
Int. J. Mass Customisation, Vol. 3, No. 4, 2010 389

Towards recommending configurable offerings

J.Tiihonen*
Faculty of Information and Natural Sciences,
Department of Computer Science and Engineering,
Aalto University School of Science and Technology,
P.O. Box 19210, 00076 Aalto, Finland
Fax: +358-50-551-5224 E-mail: Juha.Tiihonen@tkk.fi
*Corresponding author

A. Felfernig
Faculty of Computer Science,
Institute of Software Technology,
Graz University of Technology,
Inffeldgasse 16b, A-8010 Graz, Austria
Fax: +43-(316)-873-5706 E-mail: Alexander.Felfernig@ist.tugraz.at

Abstract: Configuration technologies provide a solid basis for the implementation
of a mass customisation strategy. A side-effect of this strategy is that the
offering of highly variant products and services triggers the phenomenon of mass
confusion, i.e., customers are overwhelmed by the size and complexity of the
offered assortments. In this context, recommendation technologies can provide
help by supporting users in the identification of products and services fitting their
wishes and needs. Recommendation technologies have been intensively exploited
for the recommendation of simple products such as books or movies but have
(with a few exceptions) not been applied to the recommendation of complex
products and services such as computers or financial services. In this paper, we
provide an overview of existing approaches to the integration of configuration
and recommendation technologies, propose extensions and indicate directions of
future work.

Keywords: knowledge-based configuration; recommender technologies;
recommending configurable products.

Reference to this paper should be made as follows: Tiihonen, J. and
Felfernig, A. (2010) ‘Towards recommending configurable offerings’, Int. J. Mass
Customisation, Vol. 3, No. 4, pp.389–406.

Biographical notes: Juha Tiihonen is a Researcher and Project Manager at the
Department of Computer Science and Engineering at the Aalto University School
of Science and Technology (previously Helsinki University of Technology). He
received his MSc (Tech.) and Lic.Sc. (Tech.) in Computer Science from Helsinki
University of Technology. His main interest is product and service configuration
in its various forms, including modeling, configurators, operations management
aspects of business processes based on product and service configuration, and
design for configuration. The most recent work includes recommendation support
for configurable offerings. He has led several configuration related research
projects.

Copyright c⃝ 2010 Inderscience Enterprises Ltd.

390 J. Tiihonen and A. Felfernig

Alexander Felfernig is a Professor at the Graz University of Technology.
His research concentrates on different aspects of intelligent systems and
business informatics such as knowledge-based configuration of complex products
and services, knowledge-based recommenders in e-commerce, and model-based
diagnosis with a special focus on knowledge acquisition and maintenance for
complex products and services. In these research areas, he coordinates industrial
and research projects, organises scientific events and has published more than 100
articles in international journals and conferences. Furthermore, he is the managing
director of ConfigWorks, a company developing interactive recommendation
technologies.

1 Introduction

In many domains, customers do not know and understand in detail the complete set
of options supported by a given configurable product. On the one hand configuration
options are represented on a rather technical level and customers are overwhelmed by
the offered set of alternatives (Emde et al., 1996) – this phenomenon is well-known
as mass confusion (Huffman and Kahn, 1998). On the other hand, customers do
not know their preferences beforehand since preferences are typically constructed
(Haeubl and Murray, 2003) within the scope of a configuration session. Even
experienced sales persons tend to propose configurations they are used to thus
overlooking configuration alternatives which better suit the customers’ wishes and
needs. This can cause unsatisfied customers as well as the sales of less profitable
configurations. Consequently, users of configuration systems are in the need of more
intuitive interaction mechanisms effectively supporting the configuration and selection
of interesting product and service alternatives. With a few exceptions (Coester et al.,
2002; Geneste and Ruet, 2001; Tseng et al., 2005) existing recommender technologies
(Felfernig et al., 2007a) are primarily applied for the recommendation of simple products
and services such as books, movies or compact discs. These technologies have not been
integrated into commercial configuration environments dealing with complex products
and services. The major goals of this paper are threefold. First, we aim to provide an
overview of applicability of existing approaches to the integration of configuration and
recommendation technologies. Second, we discuss scenarios in which recommendation
technologies can be exploited in configuration sessions. Third, we present promising
existing approaches in detail with a working example and propose extensions. In
addition, we point out issues for future work. This work has been conducted within the
scope of the COSMOS project.1

1.1 Recommendation technologies

Collaborative filtering (see, e.g., Adomavicius and Tuzhilin, 2005) is one of the most
commonly used recommendation technologies. It provides recommendations on the basis
of opinions of users (e.g., ratings or purchasing data). A similarity function on opinions
about items is exploited to calculate nearest neighbours, which are users with similar
preferences. The basic idea is to identify similar users and to recommend their highly
rated items that are unknown to the active user. In many B2C scenarios, an individual

Towards recommending configurable offerings 391

user may purchase too few configurable products to establish a dense enough user
profile to be suitable as a basis for pure collaborative filtering. However, collaborative
filtering technologies can be used in specific settings supporting, for example, the
collaborative development of product innovations (Franke et al., 2008). This issue will
not be discussed in this paper.

Content-based filtering (see, e.g., Pazzani and Billsus, 2006) approaches recommend
items similar to those that the active user has preferred in the past. Items are described
by a number of keywords or features. A user model contains previous opinions
about items, often presented as keywords or features. A similarity function is used to
calculate nearest neighbours (Burke, 2002) which are in this case those items with the
highest similarity compared to the given preference information in the user profile. The
approach is typically applied for recommending text-based items such as articles or
web pages. A major challenge of applying this technique to configurable offerings is
that – beside the availability of accurate textual component descriptions – building a
user profile requires repetitive configurations of one user. Furthermore, a profile may
soon become outdated in rapidly evolving domains such as PC’s.

Utility-based recommendation estimates the relative satisfaction or desirability of
consumption of an item, i.e., utility for a customer and recommends items with the
highest utility. Domain-specific interest dimensions have to be identified in this context.
For PC’s, interest dimensions could be economy, reliability, graphics performance and
weight. Items are given numeric utility values with respect to the interest dimensions.
The user specifies his preferences in terms of importance (weight) of each interest
dimension. Given this information, item utilities can be computed for the active
user. In the context of configurable offerings, e.g., individual attribute or components
settings can be recommended based on their utilities. An example for the application
of utility-based recommendation approaches in the financial services domain is given
in Felfernig et al. (2007b). A further discussion of utility-based approaches in the
configuration context can be found, for example, in Ardissono et al. (2003).

