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Abstract Many domains require scalable algorithms that help to determine diagnoses effi-
ciently and often within predefined time limits. Anytime diagnosis is able to determine
solutions in such a way and thus is especially useful in real-time scenarios such as produc-
tion scheduling, robot control, and communication networks management where diagnosis
and corresponding reconfiguration capabilities play a major role. Anytime diagnosis in
many cases comes along with a trade-off between diagnosis quality and the efficiency of
diagnostic reasoning. In this paper we introduce and analyze FLEXDIAG which is an any-
time direct diagnosis approach. We evaluate the algorithm with regard to performance and
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José A. Galindo
jagalindo@us.es

David Benavides
benavides@us.es

Seda Polat Erdeniz
spolater@ist.tugraz.at
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diagnosis quality using a configuration benchmark from the domain of feature models and
an industrial configuration knowledge base from the automotive domain. Results show that
FLEXDIAG helps to significantly increase the performance of direct diagnosis search with
corresponding quality tradeoffs in terms of minimality and accuracy.

Keywords Anytime diagnosis · Reconfiguration

1 Introduction

Knowledge-based configuration is one of the most successful application areas of Artifi-
cial Intelligence (Felfernig et al. 2014; Frayman and Mittal 1987; Haag 2014; Hvam et al.
2008; Sabin and Weigel 1998; Salvador and Forza 2007; Stumptner 1997). There exist
many application domains ranging from telecommunication systems (Fleischanderl et al.
1998; Stumptner et al. 1994), railway interlocking systems (Falkner and Schreiner 2014),
the automotive domain (Sinz et al. 2003; Tiihonen and Anderson 2014; Walter and Küchlin
2014), software product lines (Benavides et al. 2010) to the configuration of services
(Tiihonen et al. 2014a).

Configuration technologies must be able to deal with inconsistencies which can occur
in different contexts. First, a configuration knowledge base can be inconsistent, i.e., no
solution can be determined. In this context, the task of knowledge engineers is to figure
out which constraints are responsible for the unintended behavior of the knowledge base.
Bakker et al. (1993) show how to apply model-based diagnosis (Reiter 1987) to determine
minimal sets of constraints in a knowledge base that are responsible for a given inconsis-
tency. A variant thereof is documented in Felfernig et al. (2004) where an approach to the
automated debugging of knowledge bases with test cases is introduced. Test cases are inter-
preted as positive or negative examples that describe the intended behavior of a knowledge
base. If some positive examples induce conflicts in the configuration knowledge base, some
of the constraints in the knowledge base are faulty and have to be adapted or deleted. If
some negative examples are accepted (i.e., not rejected) by the configuration knowledge
base, further constraints have to be included in order to take these examples into account
(in Felfernig et al. (2004) this issue is solved by simply including negative examples in
negated form into the configuration knowledge base). A related approach in the area of soft-
ware product lines is proposed in White et al. (2010). Second, customer requirements can be
inconsistent with the underlying knowledge base.1 Felfernig et al. (2004) also show how to
diagnose customer requirements that are inconsistent with a configuration knowledge base.
The underlying assumption is that the configuration knowledge base itself is consistent but
combined with a set of requirements is inconsistent.

The so far mentioned configuration-related diagnosis approaches are based on conflict-
directed hitting set determination where conflicts have to be calculated in order to be able
to derive one or more corresponding diagnoses (Crow and Rushby 1991; Janota et al. 2014;
Junker 2004; Reiter 1987; Shah 2011). These approaches often determine diagnoses in a
breadth-first search manner which allows the identification of minimal cardinality diag-
noses. The major disadvantage of applying these approaches is the need of determining
minimal conflicts which is inefficient especially in cases where only the leading diagnoses

1Requirements are additional constraints not part of the configuration knowledge base itself – these
constraints represent specific preferences regarding product properties.
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(the most relevant ones) are sought. Furthermore, in many application domains it is not
necessarily the case that minimal cardinality diagnoses are the preferred ones – Felfernig
et al. (2009) show how recommendation technologies (Jannach et al. 2010) can be exploited
for guiding the search for preferred (minimal but not necessarily minimal cardinality)
diagnoses.

Algorithms based on the idea of anytime diagnosis are useful in scenarios where diag-
noses have to be provided in real-time, i.e., within given time limits. Efficient diagnosis and
reconfiguration of communication networks is crucial to retain the quality of service, i.e., if
some components/nodes in a network fail, corresponding substitutes and extensions have to
be determined immediately (Nica et al. 2014; Stumptner and Wotawa 1999). In today’s pro-
duction scenarios which are characterized by small batch sizes and high product variability,
it is increasingly important to develop algorithms that support the efficient reconfigura-
tion of schedules. Such functionalities support the paradigm of smart production, i.e., the
flexible and efficient production of highly variant products. Further applications are the
diagnosis and repair of robot control software (Steinbauer et al. 2005), sensor networks
(Provan and Chen 1999), feature models (Janota et al. 2014; White et al. 2010), the recon-
figuration of cars (Walter et al. 2013), and the reconfiguration of buildings (Friedrich et al.
2011). In the diagnosis approach presented in this paper, we assure diagnosis determination
within certain time limits by systematically reducing the number of solver calls needed. This
specific interpretation of anytime diagnosis requires a trade-off between diagnosis quality
(evaluated, e.g., in terms of minimality) and the time needed for diagnosis determination.

Algorithmic approaches to provide efficient solutions for diagnosis problems are many-
fold. Some approaches focus on improvements of Reiter’s original hitting set directed
acyclic graph (HSDAG) (Reiter 1987) in terms of a personalized computation of lead-
ing diagnoses (DeKleer 1990) or other extensions that make the basic approach (Reiter
1987) more efficient (Wotawa 2001). Wang et al. (2009) introduce an approach to derive
binary decision diagrams (BDDs) (Andersen et al. 2010; Bryant 1992) on the basis of a
pre-determined set of conflicts – diagnoses can then be determined by finding paths in the
BDD that include given variable settings (e.g., requirements defined by the user). A prede-
fined set of conflicts can also be compiled into a corresponding linear optimization problem
(Fijany and Vatan 2004); diagnoses can then be determined by solving the given prob-
lem. In knowledge-based recommendation scenarios, diagnoses for user requirements can
be pre-compiled in such a way that for a given set of customer requirements, the diagnosis
search task can be reduced to querying a relational table (see, for example, Jannach 2006;
Schubert and Felfernig 2011). All of the mentioned approaches either extend the approach
of Reiter (1987) or improve efficiency by exploiting pre-generated information about
conflicts or diagnoses.

