance of

component-type a requires that an instance of b exists and is part of (connected to)

the same (sub-)configuration.

In our example, the fact that Server-OS-1 requires a CPU-586 implies also that

Server-OS-1 and CPU-586 are part of the same PC which is the common and unique

root of both component-types in the part-of hierarchy.

Definition: Given the relation a requires b where a and b are component-types in

GREP, we extend our domain description with the following formula:

type(ID−a, a) ∧ navigation−expr(ID−a, P)⇒
∃(ID−b)type(ID−b, b) ∧ generating−expr(ID−b, P).

Example:(“server-os-1” requires a CPU of type “cpu-586” in the same PC)

type(ID,server-os-1)∧ conn(ID,software-package, S, −)∧
conn(S,pc,P,−)⇒ ∃(C) type(C,cpu-586) ∧∃(M)

conn(C,motherboard,M,−)∧ conn(M,pc,P,−).

The left-hand side of the implication describes a path to the common root (PC).

The right-hand side of the implication ensures the existence and connection of the

components on the path from b to the common root.

We defined the semantics of a “requires” relation to be “not exclusive” and of

multiplicity “1..1”. If more than one component requires a component of type b, only

one instance of b is needed. Variations of the semantics of a “requires” relation can

be introduced, e.g., introduction of a multiplicity expressing that several instances

of components are required.

4.8. Incompatible

This relation denotes the fact that two components cannot be used within the same

configuration. The incompatible relation is defined as a binary relation with a

multiplicity of “1..1” in the UML-model.

Definition: Given the relation a incompatible−with b in GREP where a and b are

component-types we extend the domain definition with the following constraint:

type(ID−a, a) ∧ navigation−expr(ID−a, P) ∧ type(ID−b, b)
∧navigation−expr(ID−b, P)⇒ false.

cNote that port names are derived from connected component type names, since the part-of
relations in the example have no assigned name.

462 A. Felfernig, G. E. Friedrich & D. Jannach

Note: If there exists a path through connections from components ID−a and ID−b

to the common root (P), then false is derived.

Example:(The application “Dev-Environment” is incompatible with “server-os-2”)

type(ID,dev-environment)∧ conn(ID,software-package, S, −)∧
type(OS,server-os-2)∧ conn(OS,software-package,S,−)⇒ false.

4.9. Ports and connections

Ports in the UML-model represent physical connection-points between components.

These ports are added to the port definitions of the components. Possible and

required connections are expressed through the stereotyped relation “connected

with”.

Definition: Let c be a component-type and p be a port where p is a part of c in

GREP and where n is the multiplicity of the port. We extend DD as follows:

{p1, . . . , pn} ⊆ ports(c)
We denote the set {p1, . . . , pn} by ports(c, p).

Definition: Let a and b be component-types and pa and pb be ports, where pa is

a port of a and pb is a port of b and pa and pb are connected in GREP.

If the multiplicity of pb in the “connected with” relationship is “1..1”, expressing

that the port pa must be connected, the following constraint is derived:

type(ID−a, a) ∧ navigation−expr(ID−a, P) ∧ Port−a ∈ ports(a, pa)⇒
∃(ID−b, Port−b)type(ID−b, b) ∧ generating−expr(ID−b, P)∧
Port−b ∈ ports(b, pb) ∧ conn(ID−a, Port−a, ID−b, Port−b).

The definition is much the same as for “requires”, because if we want to connect

a port Port−a from a with a port Port−b of component b, the existence of an

instance of type b is required. Only the additional connection has to be established.

If the multiplicity of pb is “0..1”, the following constraint is derived:

type(ID−b, b) ∧ navigation−expr(ID−b, P) ∧ Port−b ∈ ports(b, pb)∧
conn(ID−b, Port−b, ID−a, Port−a)⇒
type(ID−a, a) ∧ generating−expr(ID−a, P) ∧ Port−a ∈ ports(a, pa).

In this sentence we define that, if a component of type b exists and a connection

from Portb is established, then this connection must be to a port of a component

of type a.