Knowledge-based recommenders exploit explicit information about items and user
requirements and how those can be satisfied (Burke, 2002; Felfernig et al., 2007b).
Constraint-based recommendation (Felfernig and Burke, 2008) is a knowledge-based
approach where alternative items and potential customer requirements are described
on the basis of a set of features and the corresponding constraints. Filter constraints
match customer requirements to suitable items. Compatibility constraints ensure
the consistency of requirements. To resolve inconsistencies, explanation and repair
functionalities are provided (Felfernig et al., 2007b). Constraint-based approaches
exploit the same technologies as many knowledge-based configuration environments and
are additionally combined with, for example, utility-based recommendation supporting
the ranking of candidate configurations.

Case-based recommendation (Burke, 2000) is another type of knowledge-based
recommendation. In contrast to content-based filtering and collaborative filtering,
elementary properties of items (e.g., PC price) in previous configurations are taken into
account rather than extracted keywords or categories. It exploits similarity functions and
Bayes predictors on previous configurations to determine interesting items and feature
settings fitting to the wishes and needs of users. Bayes predictors allow the prediction
of interesting items on the basis of their probability of being selected given the existing
user preferences. Näıve Bayes predictors assume that variables are independent, which
makes them computationally most feasible but potentially less accurate. Näıve Bayes

392 J. Tiihonen and A. Felfernig

predictors have been applied for content-based filtering (Pazzani and Billsus, 2006)
and case-based recommendation (Coester et al., 2002). In this paper, we will apply
and extend Naı̈ve Bayes predictors for the identification of interesting alternatives and
(sub)configurations following the case-based recommendation approach.

1.2 Recommendation scenarios

It is possible to identify different scenarios for the recommendation of configurable
offerings. In those scenarios, recommendation functionalities could focus on:

• selecting a suitable base product line to configure (such as a car model)

• recommending a complete configuration (such as a complete PC for gaming or a
tractor for peat harvesting including suitable wheels, air-intake filters and other
equipment)

• recommending how to complete a configuration (e.g., to propose still unspecified
details of a PC)

• recommending a subconfiguration (e.g., a storage subsystem suitable for a particular
type of use such as a PC storage subsystem for full-HD video-editing and authoring)

• recommending individual attribute or component settings (e.g., a mobile data
connection for a business person).

A high diversity of usage and integration scenarios for recommendation technologies
in the configuration context can be envisioned. In this paper, our major focus is
the integration of case-based recommendation into existing configurators. We analyse
existing approaches in the field (Coester et al., 2002; Geneste and Ruet, 2001; Tseng et
al., 2005) and introduce potential improvements.

The remainder of the paper is organised as follows. In the following section, we
introduce a working example from the domain of configurable computers. In Section 3,
we provide an overview of relevant recommendation algorithms for configurable
products and services and propose extensions to be taken into account in future
developments. With Section 4, we conclude the paper.

2 Working example

In this paper, we consider (for reasons of simplicity) only ‘flat’ configuration models
consisting of features (no variation of structure or connections), each having a finite
domain of possible values. Our example product is a PC, that has as features a
motherboard (mb), a hard disk (hd), an optical drive (od), a processor (pr), and
optionally a graphics card (gc). The amount of memory (me) is specified in gigabytes
(1, 2, 3, or 4). A complete configuration specifies a value for each feature. Furthermore,
a valid configuration is complete and consistent with a defined set of constraints. Table 5
exhibits five previous valid configurations (interaction outcomes), and an incomplete
configuration of the active user, for whom suitable feature values will be recommended.

We represent some non-configurable attribute values related to features to specify
constraints more intuitively. Processors are introduced in Table 1(a). Processor
performance is approximated with an industry standard benchmark, specified by CScr.

Towards recommending configurable offerings 393

Socket determines a processor’s connection to a motherboard. Motherboards [see
Table 1(b)] are designed to be compatible with either manufacturer A’s or I’s processors,
socket ’a’ or ’i’, respectively. Thus, a specific constraint specifies that a processor must
fit the motherboard: pr.socket = mb.socket. In addition, some motherboards provide
an integrated graphics card (IntGr = yes).

Table 1 Processors (a, left) and motherboards (b, right)

pr Socket CScr mb Socket IntGr GScr
as a 1,250 a1 a yes 300
i4 i 2,858 a2 a no 0
i9 i 4,537 i1 i yes 200

i2 i no 0

Separate graphics cards, Table 2(a), provide higher performance than those integrated
to motherboards. Graphics performance is approximated with an industry standard
benchmark, represented by graphics performance score (GScr). Similarly, motherboards
with an integrated graphics card specify their graphics performance with GScr.
A system must always have a way to produce graphics. Thus the constraint
(mb.IntGr = no) ⇒ (gc ̸= none) is introduced. Note that none is a special feature
value specifying that an empty assignment is made for an optional feature, allowed
also in complete configurations. pc.GScr refers to graphics performance of the PC,
determined as the maximum GScr provided by the graphics card or the motherboard.

Table 2 Graphics cards (a, left) and hard disks (b, right)

gc GScr hd capacity
g2 2,800 h2 250
g8 2,200 h5 500
g9 5,500 h9 1,000

Hard disks (hd) are available in different capacities (GB), see Table 2(b). All optical
drives, see Table 3, read CD and DVD. Some write DVD or DVD + Blu-ray.

Table 3 Properties of optical drives of the working example

od Write DVD and CD (dw) Read Blu-ray (br) Write Blu-ray (bw)
dr No No No
dw Yes No No
br No Yes No
bw Yes Yes Yes

Table 4 Intended usage features of the working example

Feature Values
Video editing (vi) No (no) Standard definition (sd) High-definition (hd)
Photos (ph) No (no) Normal home use (std) Advanced amateur or professional

(adv)
Gaming (ga) No or 2D 3D games (3d) Enthusiast performance 3D games,

games (2d) HD resolutions (adv)

394 J. Tiihonen and A. Felfernig

Three additional features, namely video editing (vi), photos (ph) and gaming (ga) are
included in the configuration model to describe intended use of the PC being configured.
Details are specified in Table 4.