An alternative to conflict-directed diagnosis (Reiter 1987) are direct diagnosis algorithms
that determine minimal diagnoses without the need of predetermining minimal conflict sets
(Felfernig et al. 2012; Shchekotykhin et al. 2014). The FASTDIAG algorithm (Felfernig et al.
2012) is a divide-and-conquer based algorithm that supports the determination of diagnoses
without a preceding conflict detection. Such direct diagnosis approaches are especially use-
ful in situations where not the complete set of diagnoses has to be determined but users
are interested in the leading diagnoses, i.e., diagnoses with a high probability of being rel-
evant for the user. Also in the context of SAT solving, algorithms have been developed
that allow the efficient determination of diagnoses (also denoted as minimal correction sub-
sets) in an efficient fashion (Bacchus et al. 2014; Gregoire et al. 2014; Marques-Silva et al.
2013; Mencia et al. 2014). Beside efficiency, prediction quality of a diagnosis algorithm is
a major issue in interactive configuration settings, i.e., those diagnoses have to be identified
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that are relevant for the user. A corresponding comparison of approaches to determine pre-
ferred minimal diagnoses and unsatisfied clauses with minimum total weights is provided in
Walter et al. (2016). The authors point out theoretical commonalities and prove the
reducibility of both concepts to each other.

In this paper we show how the FASTDIAG approach can be converted into an anytime
diagnosis algorithm (FLEXDIAG) that allows tradeoffs between diagnosis quality (minimal-
ity and accuracy) and performance. In this paper we focus on reconfiguration scenarios
(Friedrich et al. 2011; Nica et al. 2014; Stumptner and Wotawa 1999; Walter and Küchlin
2014), i.e., we show how FLEXDIAG can be applied in situations where a given config-
uration (solution) has to be adapted conform to a changed set of customer requirements.
Our contributions in this paper are the following. First, based on previous work on the
diagnosis of inconsistent knowledge bases, we show how to solve reconfiguration tasks
with direct diagnosis. Second, we make direct diagnosis anytime-aware by including a
parametrization that helps to systematically limit the number of consistency checks and thus
make diagnosis search more efficient. Finally, we report the results of a FLEXDIAG-related
evaluation conducted on the basis of real-world configuration knowledge bases (feature
models and configuration knowledge bases from the automotive industry) and discuss qual-
ity properties of related diagnoses not only in terms of minimality but also in terms of
accuracy.

The remainder of this paper is organized as follows. In Section 2 we introduce an exam-
ple configuration knowledge base from the domain of resource allocation. This knowledge
base will serve as a working example throughout the paper. Thereafter (Section 3) we intro-
duce a definition of a reconfiguration task. In Section 4 we discuss basic principles of
direct diagnosis on the basis of FLEXDIAG and show how this algorithm can be applied in
reconfiguration scenarios. In Section 5 we present the results of an analysis of algorithm
performance and the quality of determined diagnoses. A simple example of the application
of FLEXDIAG in production environments is given in Section 6. In Section 7 we discuss
issues for future work. With Section 8 we conclude the paper.

2 Example configuration knowledge base

A configuration system determines configurations (solutions) on the basis of a given set of
customer requirements (Hotz et al. 2014). In many cases, constraint satisfaction problem
(CSP) representations are used for the definition of a configuration task.2 A configuration
task and a corresponding configuration (solution) can be defined as follows:

Definition 1 (Configuration Task and Configuration). A configuration task can be defined
as a CSP (V,D, C ∪ R) where V = {v1, v2, ..., vn} is a set of variables, D =⋃

vi∈V {dom(vi)} represents domain definitions, and C = {c1, c2, ..., cm} is a set of con-
straints (the configuration knowledge base). Additionally, user requirements are represented
by a set of constraints R = {r1, r2, ..., rk} where R and C are disjoint. A configu-
ration (solution) for a configuration task is a complete set of assignments (constraints)
S = {s1 : v1 = a1, s2 : v2 = a2, ..., sn : vn = an} where ai ∈ dom(vi) which is consistent
with C ∪ R.

2A Constraint Satisfaction Problem (CSP) is typically defined by a set of variables, corresponding finite
domains, and a set of constraints (Mackworth 1977). For the representation of constraints we use a notation
typically used in the context of CSP solving – for details see, for example, Felfernig et al. (2014).



J Intell Inf Syst (2018) 51:161–182 165

An example of a configuration task represented as a constraint satisfaction problem
(CSP) is the following.

Example (Configuration Task) In this resource allocation problem example, items (a
barrel of fuel, a stack of paper, a pallet of fireworks, a pallet of personal computers, a pallet
of computer games, a barrel of oil, a pallet of roof tiles, and a pallet of rain pipes) have to be
assigned to three different containers. There are a couple of constraints (ci) to be taken into
account, for example, fireworks must not be combined with fuel (c1). Furthermore, there
is one requirement (r1) which indicates that the pallet of fireworks has to be assigned to
container 1. On the basis of this configuration task definition, a configurator can determine
a configuration (solution) S.

– V = {f uel, paper, f ireworks, pc, games, oil, roof, pipes}
– dom(f uel) = dom(paper) = dom(f ireworks) = dom(pc) = dom(games) =

dom(oil) = dom(roof ) = dom(pipes) = {1, 2, 3}
– C = {c1 : f ireworks �= f uel, c2 : f ireworks �= paper,

c3 : f ireworks �= oil, c4 : pipes = roof, c5 : paper �= f uel}
– R = {r1 : f ireworks = 1}
– S = {s1 : pc = 3, s2 : games = 1, s3 : paper = 2, s4 : f uel = 3,

s5 : f ireworks = 1, s6 : oil = 2, s7 : roof = 1, s8 : pipes = 1}
On the basis of the given definition of a configuration task, we now introduce the concept
of reconfiguration (see also Friedrich et al. 2011; Nica et al. 2014; Stumptner 1999; Walter
and Küchlin 2014).