Example: (A PCI-Connector must be connected with a PCI-Slot within

the same PC):

type(S,scsi-controller)∧ conn(S,scsi-unit,U,−)∧ conn(U,pc,P,−)∧
Port−S ∈ ports(scsi-controller,pci-connector) ⇒
∃(M,Port−M) type(M,motherboard-1) ∧ Port−M ∈
ports(motherboard-1,pci-slot)∧ conn(S,Port−S,M,Port−M).

UML as Domain Specific Language 463

4.10. Resources

Resource constraints are modeled in the UML-model through stereotyped classes

representing types of resources and stereotyped relations indicating production and

consumption of these resources. Resources represent a balancing task [9] within

the shared subtree of the part-of hierarchy of the product structure. To map the

resource task to the component-port model, additional attributes have to be defined

for the participating component-types holding the actual value of production and

consumption. A constraint has to be derived which ensures that resource values

consumed and produced by components are balanced. In the example given, the

component-type PC is the unique common root for all consumers and producers of

the resource hard disk capacity. A constraint for instances of a PC is constructed,

ensuring that the sum of the produced capacity exceeds the sum of the consumed

capacity. We therefore collect all the instances of SCSI-Disks that are part of this

PC and the consumers that are part of the PC using the predicates

allconsumers(result−set,ID−Root) and

allproducers(result−set,ID−Root).

These predicates return a set of instances of consuming and producing compo-

nents connected to the actual instance of the root component.

Definition:

Let g1, . . . , gn be producing component-types of resource r with attribute values

gvi and c1, . . . , cm be consuming component-types with values cvi. The values of

cvi and gvi are determined by the tagged values of the “consumes” and “produces”

relations.

We have to extend the domain description as follows:

r ∈ attributes(gi), for i = 1 to n.

r ∈ attributes(ci), for i = 1 to m.

val(gi, r, gvi) for i = 1 to n.

val(ci, r, cvi) for i = 1 to m.

Let p be the common and unique predecessor w.r.t. the part-of-hierarchy of all

consumers and producers. We derive the following constraint:

type(P, p)∧ allconsumers(Consumer,P)∧ allproducers(Producer,P)

⇒
∑

(o∈Consumer∧val(o,r,V)) V <=
∑

(s∈Producer∧val(s,r,W))W .

The predicates allconsumers and allproducers are defined as follows using LDL-

notation [3]:

allconsumers(〈 Consumer 〉, P)⇐
C ∈ {c1, . . . , cn}∧ type(Consumer,C) ∧ navigation−expr(Consumer, P)

∧type(P, p).

allproducers(〈Producer〉, P) ⇐
G ∈ {g1, . . . , gn}∧ type(Producer,G) ∧ navigation−expr(Producer, P)

∧type(P, p).

464 A. Felfernig, G. E. Friedrich & D. Jannach

Note: All component instances with one of the correct types are collected within

〈Consumer〉. navigation−expr(Consumer, P) ensures that all these components

are connected to the same instance P of the common root.

4.11. Additional modeling concepts and constraints

Section 2.1 gives an overview of modeling concepts used for modeling configuration

domains. These concepts have shown to cover a wide range of application areas

for configuration [16]. Despite this, some application areas may have a need for

special modeling concepts not covered so far. To introduce a new modeling concept

the following definitions have to be made: First, define the new concept (a new

stereotype) and state the well-formedness rules for its correct use within the model.

Second, define the semantics of the concept for the configuration domain by stating

the facts and con- straints induced to the logic theory when using the concept.

4.12. Object constraint language

The Object Constraint Language (OCL) [21] is a typed expression language which

can be used to describe invariants within an UML model. Using OCL-expressions,

one can state additional constraints on the conceptual model which can not be

expressed using the graphical symbols of UML.

A typical constraint in our example, stating that at least one of the floppy drives

must be of size “3.5”, can be expressed as follows:

context PC inv :
 pc.floppy->select(f:floppy | f.disksize = 3.5)->size > 0

N aviga tion

}} }

S e t opera tion A ttribute access

The main features of OCL are mathematical and logical operations on attributes,

navigation over associations, and operations defined on collections of objects, e.g.

counting or selecting some elements out of the collection. Since this language is

declarative, the invariant expressions can be transformed to our logic representation.