The following domain knowledge expressed as constraints is available:

ph ̸= no ⇒ od.dw = yes: to archive photos
ph = adv ⇒ hd.capacity ≥ 500: disk space for advanced photo processing
ph = adv ⇒ pr.CScr ≥ 2,500: CPU for advanced photo processing
ph = adv ⇒ me ≥ 2: RAM for advanced photo processing
vi = sd ⇒ pr.CScr ≥ 2,700: CPU for SD video editing
vi = hd ⇒ pr.CScr ≥ 4,500: CPU for HD video editing
vi = sd ⇒ od.dw = yes: burn DVD videos for SD video editing
vi = hd ⇒ od.bw = yes: burn Blu-ray videos for HD video editing
ga = 3d ⇒ pr.CScr ≥ 1,500: CPU for 3D gaming
ga = 3d ⇒ pc.GScr ≥ 1,500: graphics for 3D gaming
ga = adv ⇒ pr.CScr ≥ 2,800: CPU for advanced gaming
ga = adv ⇒ pc.GScr ≥ 5,000: graphics for advanced gaming

Some algorithms discussed in this paper apply feature importance weights. We
apply the following distribution: video editing w(vi) = 5%, photos w(ph) = 5%,
gaming w(ga) = 9%, processor w(pr) = 18%, motherboard w(mb) = 5%, amount
of memory w(me) = 15%, hard disk w(hd) = 16%, graphics card w(gc) = 17%,
optical drive w(od)=10%. These weights could stem from direct customer specifications,
representative preferences from statistical samples, or the application of utility
constraints as documented in Felfernig et al. (2007b).

Notation

We base the discussion of recommendation algorithms on the following conventions.
Relation conf holds previous K complete and consistent configurations, each specifying
consistent values for all the existing N features f1, . . . , fN . The value of feature fi
in configuration k is referred to as fi,k. For example fvi,3 = sd, see Table 5. The kth
configuration is referred to as confk. Classification (discussed in Section 3.1 in the
context of distance metrics) of configuration k is referred to as clk. When referring to
the profile of the active user, we use index u, u /∈ {1, 2, . . . ,K}, e.g., fi,u refers to the
value of feature fi for the active user. A recommended value for feature fj for the active
user is denoted by rfj ,u. The set of specified features in the active user profile is Fu,
in our example {fvi, fph, fga}, see the last row of Table 5. Fu = {fj |fj,u ̸= noval},
and the set of features for which the active user profile does not have a value is F̄u,
in our example {fpr, fmb, fme, fhd, fgc, fod}. Note that noval specifies that there is
no assignment to a feature value, illustrated as an empty cell in Table 5. noval is not
allowed in complete configurations. Furthermore, a projection πFu(conf) over previous
configurations conf onto the set of features Fu for which the active user has set a value
is referred to as confFu . The corresponding projection onto features that the active user
does not have a value is confF̄u

. To avoid the unintended removal of duplicate tuples,
the index of a configuration k is considered to be included in confk and projections,
see Table 5. Finally, dom(fj) returns the domain of feature fj .

Towards recommending configurable offerings 395

Table 5 Configurations from previous configuration sessions and the active user profile

k f1 vi f2 ph f3 ga f4 pr f5 mb f6 me f7 hd f8 gc f9 od cl

1 no no 2d as a1 1 h2 none dr ba
2 no std 2d as a2 1 h5 g2 dw st
3 sd std adv i4 i2 3 h5 g9 dw ad
4 hd adv adv i9 i2 4 h9 g9 bw ad
5 sd adv 3d i4 i1 2 h9 g8 dw st
u no no 3d

3 Recommendation algorithms

In this section, we provide an overview of existing algorithms supporting personalised
configuration processes and indicate possible ways to extend those to be more applicable
in real-world settings. The algorithms can be used for two different purposes: on
the one hand for the prediction of individual feature values and on the other hand
for recommendation of all missing feature values to complete a configuration. The
case-based recommendation approach is applied – the idea is to investigate existing
(similar) configurations in order to predict interesting feature settings and complete
solutions. Note that our cases describe user preferences as well as technical features.

Four recommendation algorithms will be discussed and illustrated with the working
example. Some of the algorithms rely on distance metrics discussed in Subsection 3.1
to determine similarity or dissimilarity of feature values. Two of the algorithms, nearest
neighbour (3.2) and most popular choice (3.5) provide recommendations for entire
remaining configurations. Recommendation of individual feature values is supported
by weighted majority voter (3.3) and Naı̈ve Bayes voter (3.4). For each approach, we
present its idea and extensions that can further improve it with regard to dimensions such
as prediction quality. A discussion of further approaches (3.6) concludes this section.

3.1 Distance metrics

The recommendation algorithms discussed in this paper use distance functions to
determine similarity or dissimilarity of individual feature values, and ultimately that of
configurations. The motivation for using distance functions instead of equality when
comparing feature values is that equality may be too strict for a measure – close values
or configurations could remain ignored. For example, many 500 GB hard disks from
different manufacturers are very similar, and slightly larger 640 GB hard disks could
often be used interchangeably.

We apply ideas of the heterogeneous value difference metric (HVDM) (Wilson and
Martinez, 1997) to cope with symbolic (nominal) and numeric features in a relatively
simple manner. On the feature level, the distance is defined as follows: the function
dfi(x, y), formula (1), returns the distance between values x and y of feature fi, using a
different sub-function for different types of features: distances between symbolic feature
values are computed by the function vdmfi(x, y) (2), and those between numeric values
by the function difffi(x, y) (3). Based on experiments of Wilson and Martinez (2005),
these functions provide similar influence on the overall distance measurements. Distance
values returned by dfi(x, y) are normalised to usually be in range 0 to 1.