3 Reconfiguration task

It can be the case that an existing configuration S has to be adapted due to new cus-
tomer requirements. Examples thereof are changing requirements in production schedules,
failing components or overloaded network infrastructures in a mobile phone network,
and changes in the internal model of the environment of a robot. In the following we
assume that the pallet of paper should be reassigned to container 3 and the personal com-
puter and games pallets should be assigned to the same container. Formally, the set of
new requirements is represented by Rρ : {r ′

1 : pc = games, r ′
2 : paper = 3}. In

order to determine reconfigurations, we have to calculate a corresponding diagnosis �

(see Definition 2).

Definition 2 (Diagnosis). A diagnosis � (correction subset) is a subset of S = {s1 : v1 =
a1, s2 : v2 = a2, ..., sn : vn = an} such that S − � ∪ C ∪ Rρ is consistent. � is minimal if
there does not exist a diagnosis �′ with �′ ⊂ �.

On the basis of the definition of a minimal diagnosis, we can introduce a formal definition
of a reconfiguration task.

Definition 3 (Reconfiguration Task and Reconfiguration). A reconfiguration task can be
defined as a CSP (V,D, C, S,Rρ) where V is a set of variables, D represents vari-
able domain definitions, C is a set of constraints, S represents an existing configuration,
and Rρ = {r ′

1, r
′
2, ..., r

′
q} (Rρ consistent with C) represents a set of reconfiguration

requirements. Furthermore, let � be a minimal diagnosis for the reconfiguration task.
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A reconfiguration is a variable assignment S� = {s1 : v1 = a′
1, s2 : v2 = a′

2, ..., sl : vl =
a′
l} where si ∈ �, a′

i �= ai , and S − � ∪ S� ∪ C ∪ Rρ is consistent.
If Rρ is inconsistent with C, the new requirements have to be analyzed and changed

before a corresponding reconfiguration task can be triggered (Falkner et al. 2011; Felfer-
nig et al. 2009). An example of a reconfiguration task in the context of our configuration
knowledge base is the following.

Example (Reconfiguration Task) In the resource allocation problem, the original cus-
tomer requirements R are substituted by the requirements Rρ = {r ′

1 : pc = games, r ′
2 :

paper = 3}. The resulting reconfiguration task instance is the following.

– V = {f uel, paper, f ireworks, pc, games, oil, roof, pipes}
– dom(f uel) = dom(paper) = dom(f ireworks) = dom(pc) = dom(games) =

dom(oil) = dom(roof ) = dom(pipes) = {1, 2, 3}
– C = {c1 : f ireworks �= f uel, c2 : f ireworks �= paper,

c3 : f ireworks �= oil, c4 : pipes = roof, c5 : paper �= f uel}
– S = {s1 : pc = 3, s2 : games = 1, s3 : paper = 2, s4 : f uel = 3,

s5 : f ireworks = 1, s6 : oil = 2, s7 : roof = 1, s8 : pipes = 1}
– Rρ = {r ′

1 : pc = games, r ′
2 : paper = 3}

To solve a reconfiguration task (see Definition 3), conflict-directed diagnosis approaches
(Reiter 1987) would determine a set of minimal conflicts and then determine a hitting set
that resolves each of the identified conflicts. In this context, a minimal conflict set CS ⊆ S

is a minimal set of variable assignments that trigger an inconsistency with C ∪ Rρ , i.e.,
CS ∪ C ∪ Rρ is inconsistent and there does not exist a conflict set CS′ with CS′ ⊂ CS. In
our working example, the minimal conflict sets are CS1 : {s1 : pc = 3, s2 : games = 1},
CS2 : {s3 : paper = 2}, and CS3 : {s4 : f uel = 3}. The corresponding minimal diagnoses
are �1 : {s1, s3, s4} and �2 : {s2, s3, s4}.

The elements in a diagnosis indicate which variable assignments have to be adapted such
that a reconfiguration can be determined that takes into account the new requirements in
Rρ . Consequently, a reconfiguration represents a minimal set of changes to the original
configuration (S) such that the new requirements Rρ are taken into account. If we choose
�1, a reconfiguration S� (reassignments for the variable assignments in �1) can be deter-
mined by a CSP solver call C ∪ Rρ ∪ (S − �1). The resulting configuration S′ can be
{s1 : pc = 1, s2 : games = 1, s3 : paper = 3, s4 : f uel = 2, s5 : f ireworks =
1, s6 : oil = 2, s7 : roof = 1, s8 : pipes = 1}. For a detailed discussion of conflict-
based diagnosis we refer to Reiter (1987). In the following we introduce an approach to
the determination of minimal reconfigurations which is based on a direct diagnosis algo-
rithm, i.e., diagnoses are determined without the need of determining related minimal
conflict sets.

4 Reconfiguration with FLEXDIAG

In the following discussions, the set AC = C∪Rρ ∪S represents the union of all constraints
that restrict the set of possible solutions for a given reconfiguration task. Furthermore,
S represents a set of constraints that are considered as candidates for being included in
a diagnosis �. The idea of FLEXDIAG (Algorithm 1) is to systematically filter out the
constraints that become part of a minimal diagnosis using a divide-and-conquer based
approach.
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Sketch of Algorithm In our example reconfiguration task, the original configuration
S = {s1, s2, s3, s4, s5, s6, s7, s8} and the new set of customer requirements is Rρ = {r ′

1, r
′
2}.

Since S ∪ Rρ ∪ C is inconsistent, we are in need of a minimal diagnosis � and a reconfigu-
ration S� such that S − � ∪ S� ∪ Rρ ∪ C is consistent. In the following we will show how
the FLEXDIAG (Algorithm 1) can be applied to determine such a minimal diagnosis �.

