
An efficient diagnosis algorithm for inconsistent
constraint sets

A. FELFERNIG, M. SCHUBERT, AND C. ZEHENTNER
Institute for Software Technology, Graz University of Technology, Graz, Austria

(RECEIVED May 26, 2010; ACCEPTED October 4, 2010)

Abstract

Constraint sets can become inconsistent in different contexts. For example, during a configuration session the set of cus-
tomer requirements can become inconsistent with the configuration knowledge base. Another example is the engineering
phase of a configuration knowledge base where the underlying constraints can become inconsistent with a set of test cases.
In such situations we are in the need of techniques that support the identification of minimal sets of faulty constraints that
have to be deleted in order to restore consistency. In this paper we introduce a divide and conquer-based diagnosis algorithm
(FASTDIAG) that identifies minimal sets of faulty constraints in an overconstrained problem. This algorithm is specifically
applicable in scenarios where the efficient identification of leading (preferred) diagnoses is crucial. We compare the per-
formance of FASTDIAG with the conflict-directed calculation of hitting sets and present an in-depth performance analysis that
shows the advantages of our approach.

Keywords: Inconsistent Constraint Sets; Interactive Configuration; Model-Based Diagnosis; Preferred Diagnosis

1. INTRODUCTION

Constraint technologies (Tsang, 1993) are applied in different
areas such as configuration (Mittal & Frayman, 1989; Fleisch-
anderl et al., 1998; Sinz & Haag, 2007), recommendation
(Felfernig et al., 2009), and scheduling (Castillo et al., 2005).
There are many scenarios where the underlying constraint sets
can become overconstrained. For example, when implement-
ing a configuration knowledge base, constraints can become
inconsistent with a set of test cases (Felfernig et al., 2004).
Alternatively, when interacting with a configurator application
(O’Sullivan et al., 2007; Felfernig et al., 2009), the given set of
customer requirements (represented as constraints) can be-
come inconsistent with the configuration knowledge base.
In both situations there is a need of an intelligent assistance
that actively supports users of a constraint-based application
(end users or knowledge engineers). A widespread approach
to support users in the identification of minimal sets of faulty
constraints is to combine conflict detection (e.g., see Junker,
2004) with a corresponding hitting set algorithm (DeKleer
& Williams, 1987; Reiter, 1987; DeKleer et al., 1992). In their
original form these algorithms are applied for the calculation

of minimal (cardinality) diagnoses that are typically deter-
mined with breadth-first search. Further diagnosis algorithms
have been developed that follow a best-first search regime
where the expansion of the hitting set search tree is guided
by failure probabilities of components (DeKleer, 1990).
Another example for such an approach is presented in (Felfer-
nig et al., 2009), where similarity metrics are used to guide the
(best-first) search for a preferred (plausible) minimal diagno-
sis (including repairs).

Both simple breadth-first search and best-first search diag-
nosis approaches are predominantly relying on the calculation
of conflict sets (Junker, 2004). In this context, the determina-
tion of a minimal diagnosis of cardinality n requires the iden-
tification of at least n minimal conflict sets. In this paper we
introduce a diagnosis algorithm (FASTDIAG) that allows to de-
termine one minimal diagnosis at a time with the same com-
putational effort related to the calculation of one conflict set at
a time. The algorithm supports the identification of preferred
diagnoses given predefined preferences regarding a set of de-
cision alternatives. FASTDIAG is boosting the applicability of
diagnosis methods in scenarios such as online configuration
and reconfiguration (Felfernig et al., 2004), recommendation
of products and services (Felfernig et al., 2009), and (more
generally) in scenarios where the efficient calculation of
preferred (leading) diagnoses is crucial (DeKleer, 1990).
FASTDIAG is not restricted to constraint-based systems but it

Reprint requests to: A. Felfernig, Institute for Software Technology, Graz
University of Technology, Inffeldgasse 16b, A-8010 Graz, Austria. E-mail:
alexander.felfernig@ist.tugraz.at

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2012), 26, 53–62.
# Cambridge University Press 2012 0890-0604/12 $25.00
doi:10.1017/S0890060411000011

53



is also applicable, for example, in the context of SAT solving
(Marques-Silva & Sakallah, 1996) and description logics rea-
soning (Friedrich & Shchekotykhin, 2005).

The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce a simple example configuration task from
the automotive domain. In Section 3 we discuss the basic hit-
ting set-based approach to the calculation of diagnoses. In
Section 4 we introduce an algorithm (FASTDIAG) for calculat-
ing preferred diagnoses for a given overconstrained problem.
In Section 5 we present a detailed evaluation of FASTDIAG,
which clearly outperforms standard hitting set-based algo-
rithms in the calculation of the topmost-n preferred diagnoses.
With Section 6 we provide an overview of related work in the
field. The paper is concluded with Section 7.

2. EXAMPLE DOMAIN: CAR CONFIGURATION

Car configuration will serve as a working example throughout
this paper. Because we exploit configuration problems for the
discussion of our diagnosis algorithm, we first introduce a
formal definition of a configuration task. This definition is
based on Felfernig et al. (2004) but is given in the context
of a constraint satisfaction problem (CSP; Tsang, 1993).