396 J. Tiihonen and A. Felfernig

dfi(x, y) =

1 if x or y is unknown; otherwise
vdmfi(x, y), if fi is symbolic
difffi(x, y), if fi is numeric

(1)

The function vdmfi(x, y) learns the similarity of symbolic values in a domain
automatically. This is done by examining the probability that individual feature
values contribute to the classification of the samples – in our case classification of
configurations. Slightly oversimplifying, the closer the probability of a pair of feature
values to be present in identically classified configurations, the more similar these
feature values are considered. In this paper we take a simplistic view, and consider
a configuration to belong to one of three classifications [basic (ba), standard (st)
or advanced (ad)] that represent the sophistication level of the configuration. This
classification is used as the classifier for HVDM (see column ‘cl’ in Table 5); this is
calculated as follows – see formula (2):

vdmfi(x, y) =

√√√√∑
cl∈C

∣∣∣∣Nfi,x,cl

Nfi,x
− Nfi,y,cl

Nfi,y

∣∣∣∣2 =

√∑
cl∈C

|Pfi,x,cl − Pfi,y,cl|
2 (2)

In the function vdmfi(x, y), Nfi,x is the number of instances (configurations) in conf
that have value x for feature fi; Nfi,x,cl is the number of instances in conf that have
value x for feature fi and output class cl; C is the set of output classes in the problem
domain (in our case {ba, st, ad}). Pfi,x,cl is the conditional probability of output class
cl given that feature fi has the value x, i.e., P (cl|fi = x), determined as Nfi,x,cl

Nfi,x
. When

Nfi,x = 0, P (cl|fi = x) is considered 0.
In our example population conf , Npr,as = 2, Npr,i4 = 2, and Npr,i9 = 1. The

classification frequencies for processor Npr,x,cl are presented on left half of Table 6,
e.g., feature value as for classification basic (ba) occurs exactly once. The resulting
distance matrix for processors is presented on the right half of Table 6.

Table 6 Classification frequencies of pr (left) and corresponding distance matrix (right)

cl, x as i4 i9 as i4 i9
ba 1 0 0 as 0 0.707 1.225
std 1 1 0 i4 0.707 0 0.707
adv 0 1 1 i9 1.225 0.707 0

Distances between numeric values x and y of feature fi (in conf) are determined by
the function difffi(x, y) (3). Since 95% of the values in a normal distribution fall
within two standard deviations of the mean, the difference between numeric values is
divided by 4 standard deviations to scale each value into a range that is usually (95% of
cases) of width 1. As motivated in Wilson and Martinez (1997), normalisation through
standard deviation is often preferable to normalisation through division by the range of
that feature.

difffi(x, y) =
|x− y|
4σfi

(3)

Towards recommending configurable offerings 397

The distance metric dfi(x, y) usually returns a value from 0 to 1. The similarity
simfi(x, y) (4) between two feature values x and y of feature fi can then be defined
as:

simfi(x, y) = 1− dfi(x, y) (4)

In the following subsections, presenting the four algorithms and their extensions, we
will show how these metrics can be applied to the recommendation of feature values as
well as to the recommendation of complete configurations.

3.2 Nearest neighbour

The idea of a nearest neighbour is simple: determine a neighbour configuration, which
is closest to the known parts of active user’s profile, and recommend feature values of
this nearest neighbour for remaining features. The distance of the configuration confu
of the active user and neighbour configuration confa is defined as the sum of distances
between corresponding feature values, weighted by feature importance weights. Only
features that have a value in active users configuration are taken into account (fi ∈ Fu):

dist(confu, confa) =
∑

fi∈Fu

dfi(fi,u, fi,a) ∗ w(fi) (5)

A nearest neighbour configuration c with smallest distance is identified among those
configurations that complete the active user’s configuration confu in a consistent
manner. Recommendations are feature values of this the nearest neighbour configuration
c.

rfj ,u = fj,c for features fj ∈ F̄u (6)

In our example, the nearest neighbour relative to our user profile is conf1: dvi(no, no) =
0.000, w(vi) = 0.050; dph(no, no) = 0.000, w(ph) = 0.050; dga(3d, 2d) = 0.707,
w(ga) = 0.090. Total weighted distance dist(confu, conf1) = 0.064. Applying the
nearest neighbour formula to configurations conf2 . . . conf5 provides distances 0.125,
0.224, 0.250 and 0.097. Unfortunately, the combination of known feature values of
the user profile and conf1 is not consistent (graphics and cpu performances are
not sufficient for 3D gaming). Consequently, feature values of the nearest consistent
neighbour conf5 are recommended: rpr,u = i4, rmb,u = i1, rme,u = 2, rhd,u = h9,
rgc,u = g8 and rod,u = dw. Recommending feature values of the nearest consistent
neigbor is straightforward. However, in the case of non-existence of consistent nearest
neighbours, repair actions have to be taken into account. Further details regarding the
calculation of repair actions can be found in Felfernig et al. (2004).

3.3 Weighted majority voter

The weighted majority voter (Coester et al., 2002) recommends individual feature values
based on each neighbour configuration in conf ‘voting’ for its feature values. The
weight of each neighbour vote (neighboir weight) is determined by the number of
feature values equal to already determined values of the active user’s profile (Fu). For
example, the weight of conf1 for the active user u is 2, because fvi,1 = fvi,u = no, and

398 J. Tiihonen and A. Felfernig

fph,1 = fph,u = no. Thus, conf1 would contribute by recommending its feature values
by giving 2 votes to its feature value settings of the yet unspecified features fpr = as,
fmb = a1, fme = 1, fhd = h2, fgc = none, and fod = dr. As a sum of all neighbour
configurations voting for their feature values with their neighbour weight, the following
feature values get most votes: fpr = as (3 votes), fmb = a1 (2), fme = 1 (3), fhd = h2
(2), fgc = none (2), and fod = dr (2).

The consistency of a potential recommendation is checked by adding the proposed
value to the known values in the user profile. After the user selects a feature value,
recommendations will be recalculated to reflect the new situation. Due to consistency
checks, pr = i4 (one vote) and gc = g2 (one vote) replace those with most votes,
assuming the selection of the first feature value in a domain in case of a tie in
votes. Thus, the recommendations are rpr,u = i4, rmb,u = a1, rme,u = 1, rhd,u = h2,
rgc,u = g2 and rod,u = dr.