FLEXDIAG is assumed to be activated under the assumption that AC = C ∪ Rρ ∪ S

is inconsistent, i.e., the consistency of AC is not checked by the algorithm. If AC is
inconsistent but AC − S is also inconsistent, FLEXDIAG will not be able to identify a
diagnosis in S; therefore ∅ is returned. Otherwise, a recursive function FLEXD is acti-
vated which is in charge of determining one minimal diagnosis � ⊆ S. In each recursive
step, the constraints in S are divided into two different subsets (S1 and S2) in order to
figure out if already one of these subsets includes a diagnosis. If this is the case, the
second set must not be inspected for diagnosis elements anymore. If we assume, for exam-
ple, S = {s1, s2, s3, s4, s5, s6, s7, s8} is inconsistent and we divide S into the two subsets
S1 = {s1, s2, s3, s4} and S2 = {s5, s6, s7, s8} and S1 is already consistent with C ∪ Rρ then
diagnosis elements are searched in S2 (since S1 is already consistent). The complete related
walkthrough is depicted in Figs. 1 and 2.

FLEXDIAG is based on the concepts of FASTDIAG (Felfernig et al. 2012), i.e., it returns
one diagnosis (�) at a time and is complete in the sense that if a diagnosis is contained in
S, then the algorithm will find it. A corresponding reconfiguration can be determined by
a CSP solver call C ∪ Rρ ∪ (S − �). The determination of multiple diagnoses at a time
can be realized on the basis of the construction of a HSDAG (Reiter 1987). In FLEXDIAG,
the parameter m is used to control diagnosis quality in terms of minimality, accuracy, and
the performance of diagnostic search (see Section 5). The higher the value of m the higher
the performance of FLEXDIAG and the lower the degree of diagnosis quality. The inclusion
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Fig. 1 FLEXDIAG walkthrough: determining one minimal diagnosis with m = 1 (� = {s1, s3, s4})

of m to control quality and performance is the major difference between FLEXDIAG and
FASTDIAG. If m = 1 (see Algorithm 1), the number of consistency checks needed for
determining one minimal diagnosis is 2δ × log2(

n
δ
)+ 2δ (in the worst case) (Felfernig et al.

2012). In this context, δ represents the set size of the minimal diagnosis � and n represents
the number of constraints in solution S.

If m > 1, the number of needed consistency checks can be systematically reduced if we
accept the tradeoff of possibly loosing the property of diagnosis minimality (see Definition
2). If we allow settings with m > 1, we can reduce the upper bound of the number of con-
sistency checks to 2δ × log2(

2n
δ×m

) (in the worst case). These upper bounds regarding the
number of needed consistency checks allow to estimate the worst case runtime performance
of the diagnosis algorithm which is extremely important for real-time scenarios. Conse-
quently, if we are able to estimate the upper limit of the time needed for completing one
consistency check (e.g., on the basis of simulations with an underlying constraint solver),
we are also able to figure out lower bounds for m that must be chosen in order to guarantee
a FLEXDIAG runtime within predefined time limits.

Table 1 depicts an overview of consistency checks needed depending on the setting
of the parameter m and the diagnosis size δ for |S| = 16. For example, if m = 2

Fig. 2 FLEXDIAG walkthrough: determining a minimal diagnosis with m = 2 (� = {s1, s2, s3, s4})
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Table 1 Worst-case estimates for the number of needed consistency checks depending on the granularity
parameter m and the diagnosis size δ for |S| = 16

δ m=1 m=2 m=4 m=8

1 10 8 6 4

2 16 12 8 4

4 24 16 8 –

8 32 16 – –

16 32 – – –

and the size of a minimal diagnosis is δ = 4, then the upper bound for the num-
ber of needed consistency checks is 16. If the size of δ further increases, the number
of corresponding consistency checks does not increase anymore. Figures 1 and 2 depict
FLEXDIAG search trees depending on the setting of granularity parameter m. The upper
bound for the number of consistency checks helps us to determine the maximum amount
of time that will be needed to determine a diagnosis on the basis of FLEXDIAG. For
example, if the maximum time needed for one consistency check is 20ms, the maxi-
mum time needed for determining a diagnosis with m = 2 (given δ = 8) is ≈ 320
milliseconds.

FLEXDIAG determines one diagnosis at a time which indicates variable assignments of
the original configuration that have to be changed such that a reconfiguration conform to
the new requirements (Rρ) is possible. The algorithm supports the determination of leading
diagnoses, i.e., diagnoses that are preferred with regard to given user preferences (Felfernig
et al. 2012; Walter et al. 2016). FLEXDIAG is based on a strict lexicographical ordering of
the constraints in S: the lower the importance of a constraint si ∈ S the lower the index of
the constraint in S. For example, s1 : pc = 3 has the lowest ranking. The lower the ranking,
the higher the probability that the constraint will be part of a reconfiguration S�. Since s1
has the lowest priority and it is part of a conflict, it is element of the diagnosis returned
by FLEXDIAG. For a discussion of the properties of lexicographical orderings we refer to
Felfernig et al. (2012) and Junker (2004).

5 Evaluation

In this section, we present the evaluation we executed to verify the performance of FLEX-
DIAG. We first analyze how FLEXDIAG performs in front of real and randomly generated
models and then, compare it with an evolutionary approach.

5.1 Evaluation aspects

To evaluate FLEXDIAG, we analyzed the two aspects of (1) algorithm performance (in terms
of milliseconds needed to determine one minimal diagnosis) and (2) diagnosis quality (in
terms of minimality and accuracy – see Formulae (1) and (2)). We analyzed both aspects
by varying the value of parameter m. Our hypothesis in this context was that the higher the
value of m, the lower the number of needed consistency checks (the higher the efficiency of
diagnosis search) and the lower diagnosis quality in terms of the share of diagnosis-relevant
constraints returned by FLEXDIAG. Diagnosis quality can, for example, be measured in
terms of the degree of minimality of the constraints in a diagnosis � (see Formula (1)), i.e.,
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the cardinality of � compared to the cardinality of �min. |�min| represents the cardinality
of a minimal diagnosis identified with m = 1.

minimality(�) = |�min|
|�| (1)