DEFINITION 1 (configuration task). A configuration task
can be defined as a CSP (V, D, C ). Here, V¼ fv1, v2, . . . , vng
represents a set of finite domain variables; D ¼ fdom(v1),
dom(v2), . . . , dom(vn)g represents a set of variable domains
dom(vk), where dom(vk) represents the domain of variable vk;
C¼ CKB < CR, where CKB ¼ fc1, c2, . . . , cqg is a set of do-
main specific constraints (the configuration knowledge base)
that restrict the possible combinations of values assigned to
the variables in V; and CR ¼ fcqþ1, cqþ2, . . . , ctg is a set
of customer requirements that is also represented as con-
straints. B

A simplified example of a configuration task in the
automotive domain is the following. In this example, type
represents the car type, pdc is the park distance control func-
tionality, fuel represents the fuel consumption per 100 km, a
skibag allows ski stowage inside the car, and 4-wheel repre-
sents the corresponding actuation type. These variables
describe the potential set of requirements that can be specified
by the user (customer). The possible combinations of these
requirements are defined by a set of constraints that are deno-
ted as CKB, which is defined as CKB ¼ fc1, c2, c3, c4g in our
example. Furthermore, we assume the set of customer
requirements CR ¼ fc5, c6, c7g.1

† V ¼ ftype, pdc, fuel, skibag, 4-wheelg
† D¼ fdom(type)¼ fcity, limo, combi, xdriveg, dom(pdc)
¼ fyes, nog, dom(fuel)¼ f4l, 6l, 10lg, dom(skibag)¼
fyes, nog, dom(4-wheel)¼ fyes, nogg

† CKB ¼ fc1: 4-wheel ¼ yes) type ¼ xdrive, c2: skibag
¼ yes ) type = city, c3: fuel ¼ 4l ) type ¼ city, c4:
fuel ¼ 6l) type = xdriveg

† CR ¼ fc5: type¼ combi, c6: fuel¼ 4l, c7: 4-wheel¼ yesg

On the basis of this configuration task definition, we
can now introduce the definition of a concrete configuration
(solution for a configuration task).

DEFINITION 2 (configuration). A configuration for a given
configuration task (V, D, C ) is an instantiation I ¼ fv1¼

ins1, v2 ¼ ins2, . . . , vn ¼ insng, where insk [ dom(vk). B

A configuration is consistent if the assignments in I are
consistent with the ci [ C. Furthermore, a configuration is
complete if all variables in V are instantiated. Finally, a con-
figuration is valid if it is consistent and complete.

3. DIAGNOSING OVERCONSTRAINED
PROBLEMS

For the configuration task introduced in Section 2 we are not
able to find a solution, for example, a combi-type car does
not support a fuel consumption of 4l per 100 km. Consequently,
we want to identify minimal sets of constraints (ci [ CR) which
have to be deleted in order to be able to identify a solution (re-
store the consistency). In the example of Section 2 the set of
constraints CR ¼ fc5, c6, c7g is inconsistent with the constraints
CKB ¼ fc1, c2, c3, c4g, that is, no solution can be found for the
underlying configuration task. A standard approach to deter-
mine a minimal set of constraints that have to be deleted from
an overconstrained problem is to resolve all minimal conflicts
contained in the constraint set. The determination of such con-
straints is based on a conflict detection algorithm (e.g., see Jun-
ker, 2004), the derivation of the corresponding diagnoses is
based on the calculation of hitting sets (Reiter, 1987). Because
both the notion of a (minimal) conflict and the notion of a (mini-
mal) diagnosis will be used in the following sections, we pro-
vide the corresponding definitions here.

DEFINITION 3 (conflict set). A conflict set is a set CS #
CR such that CKB < CS is inconsistent. CS is a minimal if
there does not exist a conflict set CS0 with CS0 , CS. B

In our working example we can identify three minimal
conflict sets, which are CS1 ¼ fc5, c6g, CS2 ¼ fc5, c7g, and
CS3 ¼ fc6, c7g.

CS1, CS2, and CS3 are conflict sets because CS1 < CKB _

CS2 < CKB _ CS3 < CKB is inconsistent. The minimality
property is fulfilled because a conflict set CS4 does not exist
with CS4 , CS1 or CS4 , CS2 or CS4 , CS3. The standard
approach to resolve the given conflicts is the construction of a
corresponding hitting set directed acyclic graph (HSDAG;
Reiter, 1987) where the resolution of all minimal conflict
sets automatically corresponds to the identification of a mini-
mal diagnosis. A minimal diagnosis in our application con-
text is a minimal set of customer requirements contained in
the set of car features (CR) that has to be deleted from CR

1 Note that constraints are not necessarily unary or binary (we tried to keep
the example simple). They can also be n-ary.

A. Felfernig et al.54



in order to make the remaining constraints consistent with
CKB. Because we are dealing with the diagnosis of customer
requirements, we introduce the definition of a customer
requirements diagnosis problem (Definition 4). This defini-
tion is based on the definition given in Felfernig et al. (2004).

DEFINITION 4 (CR diagnosis problem). A customer re-
quirements diagnosis (CR diagnosis) problem is defined as
a tuple (CKB, CR), where CR is the set of given customer re-
quirements and CKB represents the constraints part of the con-
figuration knowledge base. B

The definition of a CR diagnosis that corresponds to a given
CR diagnosis problem is the following (see Definition 5).