Next, we discuss the formula proposed in Coester et al. (2002) that formalises
the approach outlined above, and provide our extensions. First, we define the equality
function eq to return 1 when two feature values are equal, otherwise 0.

eq(x, y) =

{
1 if x=y
0 otherwise (7)

The neighbour weight w(confx, confu) of a neighbour configuration confx with respect
to configuration confu (a user’s partial configuration) is the number of equal feature
values in features for which confu has a value (Fu):

w(confx, confu) =
∑
i∈Fu

eq(fi,x, fi,u) (8)

Neighbours voting for their feature values establishes a specific amount of support for
each feature value v ∈ dom(fj). This support for user’s configuration confu to have
value v for feature fj is expressed as a prediction score pr(confu, fj , v). It is achieved
as the sum of neighbour weights (interpreted as votes) having value v for feature fj :

pr(confu, fj , v) =

K∑
i=1

eq(fj,i, v) ∗ w(confi, confu) (9)

A consistent feature value v with maximum prediction score pr(confu, fj , v) is the
recommendation rfj ,u for feature fj in configuration confu.

One possible extension to the approach of Coester et al. (2002) is an alternative
way for determining the neighbour weights: Neighbour weights can be determined
by the similarity of neighbour and user profile feature values instead of equality.
This would improve prediction quality in presence of similar feature values, because
similar values compared to user’s existing selections would also contribute to the
weight of a neighbour. Second, the importance of individual features for a user (feature
weights) should be taken into account. Thus, the weight w(confx, confu) of a neighbour
configuration confx with respect to configuration confu is defined as follows [instead
of formula (8)]:

w(confx, confu) =
∑
i∈Fu

simfi(fi,x, fi,u) ∗ w(fi) (10)

Towards recommending configurable offerings 399

The weights of example neighbours are w(conf1, confu) = 0.126,
w(conf2, confu) = 0.065, w(conf3, confu) = −0.034, w(conf4, confu) = −0.060
and w(conf5, confu) = 0.093. Using these weights, the potential recommendations
are rpr,u = as (0.191), rmb,u = a1 (0.126), rme,u = 1 (0.191), rhd,u = h2 (0.126),
rgc,u = none (0.126) and rod,u = dr (0.126). To provide (locally) consistent
recommendations, pr and gc should be substituted with closest consistent feature values
rpr,u = i4 (0.060) and rgc,u = g8 (0.093).

3.4 Naı̈ve Bayes voter

‘Näıve Bayes voter’ Coester et al. (2002) recommends individual feature values. To
determine a recommendation for feature fj , a probability predictor is determined for
each feature value v in the domain of fj . A feature value with the highest predictor will
be recommended. The Näıve Bayes voter [formula (12)] is such a predictor that applies
the idea of the Bayes theorem – see formula (11):

P (B|A) =
P (A|B)P (B)

P (A)
(11)

Here A and B are Boolean-valued random variables representing occurrence of
corresponding events, and P (A) and P (B) are probabilities of these events. P (B|A)
denotes the conditional probability of event B given that event A has taken place, and
P (A|B) the conditional probability of event A given event B.

In the case of Näıve Bayes voter, event B represents the fact that feature fj has
value v. Event A represents the fact that a configuration has the combination of feature
values already specified by the active user in Fu. Thus, P (A|B) is the conditional
probability of the active user’s current value combination for already specified features,
given that feature fj has value v. Finally, P (B|A) is the probability for the feature fj to
have value v, given the partial configuration of the active user. Applying this idea, the
predictor formula (12) consists of two parts: a basic probability P (B) and a conditional
probability P (A|B). Note that the divisor P (A) of formula (11) is omitted – hence, the
predictor value is directly proportional to the probability P (B|A) but does not directly
represent a probability. This safely simplifies calculations because the predictor value
is effectively used only for ranking feature values - not for determining a probability,
and P (A) would be the same for all feature values that will be compared. The parts
of formula (12) will be described below, necessary utility functions will be defined,
and illustrating examples provided. Finally, potential extensions for providing higher
prediction quality will be introduced.

pr(fj , v) =

basic probability P (B)︷ ︸︸ ︷
Prbasic(fj , v) ∗∏
fi∈Fu

mest(countmatch(fj , v, fi, u), count(fj , v), 1/K,K)︸ ︷︷ ︸
conditional probability P (A|B)

(12)

400 J. Tiihonen and A. Felfernig

The basic probability P (B) for value v of feature fj is simply the proportion of
configurations having that feature value, see formula (13). Formula (13) applies utility
function count(fj , v) (14) that returns the number of neighbours in conf having value v
for feature fj . For example, applying formula (13) for feature optical drive fod for value
v = dw gives Prbasic(fod, dw) = 0.600 because three of five neighbour configurations
have value dw for fod.

Prbasic(fj , v) =
count(fj , v)

K
(13)

count(fj , v) =

K∑
k=1

eq(fj,k, v) (14)

The conditional probability part P (A|B) of formula (12) determines a probability of the
active user’s current value combination (features values of Fu), given those neighbour
configurations that have feature fj = v. For each feature fi ∈ Fu, a conditional
probability estimate P (fi,u|fj = v) for the current value of the active user (fi,u) is
calculated. The conditional probability for the combination of values in Fu is the product
of individual feature value probability estimates, utilising the independence assumption.
When determining the probability estimate P (fi,u|fj = v) for feature fi, three aspects
are considered. First, the estimation takes into account exactly those N configurations
in conf that have value v for feature fj , i.e., fj,k = v, these configurations are referred
to as confv. Nc is the number of neighbours within confv that have equal feature
value as the user profile for feature fi, that is, fi,k = fi,u and fj,k = v. Probability
estimate pc =

Nc

N with a small Nc or N would be subject to large variations. Therefore
the third aspect, applying an m-estimate (Bratko et al., 1996) to stabilise probability
calculations even in case of (too) few samples is adopted. The idea of an m-estimate
can be summarised as follows. Let Nc be the number of samples in a class c whose
probability pc is being estimated, and N the total number of observed samples. The
m-estimate adds m virtual samples with probability p that augment the estimation of
probability. When N grows sufficiently, real samples outweigh the virtual samples.
Formula (15) represents this idea. N is determined with function count (14). Nc is
determined with function countmatch (16). Formula (12) applies the same m-estimate
virtual sample parameters as Coester et al. (2002): m = K, the number of neighbours
and p = 1/K.