The translated constraint again has to conform to the restrictions mentioned in

Sec. 3 to allow for decidability and executability.

5. Tools

5.1. Configurator

The notion of the component-port-model is well-established for modeling and solv-

ing configuration problems [4]. In general, consistency-based tools based on the

component-port-model can use the logic theory derived from the UML-product-

model. Since the output is a set of logical sentences, it can be transformed to the

representation of different tools doing the actual configuration task.

UML as Domain Specific Language 465

In order to solve real-world configuration problems, we are employing an

industrial-strength constraint solving software (Ilog Configurator [12]) to compute

the final configurations. Since this software is a C++-library, we had to transform

the knowledge from the UML-model into the representation of the constraint solver,

where this transformation strictly conforms to the defined semantics for the indi-

vidual modeling concepts. We automatically generate the C++-source code from

a UML-modeling tool (Rational Rose). The generated code may then be extended

with some interface functionality to support interactive configuration.

Additionally, the configuration tool COCOS [4, 19] relies on the component-port-

model and has proven its usefulness in the configuration of large-scale electronic

systems. By using a high level description language for expressing the configuration

constraints we were able to reduce development effort (by 66% compared to a previ-

ous project) and maintenance costs significantly. The flexibility of the software tool

with respect to human-computer interactions is considerably enhanced (details are

described in [4]). COCOS is a general configuration engine that uses a knowledge

base consisting of logical sentences shown in Sec. 4 as input and builds possible

configurations.

To support the problem solving task, most commercial configuration tools offer

the possibility of defining orderings, defaults, and preferences for instantiation of

components and generation of con- nections. This control knowledge is specified

by priority values, which can be incorporated in our UML-notation by additional

attributes.

5.2. Modeling configuration knowledge

Since our modeling approach uses standard-UML and its built-in extension mecha-

nisms, any tool supporting the UML-notation can be used to model the conceptual

product model. Our current proto-type uses the CASE-tool “Rational Rose” where

the product model is specified and the translation and code generation is done using

the built-in script language of the tool. For the generation of the logical sentences

for the OCL-expressions, we have developed a parser that processes the OCL invari-

ants, performs type checks and returns code for the target knowledge representation.

Additionally, the modularization facilities of UML and the CASE-tool (packages,

different views) can be employed.

5.3. Knowledge interchange

Conceptual (product) models can be exchanged between different modeling tools us-

ing the model exchange standard XMI (XML Metadata Interchange) (see [10, 14]).

In order to facilitate model interchange and to translate UML product models into

the representation of a certain configurator, we have implemented a translation tool

that uses XMI representations as input. Beside the usage of XML for exchanging

product models it can also be applied for realizing communication between differ-

ent configuration systems. In order to cooperatively solve a configuration task the

466 A. Felfernig, G. E. Friedrich & D. Jannach

configuration systems exchange XML documents which contain the relevant com-

munication (sender, receiver etc.) and content information (partial or complete

configurations). The structure of these XML documents can directly be derived

from the UML product model.

5.4. Experimental results

We have implemented a prototype of a development environment supporting the

proposed development process (Fig. 1) for configuration systems using standard

commercial tools (Rational Rose 98, Microsoft Visual C++, Ilog Configurator 1.0).

After having defined the conceptual model in Rational Rose, our implemented sys-

tem generates the knowledge base for the target configuration engine. After auto-

mated compilation and linkage, the calculation of all solutions can be performed.

In addition to the tests on our simplified PC-domain from our example,

we have evaluated our approach on real-world problems from the domains of pri-

vate telephone switching systems and automotive industry. These test cases showed

the applicability of the conceptual modeling language as well as the effectiveness of

the resulting configurator knowledge base.

Since the generated code has the form of C++ class definitions and methods,

it can be easily incorporated into other applications or can be changed manually if

needed.