DEFINITION 5 (CR diagnosis). A CR diagnosis for a CR
diagnosis problem (CKB, CR) is a set D # CR, such that CKB <
(CR 2 D) is consistent. D is minimal if there does not exist a
diagnosis D0 , D, such that CKB < (CR 2 D0) is consistent. B

The HSDAG algorithm for determining minimal diagnoses
is discussed in detail in Reiter (1987). The concept of this al-
gorithm will be explained on the basis of our working exam-
ple. It relies on a conflict detection algorithm that is responsi-
ble for detecting minimal conflicts in a given set of constraints
(in our case, in the given customer requirements). One conflict
detection algorithm is QUICKXPLAIN (Junker, 2004), which is
based on an efficient divide and conquer search strategy.
For the purposes of our working example let us assume that
the first minimal conflict set determined by QUICKXPLAIN is
the set CS1 ¼ fc5, c6g. Because of the minimality property,
we are able to resolve each conflict by simply deleting one ele-
ment from the set, for example, in the case of CS1 we have to
either delete c5 or c6. Each variant to resolve a conflict set is
represented by a specific path in the corresponding HSDAG.
The HSDAG for our working example is depicted in Figure 1.
The deletion of c5 from CS1 triggers the calculation of another
conflict set CS3 ¼ fc6, c7g because CR 2 fc5g < CKB is in-
consistent. If we decide to delete c6 from CS1, CR 2 fc6g <
CKB remains inconsistent, which means that QUICKXPLAIN re-
turns another minimal conflict set, which is CS2 ¼ fc5, c7g.

The original HSDAG algorithm (Reiter, 1987) follows a
strict breadth-first search regime. Following this strategy,
the next node to be expanded in our working example is
the minimal conflict set CS3, which has been returned by

QUICKXPLAIN for CR 2 fc5g < CKB. In this context, the first
option to resolve CS3 is to delete c6. This option is a valid one
and D1¼ fc5, c6g is the resulting minimal diagnosis. The sec-
ond option for resolving CS3 is to delete the constraint c7. In
this case, we have identified the next minimal diagnosis D2 ¼

fc5, c7g because CR 2 fc5, c7g< CKB is consistent. This way
we are able to identify all minimal sets of constraintsDi that, if
deleted from CR, help to restore the consistency with CKB. If
we want to calculate the complete set of diagnoses for our
working example, we still have to resolve the conflict set
CS2. The first option to resolve CS2 is to delete c5, because
fc5, c6g has already been identified as a minimal diagnosis,
we can close this node in the HSDAG. The second option
to resolve CS2 is to delete c7. In this case we have determined
the third minimal diagnosis, which is D3 ¼ fc6, c7g.

In our working example we are able to enumerate all possi-
ble diagnoses that help to restore consistency. However, the cal-
culation of all minimal diagnoses is expensive and thus in
many cases not practicable for interactive settings. Because
users are often interested in a reduced subset of all the potential
diagnoses, alternative algorithms are needed that are capable of
identifying preferred diagnoses (Reiter, 1987; DeKleer, 1990;
Felfernig et al., 2009). Such approaches have already been de-
veloped (DeKleer, 1990; Felfernig et al., 2009); however, they
are still based on the resolution of conflict sets, which is com-
putationally expensive (see Section 5). Our idea presented in
this paper is a diagnosis algorithm that helps to determine pre-
ferred diagnoses without the need of calculating the corre-
sponding conflict sets. The basic properties of FASTDIAG will
be discussed in Section 4.

4. CALCULATING PREFERRED
DIAGNOSES WITH FASTDIAG

4.1. Preferred diagnoses

Users typically prefer to keep the important requirements and
to change or delete (if needed) the less important ones
(Junker, 2004). The major goal of (model-based) diagnosis
tasks is to identify the preferred (leading) diagnoses, which
are not necessarily minimal cardinality ones (DeKleer, 1990).
For the characterization of a preferred diagnosis we will rely
on the definition of a total ordering of the given set of con-
straints in C (respectively CR). Such a total ordering can be
achieved, for example, by directly asking the customer regard-
ing the preferences, by applying multiattribute utility theory
(Winterfeldt & Edwards, 1986; Ardissono et al., 2003) where
the determined interest dimensions correspond with the attri-
butes of CR or by applying the rankings determined by conjoint
analysis (Belanger, 2005). The following definition of a lexico-
graphical ordering (Definition 6) is based on total orderings for
constraints that has been applied in (Junker, 2004) for the deter-
mination of preferred conflict sets.

DEFINITION 6 (total lexicographical ordering). Given a
total order , on C, we enumerate the constraints in C in

Fig. 1. Hitting set directed acyclic graph (HSDAG; Reiter, 1987) for the CR
diagnosis problem (CR ¼ fc5, c6, c7g, CKB ¼ fc1, c2, c3, c4g). The sets fc5,
c6g, fc6, c7g, and fc5, c7g are the minimal diagnoses; the conflict sets CS1,
CS2, and CS3 are determined on the basis of QUICKXPLAIN (Junker, 2004).