mest(Nc, N, p,m) =
Nc +mp

N +m
(15)

The utility function countmatch(fj , v, fi, u) returns the number of neighbours in conf
having value v for feature fj and an equal value as the user profile u for feature fi.

countmatch(fj , v, fi, u) =
K∑

k=1

eq(fj,k, v) ∗ eq(fi,u, fi,k) (16)

Continuing the working example, the conditional probability P (A|B) given event
B: fod = dw is determined. Out of 3 neighbours with fod = dw, 1 (conf2) has
the same video specification as our active user profile (fvi = no), which results

Towards recommending configurable offerings 401

in an m-estimate mest(1, 3, 0.2, 5) = 0.250. Calculating the remaining m-estimates
for the other two already specified features in context of fod = dw produces
the following results. Photo fph : mest(0, 3, 0.2, 5) = 0.125 because 0 neighbours
out of 3 with fod = dw has the same fph value as active user. Gaming fga:
mest(1, 3, 0.2, 5) = 0.250 (1 neighbour out of 3 has the same fga value). Therefore
the predictor pr(fod,u, dw) = 0.600 ∗ (0.250 ∗ 0.125 ∗ 0.250) = 0.0046875. Predictors
for other possible values of fod are smaller. Because the predictor for fod = dw is
highest and consistent with existing feature values of the active user, recommendation
rod,u = dw is determined. The potential recommendations for feature values with
highest predictors are rmb,u = a1, rme,u = 1, rhd,u = h2, and od = dw. Due to
consistency constraints, rpr,u = i4 instead of as that has the highest predictor, and
rgc,u = g2 instead of none. Note that recommendations rpr,u = i4 and rmb,u = a1 are
mutually incompatible. As previously, we follow the approach that recommendations for
individual features will be recalculated after selecting a feature value, which alleviates
the problem of mutually inconsistent individual feature value recommendations. A
potential extension to improve the prediction accuracy of the Näıve Bayes voter in
the presence of similar feature values is to take into account similar feature values
in neighbour configurations instead of requiring them to be equal. A straightforward
method is to modify the determination of the basic probability P (B). We give each
feature value ‘support’ when neighbour configurations have feature values within
maximum distance ∆, dfj (fj,u, fj,a) ≤ ∆, instead of requiring equal feature values as
formula (13) does. The support is defined as term (1− dfj (fj,u, fj,a))

2 to quickly lessen
its significance when the distance increases. We define support sfj (x, y):

sfj (x, y) =

{
(1− dfj (x, y))

2, if dfj (x, y) ≤ ∆
0, otherwise (17)

Support for an individual feature value is divided by the sum of supports given to all
values in domain of fj . The extended basic probability is thus:

Prbasic(fj , v) =

∑K
k=1 sfj (v, fj,k)∑

w∈dom(fj)

∑K
k=1 sfj (w, fj,k)

(18)

Applying the similarity-based basic probability formula (18) with a (large) ∆ = 0.8
yields alternative basic probabilities, e.g., Prbasic(fod, dw) = 0.578. In this example,
same recommendations result as with the original formula.

3.5 Most popular choice

The most popular choice algorithm (Coester et al., 2002) recommends feature values
for the set of features that the user does not have a value, typically to complete a
configuration. A top-down view of the algorithm is is as follows: The most popular
choice algorithm applies the idea of the Bayes theorem (11) and the Näıve Bayes
assumption of independent features. A probability estimate for each a configuration
c ∈ conf is calculated by applying formula (19). A configuration c with highest
probability estimate is identified among those configurations that complete the active
user’s configuration confu in a consistent manner. Recommendations are feature values
of this configuration c.

402 J. Tiihonen and A. Felfernig

In this case, event B represents the fact that a configuration has the feature value
combination of configuration confc for the set of features that the user does not have
a value, F̄u. Event A represents the fact that a configuration has the combination of
feature values already specified in Fu. Thus, P (A|B) is the conditional probability of
the active user’s value combination for already specified features, given configurations
with feature value combination of configuration confc for the set of unknown features
F̄u. Finally, P (B|A) is the probability of the feature value combination of confc
for the yet unspecified features, given the partial configuration of the active user.
Applying this idea, the predictor formula (19) consists of two parts: a basic probability
P (B) and a conditional probability P (A|B). As with Näıve Bayes Voter, the divisor
P (A) of formula (11) is omitted, and the predictor only represents a value directly
proportional to the probability P (B|A). Next, the parts of formula (19) will be detailed,
necessary utility functions introduced, and illustrating examples provided. Finally,
potential extensions for providing higher prediction quality will be introduced.

The basic probability P (B) part, Prbasic(c, F̄u), represents the probability of the
feature value combination of configuration c for the set of features that the user does
not have a value, F̄u. This basic probability is directly determined by relative popularity
of feature values of confc for the set of features F̄u, formula (20). The basic probability
for an individual feature fj having value v that configuration c has (fj,c = v) is simply
the proportion of configurations of conf having value v for feature fj . The basic
probability of configuration c is determined by multiplying the basic probabilities for
individual feature values of the configuration (fj ∈ F̄u). These aspects are formalised in
formula (20). Formula (20) applies function count(fj , v) (14) to determine the number
of neighbours in conf with value v for feature fj .

Pr(c, u, Fu) =

basic probability P (B)︷ ︸︸ ︷
Prbasic(c, F̄u) ∗∏

fj∈Fu

mest(eqcfgsmatch(c, F̄u, fj , fj,u), eqcfgs(c, F̄u), 1/K,K)

︸ ︷︷ ︸
conditional probability P (A|B)

(19)

Prbasic(c, F̄u) =
∏
j∈F̄u

count(fj , fj,c)

K
(20)

In our example, the basic probability of feature value combination of conf5,
Prbasic(conf5, F̄u) is determined with the formula (20) as follows. The basic
probabilities of the individual unknown features are calculated. For example, feature
fpr,5 = i4. Two out of five configurations of conf has value i4 for feature fpr.
Therefore, the basic probability is 2/5 = 0.4. For other features of conf5, the basic
probabilities are 0.2 (fmb: 1 * i1), 0.2 (fme: 1 * 2), 0.4 (fhd: 2 * h9), 0.2 (fgc: 1 * g8)
and 0.6 (fod: 3 * dw). Therefore, the basic probability of conf5 is 0.4 * 0.2 * 0.2 * 0.4
* 0.2 * 0.6 = 0.000768.