If m > 1, there is no guarantee that the diagnosis � determined for S is a superset of the
diagnosis �min determined for S in the case m = 1. Besides minimality, we introduce accu-
racy as an additional quality indicator (see Formula (2)). The higher the share of elements
of �min in �, the higher the corresponding accuracy (the algorithm is able to reproduce the
elements of the minimal diagnosis for m = 1).

accuracy(�) = |� ∩ �min|
|�min| (2)

5.2 Datasets and results

We evaluated FLEXDIAG with regard to both metrics (algorithm performance, and diag-
nosis quality) by applying the algorithm to different benchmarks. First, using random
feature models generated with the Betty tool (Segura et al. 2012). Second, with the set
of models hosted in the S.P.L.O.T repository.3 Third, in a real-world model extracted
from the last Ubuntu Linux distribution (Galindo et al. 2010). Finally, a real-world auto-
motive dataset. The configuration models are feature models which include requirement
constraints, compatibility constraints, and different types of structural constraints such as
mandatory relationships and alternatives.

For all the different datasets we report on averaged values. For that, we first, calculate
the acurracy, execution time, and minimality for all the executions. Then, we aggregate the
data and calculate the mean for the metrics.

5.2.1 Experimental platform

The experiments were conducted using a version of FLEXDIAG implemented in Java and
integrated in the FaMa Tool Suite (Benavides et al. 2013). All the models were translated to
a Constraint Satisfaction Problem (CSP) and used the Choco library for consistency check-
ing.4 Further, our FLEXDIAG implementation was running in a grid of computers running
on four-CPU Dell Blades with Intel Xeon X5560 CPUs running at 2.8GHz, with 8 threads
per CPU, and CentOS v6. The total RAM memory was 8GB. To parallelize the executions
we used GNU Parallel (Tange 2011).

5.2.2 Random models

The first dataset used to evaluate FLEXDIAG was randomly generated. We used
BeTTy (Segura et al. 2012) to generate a dataset that ranges from 50 to 2000 features and
10% to 30% of cross-tree constraints. The generation approach is based on Thum et al.
(2009) that imitates realistic topologies.

For each model combining a given number of features and a percentage of cross-tree
constraints, we randomly generated different sizes of reconfiguration requirements that

3www.splot-research.org
4www.choco-solver.org

http://www.splot-research.org
http://www.choco-solver.org
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involved the 10%, 30%, 50% and 100% of features of the model. Then we randomly
reordered each of the reconfiguration requirements 10 times (to prevent ordering biases).
Moreover, we executed FLEXDIAG on each combination of parameters three times to get
average execution times trying to avoid third party threads.

In the following, we present the results showing a comparison between the different
values of m and how the values evolved depending on the size of the models. Note that
to generate the plots we aggregated the data and therefore the values shown are averaged
results.

Figure 3 shows how the diagnosis performance can be increased depending on the setting
of the m parameter. Also we observe how the minimality deteriorates when increasing m.

Table 2 shows the averaged data we obtained. It is worth mentioning that the mini-
mality decreases when m increases and that accuracy still provides acceptable results with
m = 10. Also, the execution time (in milliseconds) is less than five minutes in the worst
case.
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Table 2 Random evaluation depending on m value and model size

|V | m |C| |�| Average time Average minimality Average accuracy

50 1 58.40 14.62 501.63 1.00 1.00

2 15.72 410.92 0.85 0.92

4 17.22 296.14 0.75 0.87

6 18.71 240.52 0.71 0.87

10 19.07 222.15 0.70 0.86

100 1 109.80 27.51 1081.24 1.00 0.99

2 32.80 896.99 0.79 0.90

4 38.19 651.20 0.68 0.88

6 40.99 477.64 0.63 0.87

10 42.29 425.16 0.61 0.88

500 1 566.40 182.62 11808.41 1.00 1.00

2 203.77 6647.27 0.88 0.96

4 219.41 4372.98 0.82 0.95

6 221.82 3643.81 0.80 0.96

10 231.49 2265.53 0.78 0.97

1000 1 1141.00 347.25 47956.27 1.00 1.00

2 398.62 20227.16 0.84 0.97

4 434.76 10051.52 0.77 0.96

6 440.64 8825.81 0.75 0.96

10 461.53 5242.34 0.74 0.98

2000 1 2274.80 663.36 264084.35 1.00 1.00

2 743.21 95467.42 0.84 0.97

4 818.12 37911.86 0.76 0.97

6 828.39 35271.86 0.74 0.96

10 888.38 16000.95 0.71 0.97

|V | represents the number of variables in the CSP. The second column shows the m value used in FLEXDIAG.
|C| refers to the number of constraints in the model, |�| is the average size of a diagnosis, and average time
(in milliseconds), average minimality, and average accuracy represent the means of the calculated values for
those metrics

As we can observe in Table 2 and Fig. 3, while the execution time decreases when incre-
menting m, quality deteriorates. However, minimality is clearly affected while accuracy
stays with minor variations. Also, we observe that the time improvement depends on m and
the number of features. For example, if we compare the time between m = 1 and m = 10,
we can increase in runtime of 2.26× for 50 features, 5.21× for 500 features, 9.14× for 1000
and 16.5× for 2000 features.

5.2.3 SPLOT repository models

We extracted a total of 387 models from the SPLOT repository. For each model, we ran-
domly generated different sizes of reconfiguration requirements that involved the 10%,
30%, 50% and 100% of features of the model. Then we randomly reordered each of the
reconfiguration requirements 10 times (to prevent ordering biases). Moreover, we executed
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Table 3 FLEXDIAG results in front of SPLOT realistic models