Diagnosing inconsistent constraint sets 55



increasing , order c1..cn, starting with the least important
constraints (i.e., ci , cj ) i , j). We compare two subsets
X and Y of C lexicographically:

X .lex Y iff

9k: ck [ Y � X and

X
T

{ckþ1, . . . , ct} ¼ Y
T

{ckþ1, . . . , ct}:

Based on this definition of a lexicographical ordering, we can
now introduce the definition of a preferred diagnosis. B

DEFINITION 7 ( preferred diagnosis). A minimal diagno-
sis D for a given CR diagnosis problem (CR, CKB) is a pre-
ferred diagnosis for (CR, CKB) if and only if another minimal
diagnosis D0 with D0 .lex D. B

In our working example we assumed the lexicographical
ordering (c5 , c6 , c7), that is, the most important customer
requirement is c7 (the 4-wheel functionality). If we assume
that X ¼ fc5, c7g and Y ¼ fc6, c7g then Y 2 X ¼ fc6g and
X > fc7g ¼ Y > fc7g. Intuitively, fc5, c7g is a preferred di-
agnosis compared to fc6, c7g because both diagnoses include
c7 but c5 is less important than c6. If we change the ordering
to (c7 , c6 , c5), FASTDIAG would then determine fc6, c7g as
the preferred minimal diagnosis.

4.2. FASTDIAG approach

For the following discussions we introduce the set AC, which
is initially set to CKB < CR [the union of customer require-
ments (CR) and the configuration knowledge base (CKB)]
and subsequently changed when the algorithm runs. The ba-
sic idea of the FASTDIAG algorithm (Algorithm 1) is the
following.2 In our example, the set of customer requirements
CR ¼ fc5, c6, c7g includes at least one minimal diagnosis be-
cause CKB is consistent and CKB < CR is inconsistent. In the
extreme case CR itself represents the minimal diagnosis,
which then means that all constraints in CR are part of the di-
agnosis, that is, each ci [ CR represents a singleton conflict.
In our case CR obviously does not represent a minimal diag-
nosis—the set of diagnoses in our working example is fD1 ¼

fc5, c6g, D2 ¼ fc5, c7g, D3 ¼ fc6, c7gg (see Section 3). The
next step in Algorithm 1 is to divide the set of customer re-
quirements CR ¼ fc5, c6, c7g into the two sets C1 ¼ fc5g
and C2 ¼ fc6, c7g and to check whether AC 2 C1 is already
consistent. If this is the case, we can omit the set C2 because at
least one minimal diagnosis can already be identified in C1.
In our case, AC 2 fc5g is inconsistent, which means that
we have to consider further elements from C2. Therefore,
C2 ¼ fc6, c7g is divided into the sets fc6g and fc7g. In the
next step we can check whether AC – (C1 < fc6g) is consis-
tent—this is the case that means that we do not have to further
take into account fc7g for determining the diagnosis. Because

fc5g does not include a diagnosis but fc5g< fc6g includes a
diagnosis, we can deduce that fc6g must be part of the diag-
nosis. The final step is to check whether AC – fc6g leads to a
diagnosis without including fc5g. We see that AC – fc6g is
inconsistent, that is, D ¼ fc5, c6g is a minimal diagnosis
for the CR diagnosis problem (CR ¼ fc5, c6, c7g, CKB ¼

fc1, . . . , c4g). An execution trace of the FASTDIAG algorithm
in the context of our working example is shown in Figure 2.

Algorithm 1: FASTDIAG

1 func FASTDIAG(C # AC, AC ¼ fc1..ctg) : diagnosis D
2 if isEmpty(C) or inconsistent(AC – C) return 1
3 else return FD(1, C, AC);
4 func FD(D, C ¼ fc1..cqg, AC) : diagnosis D
5 if D = 1 and consistent(AC) return 1;
6 if singleton(C) return C;
7 k ¼ q=2;
8 C1 ¼ fc1..ckg; C2 ¼ fckþ1..cqg;
9 D1 ¼ FD(C1, C2, AC 2 C1);

10 D2 ¼ FD(D1, C1, AC 2 D1);
11 return(D1 < D2);

4.3. Calculating n > 1 diagnoses

In order to be able to calculate n . 1 diagnoses3 with FAST-
DIAG we have to adopt the HSDAG construction introduced
in Reiter (1987) by substituting the resolution of conflicts
(see Fig. 1) with the deletion of elements ci from CR (C )
(see Fig. 3). In this case, a path in the HSDAG is closed if
no further diagnoses can be identified for this path or the ele-
ments of the current path are a superset of an already closed
path (containment check). Conform to the HSDAG approach
presented in Reiter (1987), we expand the search tree in a
breadth-first manner. In our working example, we can delete
fc5g (one element of the first diagnosis D1 ¼ fc5, c6g) from
the set CR of diagnosable elements and restart the algorithm

Fig. 2. FASTDIAG execution trace for the CR diagnosis problem (CR ¼ fc5,
c6, c7g, CKB ¼ fc1, c2, c3, c4g). Enumerations 1–6 show the order in
which the different incarnations of the FD function are activated.

2 In Algorithm 1 we use the set C instead of CR because the application of
the algorithm is not restricted to inconsistent sets of customer requirements. 3 Typically a CR diagnosis problem has more than one related diagnosis.