The conditional probability P (A|B) part of formula (19) provides the probability of
value combination in Fu, given configurations that have the same configuration as confc
with respect to those features that the user profile does not have a value (F̄u). This
conditional probability estimate is based on four aspects. First, the estimation takes into

Towards recommending configurable offerings 403

account exactly those configurations in conf that have the same configuration as confc
with respect to those features that the user profile does not have a value (F̄u). These
N configurations are referred to as confC . Second, each feature fj ∈ Fu that the active
user already has a value is analysed individually to determine P (fj = fj,u|confC). Nc

is the number of configurations within confC that have the same feature value for
feature fj as the active user’s profile, fj,u = fj,c. Third, the m-estimate approach is
applied for determining the probability estimate for feature fj , using formula (15). We
apply the m-estimate parameters of Coester et al. (2002): The number of ‘in-samples’
Nc and the number of all samples N were described above. To calculate N and
Nc, utility functions defined in formulas (21), (22) and (23) are applied. The virtual
sample parameters for the m-estimate are p = 1/K and m = K. Fourth, the conditional
probability given the value combination of confc is achieved by multiplying the
individual feature probability estimates (m-estimates), based on the assumption of
independent features.

Formula eqcfg(i, j, F) (21) tests if configurations i and j are equal with respect to
a set of features F . It returns 1 iff profiles i and j have equal feature values for all
features f ∈ F . Otherwise it returns 0.

eqcfg(i, j, F) =

{
1 if ∀ff ∈ F : eq(ff,i, ff,j) = 1
0 otherwise (21)

Formula eqcfgs(c, F) (22) returns the number of configurations that are equal to
configuration c with respect to a set of features F .

eqcfgs(c, F) =
K∑

k=1

eqcfg(c, k, F) (22)

Finally, formula eqcfgsmatch(c, F, fj , v) (23) returns the number of configurations that
are equal to configuration c with respect to a set of features F , and additionally have
value v for feature fj .

eqcfgsmatch(c, F, fj , v) =
K∑

k=1

eqcfg(c, k, F) ∗ eq(fj,k, v) (23)

The conditional probability part of the predictor of formula (19) is applied in the
example as follows. Related to conf5, the set confC consists only of conf5 because
there are no other equal configurations to conf5 with respect to features absent from
user profile. Thus N = 1. The product of formula (19) expands as mest(0, 1, 0.2, 5) ∗
mest(0, 1, 0.2, 5) ∗mest(1, 1, 0.2, 5) = 0.167 ∗ 0.167 ∗ 0.167 = 0.00926. For example,
in the first term Nc = 0, because configuration conf5 has fvi,5 = sd that is not equal
to no in the user profile. The third term for fga has Nc = 1, because fga,5 = 3d which
equals fga,u of the user profile.

Combining the basic probability and the conditional probability parts of
formula (19), conf5 has the highest predictor 0.000768 ∗ 0.00926 = 0.00000711.
Completing active user’s configuration with feature values of conf5 is consistent,
therefore they are recommended: rpr,u = i4, rmb,u = i1, rme,u = 2, rhd,u = h9,
rgc,u = g8 and rod,u = dw.

404 J. Tiihonen and A. Felfernig

As with the Näıve Bayes voter above, the concept of basic probability can be
extended to give each feature value support when neighbour configurations have feature
values within maximum distance ∆, (dfj (fj,u, fj,a) ≤ ∆), defined in formula (17). To
calculate the modified basic probability, the sum of supports for feature fj having the
value that configuration c has (fj,c) is divided by the sum of supports given to all values
in domain of fj . Recommendations would not be affected by eliminating the divisor,
which would simplify calculations with the trade-off of sacrificing numeric compatibility
with the original formula. Therefore, we replace formula (20) with formula (24):

Prbasic(c, F̄u) =
∏

fj∈F̄u

∑K
k=1 sfj (fj,c, fj,k)∑

w∈dom(fj)

∑K
k=1 sfj (w, fj,k)

(24)

With our modified formula (24) and (a large) ∆= 0.8 the individual feature value
probabilities are: 0.403 (pr), 0.286 (mb), 0.280(me), 0.444 (hd), 0.286 (gc) 0.578 (od).
Therefore, the basic probability of conf5 = 0.00237.

With the extended algorithm conf5 has the predictor 0.00237 ∗ 0.00926 =
0.0000219, slightly higher than 0.0000204 of conf3. As above, the values of conf5 are
recommended.

3.6 Further approaches

The algorithms discussed in this paper can be seen as representative extensions for
existing commercial configuration environments. Similar to the algorithms analysed
are those discussed in Tseng et al. (2005) that as well represent an approach to the
application of case-based reasoning in product configuration. The authors develop their
approach on the basis of a high-level product structure where instance similarities are
determined on the basis of simple equality relations. In this context, Tseng et al. (2005)
do not take into account probabilities which provide an indication of the most promising
similar cases. Geneste and Ruet (2008) presents an approach to integrate case-based
reasoning with constraint solving with the goal to adapt identified nearest neighbours
to the new configuration problem. The used algorithm (Geneste and Ruet, 2008) for
calculating nearest neighbours takes into account component structures but does not
take into account probabilities of selection. The authors introduce an approach to the
calculation of adaptations for the identified nearest neighbours in order to conform
with the new customer preferences. No details are provided regarding the minimality
of changes or how the adaption affects the given customer requirements. One of our
major goals for future research is to integrate mechanisms which allow the calculation
of minimal adaptations in the case of recommendations partially inconsistent with the
given customer requirements. There exist a couple of approaches similar to Geneste and
Ruet (2008), where cased-based reasoning (Kolodner, 1993) is integrated with constraint
solving. On the one hand, the idea is to make constraint solving more efficient by the
means of starting with already existing cases. On the other hand, the feasibility checking
of case-adaptations requires the integration of corresponding constraint technologies
(Purvis, 1997). In case-based reasoning, one of the major challenges in this context is
to develop criteria for the adaptability of cases. Such criteria are taken into account, for
example, in Purvis (1997) and Smyth and Keane (1996). Management of consistency
of recommendations with respect to an existing (partial) configuration is an important
topic. In cases where there exist interesting configurations for customers but those are

Towards recommending configurable offerings 405

incompatible with the initial set of requirements, corresponding explanations (Felfernig
et al., 2004; Friedrich, 2004) have to be provided.