6. Related Work

Bourdeau and Chen [1] give a formal semantics for object model diagrams based

on OMT. This work is an important step in automating the process of obtaining

a formal description from the information in the diagrams. They use the Larch

Shared Language as their target language since their goal is to support the assess-

ment of requirement specifications in general. A step towards the formalization of

UML based on a mathematical system model is done in [2]. We view our work

as complementary since our goal is to generate formal descriptions which can be

interpreted by logic based problem solvers.

Peltonen, Männistö, Alho, and Sulonen ([15, 16]) use product configuration as a

practical application for a prototype based approach. They view configuration as

a process where objects are created by specifying their parent and the inheritance

of information. Our approach is in the tradition of explicitly describing a valid

configuration using a declarative language. The process of generating configurations

is an automated search process which can be guided by heuristics. Using this

approach we have a clear separation of procedural and declarative knowledge as

well as a precise semantics of the configuration problem and the content of the

knowledge base.

There is a long history in developing configuration tools in knowledge-based

systems (see [18]). However, the automated generation of logic-based knowledge

bases by exploiting a formal definition of standard design descriptions like UML

UML as Domain Specific Language 467

has not been discussed so far. Comparable research has been done in the fields

of Automated and Knowledge-Based Software Engineering, e.g., the derivation of

programs in the Amphion [11] project. In this project, specifications are developed

and maintained by end-users in a declarative manner using a graphical language for

the astronomical domain. The specification is tested for solvability and program

synthesis is done by a theorem prover, which deduces an intermediate program,

that is translated to subroutine calls of a target language. The main focus of this

project is to automate software reuse, where a procedural program is constructed

from existing soft-ware libraries, whereas our approach uses a constraint based

inference engine optimized for solving configuration problems.

Consistency management for complex applications as discussed by Tarr and

Clarke [20] and product configuration share some interesting common properties.

Both application areas have to ensure that an object model is consistent with re-

spect to a set of constraints. However, in consistency management, the goal is

mainly to cope with a steady stream of changes resulting in consistency viola-

tions. The repair of these violations is a main task. In product configuration, the

main task is to generate a valid configuration given some customer requirements.

Since our formalism is based on rigorous logic definition, concepts for representing

repair actions in order to restore consistency from other consistency based mod-

els are applicable. General concepts were developed in the field of model-based

diagnosis [6].

Structural information (components and ports) also plays an important role in

the domain of Architecture Description Languages (ADL). Some important work

was done in [8], where common concepts for ADLs and an interchange format are

defined. Architectures are (graphically) modeled and represented in first-order-logic

allowing for the definition of assertions and additional constraints. The architecture

description may then be translated to other existing ADLs. The full semantics of the

modeling concepts may vary, depending on the translation to other ADLs. However,

in our approach, we use logic not only for representation and model exchange, but

have the possibility to interpret the logical sentences derived from the conceptual

model.

7. Conclusions

Extensible standard design methods (like UML) are able to provide a basis for

introducing and applying rigorous formal descriptions of application domains. This

approach helps us to combine the advantages of various areas. First, high level

formal description languages reduce the development time and effort significantly

because these descriptions are directly executable. Second, standard design methods

like the UML static model are far more comprehensible and are widely adopted in

the established industrial software development process.

We defined a logic based formal semantics for UML constructs, which allows us

to generate logical sentences and to process them by a problem solver. This enables

468 A. Felfernig, G. E. Friedrich & D. Jannach

us to automate the generation of specialized software applications and allows for

rapid generation of prototypes. An improvement in the requirements engineering

phase through short feedback cycles is achieved.

The design model is comprehensible for domain experts and can be adapted

and validated without the need for specialists. Consequently, time and costs for

the development and maintenance of product configuration systems can be reduced

significantly. We chose product configuration systems because of the economic and

technical relevance and the challenges to be mastered by software engineering of

these products. In addition, our concepts correspond to the generation and consis-

tency management of object networks which is related to various other domains.

By using UML as a front-end for formal descriptions, both sides broaden their

application area — UML as a notation for formal problem specification and formal

descriptions in standard industrial software development processes.