A. Felfernig et al.56



for finding another minimal diagnosis for the CR diagnosis
problem (fc6, c7g, CKB). Because AC 2 fc5g is inconsistent,
we can conclude that CR ¼ fc6, c7g includes another minimal
diagnosis (D2 ¼ fc6, c7g), which is determined by FASTDIAG

for the CR diagnosis problem (CR 2 fc5g, CKB). Finally, we
have to check whether the CR diagnosis problem (fc5, c7g,
CKB) leads to another minimal diagnosis. This is the case,
that is, we have identified the last minimal diagnosis that is
D3 ¼ fc5, c7g. The calculation of all diagnoses in our work-
ing example on the basis of FASTDIAG is depicted in Figure 3.

Note that for a given set of constraints (C) FASTDIAG always
calculates the preferred diagnosis in terms of Definition 7. If
D1 is the diagnosis returned by FASTDIAG and we delete one
element from D1 (e.g., c5), then FASTDIAG returns the pre-
ferred diagnosis for the CR diagnosis problem (fc5, c6, c7g2

fc5g, fc1, . . . , c7g), which is D2 in our example case, that
is, D1 .lex D2. Consequently, diagnoses part of one path in
the search tree (such as D1 and D2 in Fig. 3) are in a strict pre-
ference ordering. However, there is only a partial order be-
tween individual diagnoses in the search tree in the sense
that a diagnosis at level k is not necessarily preferable to a
diagnosis at level k þ 1.

4.4. FASTDIAG properties

A detailed listing of the basic operations of FASTDIAG is
shown in Algorithm 1. First, the algorithm checks whether
the constraints in C contain a diagnosis, that is, whether AC 2

C is consistent—the function assumes that it is activated
in the case that AC is inconsistent. If AC 2 C is inconsistent
or C ¼1, FASTDIAG returns the empty set as result (no solu-
tion can be found, line 2 of the algorithm). If at least one di-
agnosis is contained in the set of constraints C, FASTDIAG ac-
tivates the FASTDIAG function that is in charge of retrieving a
preferred diagnosis (line 3 of the algorithm). FASTDIAG fol-
lows a divide and conquer strategy where the recursive func-
tion FASTDIAG divides the set of constraints (in our case the ele-
ments of CR) into two different subsets (C1 and C2; line 8 of
the algorithm) and tries to figure out whether C1 already con-
tains a diagnosis (line 5 of the algorithm). If this is the case,
FASTDIAG does not further take into account the constraints
in C2. If only one element is remaining in the current set of
constraints C and the current set of constraints in AC is still in-
consistent, then the element in C is part of a minimal diagnosis

(line 6 of the algorithm). FASTDIAG is complete in the sense
that if C contains exactly one minimal diagnosis then FD will
find it. If there are multiple minimal diagnoses then one of
them (the preferred one, see Definition 7) is returned. The re-
cursive function FD is triggered if AC 2 C is consistent and
C consists of at least one constraint. In such a situation a corre-
sponding minimal diagnosis can be identified. If we assume the
existence of a minimal diagnosis D that cannot be identified by
FASTDIAG, this would mean that there exists at least one con-
straint ca in C that is part of the diagnosis but not returned by
FD. The only way in which elements can be deleted from C
(i.e., not included in a diagnosis) is by the return 1 statement
in FD and 1 is only returned in the case that AC is consistent,
which means that the elements of C2 (C1) from the previous FD
incarnation are not part of the preferred diagnosis. Conse-
quently, it is not possible to delete elements from C, which
are part of the diagnosis. FASTDIAG computes only minimal di-
agnoses in the sense of Definition 5. If we assume the existence
of a nonminimal diagnosis D calculated by FASTDIAG, this
would mean that there exists at least one constraint ca with D

2 fcag is still a diagnosis. The only situation in which elements
of C are added to a diagnosisD is if C itself contains exactly one
element. If C contains only one element (let us assume ca) and
AC is inconsistent (in the function FASTDIAG) then ca is the only
element that can be deleted from AC, that is, ca must be part of
the diagnosis.

5. EVALUATION

5.1. Performance of FASTDIAG

In this section we will compare the performance of FASTDIAG

with the performance of the hitting set algorithm (Reiter,
1987) in combination with the QUICKXPLAIN conflict detec-
tion algorithm introduced in (Junker, 2004).

The worst case complexity of FASTDIAG in terms of the
number of consistency checks needed for calculating
one minimal diagnosis is 2d� log2(n/d ) þ 2d, where d is
the minimal diagnoses set size and n is the number of con-
straints (in C). The best case complexity is log2(n/d ) þ 2d.
In the worst case each element of the diagnosis is contained
in a different path of the search tree: log2(n/d ) is the depth of
the path, 2d represents the branching factor and the number
of leaf-node consistency checks. In the best case all ele-

Fig. 3. FASTDIAG: calculating the complete set of minimal diagnoses. Enumerations 1–6 show the order in which the different incarnations
of the FASTDIAG algorithm are activated.

Diagnosing inconsistent constraint sets 57



ments of the diagnosis are contained in one path of the
search tree.