4 Conclusions and future work

In this paper, we provide an overview of approaches to integrate case-based
recommendation with configuration technologies. This integration allows for the
derivation of individualised and personalised product and service offerings. Those
technologies show great potential for reducing the so-called mass confusion phenomenon
which prevents users from identifying products and services fitting their wishes and
needs. We proposed extensions to already existing recommendation algorithms (in
terms of importance weights, similarity metrics with a new classification approach,
and consistency criteria for recommendations) with the goal to indicate potential
improvements in future system developments. Future work in this area will be to
evaluate the proposed extensions within the scope of a series of user studies and to
apply our approach in other application scenarios such as reconfiguration. For example,
in insurance and financial domains the situation or needs of individuals or customer
organisations change within long relationships of customership. It should be possible to
update the configured solution correspondingly while avoiding solutions that introduce
sub-optimal switching costs or weakening of current contractual terms. In our view,
recommender-supported configuration systems have significant potential to support the
mass customisation strategy, reduce mass confusion and to make complex products and
services accessible to larger audiences even in self-service e-commerce scenarios.

References

Adomavicius, G. and Tuzhilin, A. (2005) ‘Toward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions’, Knowledge and Data Engineering, IEEE
Transactions on, Vol. 17, No. 6, pp.734–749.

Ardissono, L., Felfernig, A., Friedrich, G., Jannach, D., Petrone, G., Schäfer, R. and Zanker, M.
(2003) ‘A framework for the development of personalized, distributed web-based configuration
systems’, AI Magazine, Vol. 24, No. 3, pp.93–108.

Bratko, I., Cestnik, B. and Kononenko, I. (1996) ‘Attribute-based learning’, AI Communications,
Vol. 9, No. 1, pp.27–32.

Burke, R. (2000) ‘Knowledge-based recommender systems’, Encyclopedia of Library and Information
Systems, Vol. 69, No. 32.

Burke, R. (2002) ‘Hybrid recommender systems: survey and experiments’, User Modeling and
User-Adapted Interaction, Vol. 12, No. 4, pp.331–370.

Coester, R., Gustavsson, A., Olsson, R. and Rudstroem, A. (2002) ‘Enhancing web-based
configuration with recommendations and cluster-based help’, in AH’02 Worksh. on
Recommendation and Personalization in EComm., Malaga, Spain.

Emde, W., Beilken, C., Boerding, J., Orth, W., Ptersen, U., Rahmer, J., SPenke, M., Voss, A. and
Wrobel, S. (1996) ‘Configuration of telecommunication systems in KIKon’, in Workshop on
Configuration, Stanford, California, pp.105–110.

Felfernig, A. and Burke, R. (2008) ‘Constraint-based recommender systems: technologies and research
issues’, in ACM, editor, ACM International Conference on Electronic Commerce, Innsbruck,
Austria, pp.17–26.

406 J. Tiihonen and A. Felfernig

Felfernig, A., Friedrich, G., Jannach, D. and Stumptner, M. (2004) ‘Consistency-based diagnosis of
configuration knowledge bases’, Artificial Intelligence, Vol. 2, No. 152, pp.213–234.

Felfernig, A., Friedrich, G. and Schmidt-Thieme, L. (2007a) ‘Recommender systems’, IEEE Intelligent
Systems-Special Issue on Recommender Systems, Vol. 22, No. 3.

Felfernig, A., Isak, K., Szabo, K. and Zachar, P. (2007b) ‘The vita financial services sales support
environment’, in AAAI, pp.1692–1699.

Franke, N., Keinz, P. and Schreier, M. (2008) ‘Complementing mass customization toolkits with user
communities’, Journal of Product Innovation Management, Vol. 25, No. 6, pp.546–559.

Friedrich, G. (2004) ‘Elimination of spurious explanations’, in G. M”uller and K. Lin (Eds.): 16th
European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, pp.813–817.

Geneste, L. and Ruet, M. (2001) ‘Experience based configuration’, in 17th International Conference
on Artificial Intelligence, IJCAI, Vol. 1, pp.4–10.

Haeubl, G. and Murray, K.B. (2003) ‘Preference construction and persistence in digital marketplaces:
the role of electronic recommendation agents’, Journal of Consumer Psychology, Vol. 13, No. 1,
pp.75–91.

Huffman, C. and Kahn, B.E. (1998) ‘Variety for sale: mass customization or mass confusion?’, Journal
of Retailing, Vol. 74, No. 4, pp.491–513.

Kolodner, J. (1993) Case-based Reasoning, Morgan Kaufmann Publisher.
Pazzani, M.J. and Billsus, D. (2006) ‘Content-based recommendation systems’, The Adaptive Web:

Methods and Strategies of Web Personalization, Lecture Notes in Computer Science, Vol. 4321.
Purvis, L. (1997) ‘Dynamic constraint satisfaction using case-based reasoning techniques’, in

Constraint Programming (CP07) Workshop on Dynamic Constraint Satisfaction.
Smyth, B. and Keane, M. (1996) ‘Using adaptation knowledge to retrieve and adapt design cases’,

Journal of Knowledge-based Systems, Vol. 9, No. 2, pp.127–135.
Tseng, H., Chang, C. and Chang, S. (2005) ‘Applying case-based reasoning for product configuration

in mass customization environments’, Expert Sys. with Applic., Vol. 29, No. 4, pp.913–925.
Wilson, D. and Martinez, T. (1997) ‘Improved heterogeneous distance functions’, Journal of Artificial

Intelligence Research, Vol. 6, pp.1–34.

Notes

1 Customer-oriented systematically managed service offerings (COSMOS) is a project supported by
the Finnish Funding Agency for Technology and Innovation.