|V | m Model Name |C| |�| Average time Average minimality Average accuracy

290 1 REAL-FM-4 61.00 1.00 527.45 1.00 1.00

2 1.75 527.83 0.62 1.00

4 2.75 464.33 0.48 1.00

6 4.00 444.65 0.40 1.00

10 6.25 432.65 0.35 1.00

88 1 REAL-FM-1 26.00 6.93 566.92 1.00 1.00

2 10.48 514.35 0.62 0.86

4 15.02 411.55 0.42 0.76

6 21.17 316.52 0.32 0.70

10 22.58 317.92 0.28 0.70

44 1 REAL-FM-20 8.00 3.50 225.32 1.00 0.99

2 5.35 201.23 0.60 0.86

4 8.07 171.22 0.38 0.84

6 10.15 155.45 0.31 0.80

10 10.90 152.78 0.28 0.80

23 1 REAL-FM-2 9.00 2.78 177.55 1.00 1.00

2 4.07 161.72 0.68 0.86

4 4.93 144.05 0.54 0.82

6 6.60 131.78 0.41 0.76

10 7.62 216.98 0.36 0.76

43 1 REAL-FM-3 13.00 1.75 211.97 1.00 1.00

2 3.03 199.62 0.60 0.95

4 4.78 178.35 0.36 0.93

6 7.38 161.82 0.24 0.92

10 9.15 147.82 0.21 0.88

|V | represents the number of variables in the CSP. The second column shows the m value used in FLEXDIAG.
Model Name is the model name in SPLOT. |C| refers to the number of constraints in the model, |�| is the
average size of a diagnosis, and average time (in milliseconds), average minimality, and average accuracy
represent the means of the calculated values for those metrics

FLEXDIAG on each combination of parameters three times to get average execution times
trying to avoid third party threads.

Table 3 shows the data of those models categorized as realistic in the repository. We again
see that FLEXDIAG scales with no problem offering a good trade-off between accuracy and
minimality while keeping the average runtime (in milliseconds) below a second.

As we can observe in Table 3, while the execution time decreases when incrementing
m, quality deteriorates again. However minimality is clearly affected while accuracy stays
with minor variations, although, we can observe some special cases (“REAL-FM-5” with
m = 2) were it deteriorates a bit more.

5.2.4 Ubuntu-based model

In order to test FLEXDIAG with large-scale real models, we encoded the variability exist-
ing in the Debian packaging system for the Ubuntu distribution and generated a set of
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Table 4 Results obtained after executing FLEXDIAG with the Ubuntu Xenial variability model

|V | m |C| |�| Average time Average minimality Average accuracy

58107 1 105459 1.75 13523986.27 1.00 1.00

2 3.40 12245231.77 0.51 0.75

4 6.12 10800288.33 0.31 0.71

6 7.15 10546545.60 0.24 0.71

10 12.48 9208147.25 0.14 0.71

The seconds column shows the m value used in FLEXDIAG. |V | represents the number of variables in the
CSP. |C| refers to the number of constraints in the CSP, |�| is the average size of a diagnosis, and average
time (in milliseconds), average minimality, and average accuracy represent the means of the calculated values
for those metrics

configurations representing Ubuntu user installations with wrong package selections. Con-
cretely, we modelled the Ubuntu Xenial5 distribution containing 58,107 packages and
52,721 constraints. This model was extracted using the mapping presented in Galindo et al.
(2010) and Galindo et al. (2011). We executed FLEXDIAG with different m values. We
randomly generated different sizes of reconfiguration requirements that involved the 10%,
30%, 50% and 100% of features of the model. Then we randomly reordered each of the
reconfiguration requirements 10 times (to prevent ordering biases). Moreover, we executed
FLEXDIAG on each combination of parameters three times to get average execution times
trying to avoid third party threads.

Table 4 shows that FLEXDIAG is able to provide a good accuracy even with m set to 10.
Also, it shows as expected, the negative impact of m regarding minimality. We observe that
the execution time with m = 1 was 3.7 hours while with m = 10 it was 2.5 hours. This
represents an improvement of runtime in 1.47×.

5.2.5 Automotive models

The benchmark used in this experiment includes three automotive configuration models
from a German car manufacturer. For each model, we randomly generated different sizes
of reconfiguration requirements that involved the 10%, 30%, 50% and 100% of features of
the model. Then we randomly reordered each of the reconfiguration requirements 10 times
(to prevent ordering biases). Moreover, we executed FLEXDIAG on each combination of
parameters three times to get average execution times trying to avoid third party threads.

Table 5 shows that FLEXDIAG is able to provide a good accuracy even with m set to
10. Again, it shows as expected, the negative impact of m regarding minimality. Also, the
execution time for model with id = 1 and m = 1 was 6.33 hours while with m = 10 it was
7.9 minutes. This represents an improvement of 26.9×.

5.3 Comparing FLEXDIAG with evolutionary algorithms

In this research we do not compare FLEXDIAG with more traditional diagnosis approaches
– for related evaluations we refer the reader to Felfernig et al. (2012) were detailed analyses
can be found. These analyses clearly indicate that direct diagnosis approaches outperform

5http://releases.ubuntu.com/16.04/

http://releases.ubuntu.com/16.04/
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Table 5 FLEXDIAG evaluated with benchmarks from the automotive industry (calculation of the first
diagnosis: ids 1–3 represent different type series of a German premium car manufacturer)

id m |V | |C| |�| Average time Average minimality Average accuracy

01 1 1888 7404 623.78 22812981.47 1.00 1.00

2 787.43 6720901.40 0.80 0.99

4 870.25 1785352.90 0.71 0.99

6 876.97 1716644.85 0.70 0.99

10 892.85 473017.90 0.69 1.00

02 1

1828

5451 611.38 8730834.77 1.00 1.00

2 760.85 3176414.95 0.81 0.99

4 845.47 914621.30 0.72 0.99

6 850.28 878283.40 0.71 1.00

10 865.22 237203.47 0.70 1.00

03 1 1843 8056 369.00 22147386.47 1.00 1.00

2 538.50 11901657.38 0.80 0.98

4 605.00 3381818.66 0.70 0.99

6 613.31 3104191.16 0.68 0.99

10 626.59 823533.78 0.67 0.99

The second column shows the m value used in FLEXDIAG. |V | represents the number of variables in the CSP.
|C| refers to the number of constraints in the CSP, |�| is the average size of a diagnosis, and average time
(in milliseconds), average minimality, and average accuracy represent the means of the calculated values for
those metrics

standard diagnosis approaches based on the resolution of minimal conflicts (Reiter 1987)
(if the search goal is to identify not all minimal but the so-called leading diagnoses which
should, for example, be shown to users in interactive settings).