The worst case complexity of QUICKXPLAIN in terms of
consistency checks needed for calculating one minimal con-
flict set is 2k � log2(n/k )þ 2k where k is the minimal conflicts
set size and n is again the number of constraints (in C; Junker,
2004). The best case complexity of QUICKXPLAIN in terms of
the number of consistency checks needed is log2(n/k ) þ 2k
(Junker, 2004). Consequently, the number of consistency
checks per conflict set (QUICKXPLAIN) and the number of con-
sistency checks per diagnosis (FASTDIAG) fall into a logarith-
mic complexity class.

Let ncs be the number of minimal conflict sets in a constraint
set and ndiag be the number of minimal diagnoses, then we need
ndiag FASTDIAG calls (see Algorithm 1) plus ncs additional con-
sistency checks and ncs activations of QUICKXPLAIN with ndiag

additional consistency checks for determining all diagnoses.
The results of a performance evaluation of FASTDIAG are de-
picted in the Figure 4, Figure 5, Figure 6, and Figure 7. The
basis for these evaluations was the bicycle configuration knowl-
edge base taken from the CLib4 (www.itu.dk/research/cla/
externals/clib/) configuration benchmarks library (34 vari-
ables and about 65 constraints). For this example knowledge
base we randomly generated different sets of requirements (of
cardinality 5, 7, 10, and 15 requirements) and measured the

performance of calculating corresponding diagnosis sets
(the first diagnosis, first 5 diagnoses, first 10 diagnoses,
and all diagnoses). The run time performance of the differ-
ent diagnosis algorithms and the needed amount of TP calls
is shown in the Figures 4–7. As solver we used the CLib-
based decision diagram representation that allows for back-
tracking-free solution search. The tests have been executed
on a standard desktop computer (Intel Core 2 Quad CPU
QD9400 2.66-GHz CPU with 2 GB of RAM). Note that we
have evaluated the performance of FASTDIAG with different
other benchmark configuration knowledge bases on the
CLib Web page with basically the same result. FASTDIAG

shows to be a valuable alternative for determining diagnoses
in interactive settings especially for calculating the preferred
first-n solutions.

Figure 4 shows a comparison between the hitting set based
diagnosis approach (denoted as HSDAG) and the FASTDIAG

algorithm (denoted as FASTDIAG) in the case that only one
diagnosis is calculated. FASTDIAG clearly outperforms the
HSDAG approach independent of the way in which diagno-
ses are calculated (breadth-first or best-first). Figure 5 shows
the performance evaluation for calculating the topmost-5
minimal diagnoses. The result is similar to the one for calcu-
lating the first diagnosis, that is, FASTDIAG outperforms the
two HSDAG versions. Our evaluations show that FASTDIAG

is very efficient in calculating preferred minimal diagnoses.

Fig. 5. Calculating the topmost-5 minimal diagnoses with FASTDIAG versus
hitting set-based diagnosis on the basis of QUICKXPLAIN for 5, 7, 10, and 15
user requirements (req): performance in milliseconds on the top and number
of needed TP calls on the bottom. [A color version of this figure can be
viewed online at journals.cambridge.org/aie]

Fig. 4. Calculating the first minimal diagnosis with FASTDIAG versus hitting set-
based diagnosis on the basis of QUICKXPLAIN for 5, 7, 10, and 15 user require-
ments (req): performance in milliseconds on the top and number of needed TP
calls on the bottom. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]

A. Felfernig et al.58



5.2. Empirical evaluation

Based on a computer configuration dataset of the Graz Uni-
versity of Technology (N ¼ 415 configurations) we evalu-
ated the three presented approaches with respect to their ca-
pability of predicting diagnoses that are acceptable for the
user (diagnoses leading to selected configurations). Each
entry of the dataset consists of a set of initial user require-
ments CR inconsistent with the configuration knowledge
base CKB and the configuration that had been finally se-
lected by the user. Because the original requirements stored
in the dataset are inconsistent with the configuration knowl-
edge base, we could determine those diagnoses that indi-
cated which minimal sets of requirements have to be deleted
in order to be able to find a solution.

We evaluated the prediction accuracy of the three diagnosis
approaches (breadth-first HSDAG, FASTDIAG, and best-first
HSDAG). We first measured the distance between the pre-
dicted position of a diagnosis leading to a selected configura-
tion and the expected position of the diagnosis (which is 1).
This distance was measured in terms of the root mean square
deviation (RMSD; see Formula 1). The results of this first
analysis are the following: an important result is that FASTDIAG

has the lowest RMSD value (0.95), best-first HSDAG has a
similar prediction quality (RMSD ¼ 0.97), and breadth-first

HSDAG has the worst prediction quality (RMSD ¼ 1.64).