References

1. R. H. Bourdeau and B. H. C. Cheng, “A formal semantics for object model
diagrams”, IEEE Transactions on Software Engineering, Vol. 21, No. 10, October
1995.

2. R. Breu et al., “Towards a formalization of the unified modeling language”, in Proc.
ECOOP’97, Finland, 1997.

3. S. Ceri, G. Gottlob and L. Tanca, Logic Programming and Databases, Springer Verlag,
Berlin-Heidelberg, 1990.

4. G. Fleischanderl, G. Friedrich, A. Haselboeck, H. Schreiner and M. Stumptner,
“Configuring large systems using generative constraint satisfaction”, IEEE Intelligent
Systems, July/August, 1998.

5. M. Fowler and K. Scott, UML Distilled — Applying the Standard Object Modeling
Language, Addison-Wesley, 1997.

6. G. Friedrich, G. Gottlob and W. Nejdl, “Formalizing the repair process — ex-
tended report”, in Annals of Mathematics and Artificial Intelligence, Vol. 11 (1994),
J. G. Baltzer, AG, 1994, pp. 187–202.

7. G. Friedrich and M. Stumptner, “Consistency-based configuration”, in Configuration
Papers from the AAAI Workshop, AAAI Technical Report WS-99-05. AAAI Press,
Orlando, USA, 1999.

8. D. Garlan, R. T. Monroe and D. Wile, “Acme: An architecture description interchange
language”, in Proc. CASCON’97, Canada, 1997, pp. 169–183.

9. M. Heinrich and E. W. Jüngst, “A resource-based paradigm for the configuration of
technical systems from modular components”, in Proc. 7th IEEE Conference on AI
Applications (CAIA), 1991, pp. 257–264.

10. D. Kiely, “XML: More than just a quick fix”, Information Week, Issue 720, 08/99.
11. M. Lowry, A. Philpot, T. Pressburger and I. A. Underwood, “Formal approach

to domain-oriented software design environments”, in Proc. 9th Knowledge-Based
Software Engineering Conference, Monterey, CA, 1994.

12. D. Mailharro, “A classification and constraint-based framework for configuration”, AI
EDAM, Vol. 12 (1998), Cambridge University Press, 1998, pp. 383–397.

13. Mittal and F. Frayman, “Towards a generic model of configuration tasks”, in Proc.
Eleventh Int. Joint Conf. Artificial Intelligence, 1989, pp. 1395–1401.

14. Object Management Group (OMG), XMI Specification, http://www.omg.org, 1999.

UML as Domain Specific Language 469

15. H. Peltonen, T. Männistö, K. Alho and R. Sulonen, “Product configurations — an
application for prototype object approach”, in Mario Tokoro and Remo Pareschi, edi-
tors, Object Oriented Programming, 8th European Conference, ECOOP’94, Springer-
Verlag, 1994, pp. 513–534.

16. H. Peltonen, T. Männistö, T. Soininen, J. Tiihonen, A. Martio, and R. Sulonen,
“Concepts for modeling configurable products”, in Proceedings of European Confer-
ence Product Data Technology Days 1998, Quality Marketing Services, Sandhurst, UK,
1998, pp. 189–196.

17. J. E. Robbins, N. Medvidovic, D. F. Redmiles and D. S. Rosenblum, “Integrating
architecture description languages with a standard design method”, Proc. 20th Intl.
Conf. on Software Engineering, Kyoto, Japan, 1998, pp. 209–218.

18. M. Stumptner, “An overview of knowledge-based configuration”, AI Communications
10(2) (1997) 111–126.

19. M. Stumptner, A. Haselböck, and G. Friedrich, “Cocos: A tool for constraint-based,
dynamic configuration”, in Proc. 10th IEEE Conference on AI Applications (CAIA),
IEEE Computer Society Press, 1994, pp. 373–380.

20. P. Tarr and L. Clarke, “Consistency management for complex applications”, Proc.
20th Intl. Conf. on Software Engineering, Kyoto, Japan, 1998, pp. 230–239.

21. J. B. Warmer and A. G. Kleppe, The Object Constraint Language: Precise Modeling
with UML, Addison-Wesley, 1999.