However, in this Section we compare FLEXDIAG with an evolutionary algorithm inspired
by Ćendić-Lazović (2014) and Li and Yunfei (2002). The evolutionary algorithm has been
build with the jenetics framework for Java6 leaving all parameters default and fixing the
process to 500 generations. Also we compare the performance of FLEXDIAG with m set
to 1 to have a fair comparison. Note that with higher values of m, we would even perform
better in terms of runtime.

The first observation is that the evolutionary approach was not capable of dealing with
very large realistic models (Ubuntu, automotive) when setting a time-out of 24 hours.
Therefore, we report this comparison only relying on randomly generated models.

Figure 4 shows that the required time for FLEXDIAG is usually higher for models having
less than 500 features. Therefore, there is a point when FLEXDIAG pays off and scales
much better. Also, it is worth mentioning that the evolutionary algorithm was not capable
of obtaining a complete and minimal explanation and returned only partial diagnoses. This
is, in 500 generations it only found partial explanations.

Table 6 shows that FLEXDIAG returns minimal diagnoses while we observe that the
evolutionary approach was not capable of detecting minimal diagnoses. Also, we do see that
FLEXDIAG offered a much better accuracy.

6http://jenetics.io/

http://jenetics.io/
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Fig. 4 Comparison between FLEXDIAG and the evolutionary approach regarding time

5.4 Threats to validity

Even though the experiments presented in this paper provide evidence that the solution
proposed is valid, there are some assumptions that we made that may affect their validity.
In this section, we discuss the different threats to validity that affect the evaluation.

External validity The inputs used for the experiments presented in this paper were either
realistic or designed to mimic realistic feature models. The Debian feature model and the
Automotive are realistic since numerous experts were involved in the design. However, since
they were developed using a manual design process, it may have errors and not encode all

Table 6 Comparison results of the evolutionary approach and FLEXDIAG

|V | Approach |C| |�| Average time Average minimality Average accuracy

50 Evolutionary 58.40 1.53 3237.87 8.84 0.33

50 FLEXDIAG 58.40 14.62 501.63 1.00 1.00

100 Evolutionary 109.80 2.13 4229.25 10.81 0.17

100 FLEXDIAG 109.80 27.51 1081.24 1.00 0.99

500 Evolutionary 566.40 9.45 9142.43 15.82 0.03

500 FLEXDIAG 566.40 182.62 11808.41 1.00 1.00

1000 Evolutionary 1141.00 22.07 14754.50 11.49 0.03

1000 FLEXDIAG 1141.00 347.25 47956.27 1.00 1.00

2000 Evolutionary 2274.80 48.61 27111.93 9.32 0.03

2000 FLEXDIAG 2274.80 663.36 264084.35 1.00 1.00

|V | represents the number of variables in the CSP. Approach refers to the used approach, |C| refers to the
number of constraints in the CSP, |�| is the average size of a diagnosis, and average time (in milliseconds),
average minimality, and average accuracy represent the means of the calculated values for those metrics
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configurations. Also, the random feature models may not accurately reflect the structure of
real feature models used in industry. The major threats to the external validity are:

– Population validity, the real feature models that we used may not represent all valid
configurations in the domains due it manual construction. Also, random models might
not have the same structure as real models (e.g. mathematical operators used in the
complex constraints). To reduce these threats to validity, we generated the models using
previously published techniques (Thum et al. 2009) and using existing implementations
of these techniques in Betty (Segura et al. 2012).

– Ecological validity: While external validity, in general, is focused on the generaliza-
tion of the results to other contexts (e.g. using other models), the ecological validity ii
focused on possible errors in the experiment materials and tools used. To prevent eco-
logical validity threats, such as third party threads running in the virtual machines and
impacting performance, the FLEXDIAG analyses were executed three times and then
averaged.

Internal validity The CPU resources required to analyse a feature model depend on the
number of features and percentage of cross-tree constraints. However, there may be other
variables that affect performance, such as the nature of the constraints used. To minimize
these other possible effects, we introduced a variety of models to ensure that we covered a
large part of the constraint space.

5.5 Final remarks

We observed that FLEXDIAG scales up with random and real-world feature models. Observ-
ing that, generally, diagnosis quality in terms of minimality and accuracy deteriorates with
an increasing size of parameter m.

Minimality and accuracy depend on the configuration domain and are not necessarily
monotonous. For example, since a diagnosis determined by FLEXDIAG is not necessarily a
superset of a diagnosis determined with m = 1, it can be the case that the minimality of a
diagnosis determined with m > 1 is greater than 1 (if FLEXDIAG determines a diagnosis
with lower cardinality than the minimal diagnosis determined with m = 1). For simplicity,
let us assume that AC = S = {c1, c2, c3, c4, c5, c6, c7, c8} and the following conflict sets
CSi exist between the constraints ci ∈ S: CS1 : {c1, c3}, CS2 : {c2, c3}, and CS3 : {c4, c6}.
Given m = 1, FLEXDIAG would determine the diagnosis {c1, c2, c4} whereas in the case of
m = 2, {c3, c4} is returned by the algorithm.

6 Another example: reconfiguration in production

The following simplified reconfiguration task is related to scheduling in production where it
is often the case that, for example, schedules and corresponding production equipment has
to be reconfigured. In this example setting, we do not take into account configurable pro-
duction equipment (configurable machines) and limit the reconfiguration to the assignment
of orders to corresponding machines. The assignment of an order oi to a certain machine mj

is represented by the corresponding variable oimj . The domain of each such variable repre-
sents the different possible slots in which an order can be processed, for example, o1m1 = 1
denotes the fact that the processing of order o1 on machine m1 is performed during and
finished after time slot 1.



178 J Intell Inf Syst (2018) 51:161–182

Further constraints restrict the way in which orders are allowed to be assigned to
machines, for example, o1m1 < o1m2 denotes the fact that order o1 must be completed
on machine m1 before a further processing is started on machine m2. Furthermore, no
two orders must be assigned to the same machine during the same time slot, for example,
o1m1 �= o2m1 denotes the fact that order o1 and o2 must not be processed on the same
machine in the same time slot (slots 1..3). Finally, the definition of our reconfiguration task
is completed with an already determined schedule S and a corresponding reconfiguration
request represented by the reconfiguration requirement Rρ = {r ′

1 : o3m3 < 5}, i.e., order
o3 should be completed within less than 5 time units.