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

1
(predicted position� 1)2

s
: (1)

RMSD is an often used quality estimate but it provides only
a limited view on the precision of a (diagnosis) prediction.
Therefore, we wanted to analyze the precision of the diagnosis
selection strategies discussed in this paper—a measure for the
precision of a diagnosis algorithm is depicted in Formula 2.
The idea behind this measure is to describe how often a diag-
nosis that leads to a selected configuration (selected by the
user) is among the topmost-n ranked diagnoses. As shown
in Table 1, FASTDIAG and best-first HSDAG have highest pre-
diction accuracy in terms of precision, whereas the breadth-
first HSDAG approach shows the worst precision.

precision ¼ jcorrectly predicted diagnosesj
jpredicted diagnosesj : (2)

We applied a Mann–Whitney U test in order to statistically
analyze differences between the three diagnosis approaches in
terms of ranking behavior. We conducted a pairwise compar-
ison between the diagnosis approaches on the basis of the
mentioned Mann–Whitney U test. We could identify a signif-

Fig. 6. Calculating the topmost-10 minimal diagnoses with FASTDIAG versus
hitting set-based diagnosis on the basis of QUICKXPLAIN for 5, 7, 10, and 15
user requirements (req): performance in milliseconds on the top and number of
needed TP calls on the bottom. [A color version of this figure can be viewed
online at journals.cambridge.org/aie]

Fig. 7. Calculating all minimal diagnoses with FASTDIAG versus hitting set-
based diagnosis on the basis of QUICKXPLAIN for 5, 7, 10, and 15 user require-
ments (req): performance in milliseconds on the top and number of needed
TP calls on the bottom. [A color version of this figure can be viewed online
at journals.cambridge.org/aie]

Diagnosing inconsistent constraint sets 59



icant difference between the rankings of best-first HSDAG and
breadth-first HSDAG based diagnosis ( p ¼ 6.625e25) and
also between FASTDIAG and breadth-first HSDAG based diag-
nosis ( p , 2.441e27). There was no significant difference be-
tween best-first HSDAG and FASTDIAG in terms of ranking be-
havior ( p ¼ 0.12).

6. RELATED WORK

6.1. Knowledge base analysis

The authors of Felfernig et al. (2004) introduce an algorithm for
the automated debugging of configuration knowledge bases.
The idea is to combine a conflict detection algorithm such as
QUICKXPLAIN (Junker, 2004) with the hitting set algorithm
used in model-based diagnosis (MBD; Reiter, 1987) for the cal-
culation of minimal diagnoses. In this context, conflicts are
induced by test cases (examples) that, for example, stem from
previous configuration sessions, have been automatically gen-
erated, or have been explicitly defined by domain experts. Fur-
ther applications of MBD in constraint set debugging are intro-
duced in Felfernig et al. (2007) where diagnosis concepts are
used to identify minimal sets of faulty transition conditions in
state charts and in Felfernig et al. (2008) where MBD is applied
for the identification of faulty utility constraint sets in the con-
text of knowledge-based recommendation. In contrast to Felfer-
nig et al. (2004, 2007, 2008), our work provides an algorithm
that allows to directly determine diagnoses without the need
to determine corresponding conflict sets. FASTDIAG can be ap-
plied in knowledge engineering scenarios for calculating pre-
ferred diagnoses for faulty knowledge bases given that we are
able to determine reasonable ordering for the given set of con-
straints; this could be achieved, for example, by the application
of corresponding complexity metrics (Chen & Suen, 2003).

6.2. Conflict detection

In contrast to the algorithm presented in this paper, calculating
diagnoses for inconsistent requirements typically relies on the
existence of (minimal) conflict sets. A well-known algorithm
with a logarithmic number of consistency checks, depending
on the number of constraints in the knowledge base and the
cardinality of the minimal conflicts, is QUICKXPLAIN (Junker,
2004). It has made a major contribution to more efficient inter-

active constraint-based applications. QUICKXPLAIN is based on
a divide and conquer strategy. FASTDIAG relies on the same
principle of divide and conquer but with a different focus,
namely, the determination of minimal diagnoses. QUICK-
XPLAIN calculates minimal conflict sets based on the assump-
tion of a linear preference ordering among the constraints.
Similarly, if we assume a linear preference ordering of the
constraints in C, FASTDIAG calculates preferred diagnoses.

6.3. Interactive settings

Note that in the interactive configuration scenario discussed
in this paper our goal was to support open configuration
that lets the user explore the configuration space where the
system proactively points out inconsistent requirements,
such a functionality is often provided by commercial config-
uration environments. O’Sullivan et al. (2007) focus on inter-
active settings where users of constraint-based applications
are confronted with situations where no solution can be
found. In this context, O’Sullivan et al. (2007) introduce the
concept of minimal exclusion sets that correspond to the con-
cept of minimal diagnoses as defined in Reiter (1987). As men-
tioned, the major focus of O’Sullivan et al. (2007) are settings
where the proposed algorithm supports users in the identifica-
tion of acceptable exclusion sets. The authors propose an algo-
rithm (representative explanations) that helps to improve the
quality of the presented exclusion set (in terms of diversity)
and thus increases the probability of finding an acceptable ex-
clusion set for the user. Our diagnosis approach calculates pre-
ferred diagnoses in terms of a predefined ordering of the con-
straint set. Thus, compared to the work of O’Sullivan et al.
(2007), we follow a different approach in terms of focusing
more on preferences than on the degree of representativeness.