– V = {o1m1, o1m2, o1m3, o2m1, o2m2, o2m3, o3m1, o3m2, o3m3}
– dom(o1m1) = dom(o2m1) = dom(o3m1) = {1, 2, 3}.

dom(o1m2) = dom(o2m2) = dom(o3m2) = {2, 3, 4}.
dom(o1m3) = dom(o2m3) = dom(o3m3) = {3, 4, 5}.

– C = {c1 : o1m1 < o1m2, c2 : o1m2 < o1m3,

c3 : o2m1 < o2m2, c4 : o2m2 < o2m3, c5 : o3m1 < o3m2,

c6 : o3m2 < o3m3, c7 : o1m1 �= o2m1,

c8 : o1m1 �= o3m1, c9 : o2m1 �= o3m1,

c10 : o1m2 �= o2m2, c11 : o1m2 �= o3m2,

c12 : o2m2 �= o3m2, c13 : o1m3 �= o2m3,

c14 : o1m3 �= o3m3, c15 : o2m3 �= o3m3}
– S = {s1 : o1m1 = 1, s2 : o1m2 = 2, s3 : o1m3 = 3,

s4 : o2m1 = 2, s5 : o2m2 = 3, s6 : o2m3 = 4,

s7 : o3m1 = 3, s8 : o3m2 = 4, s9 : o3m3 = 5}
– Rρ = {r ′

1 : o3m3 < 5}
This reconfiguration task can be solved using FLEXDIAG. If we keep the ordering

of the constraints as defined in S, FLEXDIAG (with m = 1) returns the diagnosis � :
{s1, s2, s3, s7, s8, s9} which can be used to determine the new solution S′ = {s1 : o1m1 =
3, s2 : o1m2 = 4, s3 : o1m3 = 5, s4 : o2m1 = 2, s5 : o2m2 = 3, s6 : o2m3 = 4, s7 :
o3m1 = 1, s8 : o3m2 = 2, s9 : o3m3 = 3} (see Table 7). If we change the parametriza-
tion to m = 2, FLEXDIAG returns the same diagnosis but in approximately half of the
time (with 10 iterations, 16 milliseconds were needed on an average for m = 2 whereas 31
milliseconds were needed for m = 1). This is consistent with the estimates in Table 1.

Possible ordering criteria for constraints in such rescheduling scenarios can be, for exam-
ple, customer value (changes related to orders of important customers should occur with a
significantly lower probability) and the importance of individual orders. If some orders in
a schedule should not be changed, this can be achieved by simply defining such requests
as requirements (Rρ), i.e., change requests as well as stability requests can be included as
constraints r ′

i in Rρ .

7 Future work

In our work, we focused on the evaluation of reconfiguration scenarios where the knowledge
base itself is assumed to be consistent. In future work, we will extend the FLEXDIAG algo-
rithm to make it applicable in scenarios where knowledge bases are tested (Felfernig et al.
2004). An example issue is to take into account situations where unintended configurations
are accepted by the knowledge base. In this context, we will extend the work of Felfer-
nig et al. (2004) by not only taking into account negative test cases but also automatically
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Table 7 Reconfiguration
determined for rescheduling task
– S represents the original
configuration and S′ represents a
configuration resulting from a
reconfiguration task

S S′

s1 : o1m1 = 1 s1 : o1m1 = 3

s4 : o2m1 = 2 s4 : o2m1 = 2

s7 : o3m1 = 3 s7 : o3m1 = 1

s2 : o1m2 = 2 s2 : o1m2 = 4

s5 : o2m2 = 3 s5 : o2m2 = 3

s8 : o3m2 = 4 s8 : o3m2 = 2

s3 : o1m3 = 3 s3 : o1m3 = 5

s6 : o2m3 = 4 s6 : o2m3 = 4

s9 : o3m3 = 5 s9 : o3m3 = 3

generate relevant test cases, for example, on the basis of mutation testing approaches. We
plan to extend our empirical evaluation to further industrial configuration knowledge bases.
Furthermore, we want to analyze in which way we are able to further improve the output
quality (e.g., in terms of minimality and accuracy) of FLEXDIAG, for example, by apply-
ing different constraint orderings depending on the observed interaction patterns (of users)
and probability estimates for diagnosis membership derived thereof. The better potentially
relevant constraints are predicted the better the diagnosis quality in terms of the mentioned
metrics of minimality and accuracy. Note that, for example, counting the number of ele-
ments already identified as partial diagnosis elements in FLEXDIAG does not help to keep
diagnosis determination within certain time limits, however, this mechanism could be used
when determing more than one diagnosis to include diagnosis size as a relevance criterion.
Also, in this context will analyze further alternatives to evaluate the quality of diagnoses
which go beyond the metrics used in this article.

8 Conclusions

Efficient reconfiguration functionalities are needed in various scenarios such as the recon-
figuration of production schedules, the reconfiguration of the settings in mobile phone
networks, and the reconfiguration of robot context information. We analyzed the FLEXDIAG

algorithm with regard to potentials of improving existing direct diagnosis algorithms. When
using FLEXDIAG, there is a clear trade-off between performance of diagnosis calculation
and diagnosis quality (measured, for example, in terms of minimality and accuracy).
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Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., Stumptner, M. (1998). Configuring large
systems using generative constraint satisfaction. IEEE Intelligent Systems, 13(4), 59–68.

Frayman, F., & Mittal, S. (1987). sCOSSACK: a constraint-based expert system for configuration tasks. In
Sriram, D., & Adey, R. (Eds.) Knowledge based expert systems in engineering: planning and design
(pp. 143–166). Woburn: Computational Mechanics Publications.

Friedrich, G., Ryabokon, A., Falkner, A., Haselböck, A., Schenner, G., Schreiner, H. (2011).
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