6.4. Diagnosis algorithms

There are a couple of algorithms that help to improve the effi-
ciency of diagnosis determination; they are further develop-
ments of the original algorithm introduced by Reiter (1987).
These approaches focus on making the construction of hitting
sets more efficient. Wotawa (2001) introduces an algorithm
that reduces the number of subset checks compared to the orig-
inal HSDAG approach (Reiter, 1987). Fijany and Vatan (2004)
introduce an approach to represent the problem of determining
minimal hitting sets as a corresponding integer programming
problem. Further approaches to optimize the determination of
hitting sets are discussed in Lin and Jiang (2003). All the men-
tioned approaches rely on (minimal) conflict sets that are the ba-
sis for calculating a set of minimal diagnoses, whereas FAST-
DIAG is a complete and minimal diagnosis algorithm without
the need of conflict sets. It is important to mention that espe-
cially when calculating the first n-diagnoses (for n . 1, i.e.,
not a single diagnosis), FASTDIAG can also exploit the men-
tioned algorithms of Lin and Jiang (2003) and Wotawa
(2001) for the calculation of more than one diagnosis, that is,
it is not bound to the usage of the original HSDAG algorithm.

Table 1. Precision of FASTDIAG versus HSDAG based
approaches

Top-n
Diagnoses

Breadth-First
(HSDAG) FASTDIAG

Best-First
(HSDAG)

n = 1 0.51 0.70 0.74
n = 2 0.75 0.88 0.89
n = 3 0.87 0.97 0.96

Note: HSDAG, hitting set directed acyclic graph.

A. Felfernig et al.60



Lin and Jiang (2002) introduce an approach to determine hitting
sets on the basis of genetic algorithms; a similar approach to the
determination of diagnoses is presented in Feldman et al.
(2008) who introduce a stochastic fault diagnosis algorithm,
which is based on greedy stochastic search. Such approaches
show to significantly improve search performance; however,
there is no general guarantee of completeness and diagnosis
minimality. Finally, there exist a couple of algorithms that are
improving the algorithmic performance of diagnosis calcula-
tion due to additional knowledge about the structural properties
of the diagnosis problem. For example, Jannach and Liegl
(2006) show the determination of (minimal) diagnoses for
the case of conjunctive queries on database tables (the set of di-
agnoses can be precompiled by executing the individual parts
of the query on the given data set). Siddiqi and Huang (2007)
show one approach to exploit structural properties of system de-
scriptions to improve the overall performance of diagnosis de-
termination; in this case cones are areas in a gate with a certain
structure and a certain probability of including a diagnosis, and
the search process focuses on exactly those areas. FASTDIAG

does not exploit specific properties of the underlying constraint
set; however, taking into account such properties can further
improve the performance of the algorithm. Corresponding eval-
uations are within the scope of future work.

6.5. Personalized diagnosis

Many of the existing diagnosis approaches do not take into ac-
count the need for personalizing the set of diagnoses to be pre-
sented to a user. Identifying diagnoses of interest in an efficient
manner is a clear surplus regarding the acceptance of the under-
lying application, for example, users of a configurator applica-
tion are not necessarily interested in minimal cardinality diag-
noses (Reiter, 1987) but rather in those that correspond to
their current preferences. A first step toward the application
of personalization concepts in the context of knowledge-based
recommendation is presented in Felfernig et al. (2009). The au-
thors introduce an approach that calculates leading diagnoses
on the basis of similarity measures used for determining n-near-
est neighbors. A general approach to the identification of pre-
ferred diagnoses is introduced in DeKleer (1990), where prob-
ability estimates are used to determine the leading diagnoses
with the overall goal to minimize the number of measurements
needed for identifying a malfunctioning device. Basic princi-
ples of determining diagnoses in knowledge-based recommen-
dation scenarios are discussed in Jannach and Liegl (2006).
Furthermore, Froehlich et al. (1994) introduce a logical charac-
terization of preferences that are expressed as preference
relations on single diagnoses and modal logical formulas
on groups of diagnoses. In contrast to our work, Froehlich
et al. (1994) do not provide an algorithm to efficiently calculate
preferred diagnoses. We see our work as a major contribution in
this context because FASTDIAG helps to identify leading diag-
noses more efficiently. Further empirical studies in different
application contexts are within the major focus of our future
work.

7. CONCLUSION

In this paper we have introduced a new diagnosis algorithm
(FASTDIAG), which allows the efficient calculation of one di-
agnosis at a time with logarithmic complexity in terms of the
number of consistency checks. Thus, the computational com-
plexity for the calculation of one minimal diagnosis is equal
to the calculation of one minimal conflict set in hitting set-
based diagnosis approaches. The algorithm is especially ap-
plicable in settings where the number of conflict sets is equal
to or larger than the number of diagnoses, or in settings where
preferred (leading) diagnoses are needed. Issues for future
work are the determination of repair actions for diagnoses,
the further development of FASTDIAG for supporting anytime
diagnosis tasks, and the conduction of further empirical stud-
ies in different configurator application domains.

REFERENCES

Ardissono, L., Felfernig, A., Friedrich, G., Jannach, D., Petrone, G., Schae-
fer, R., & Zanker, M. (2003). A framework for the development of per-
sonalized, distributed web-based configuration systems. AI Magazine
24(3), 93–108.

Belanger, F. (2005). A conjoint analysis of online consumer satisfaction.
Journal of Electronic Commerce Research 6, 95–111.

Castillo, L., Borrajo, D., & Salido, M. (2005). Planning, Scheduling
and Constraint Satisfaction: From Theory to Practice. Amsterdam: IOS
Press.

Chen, Z., & Suen, C. (2003). Measuring the complexity of rule-based expert
systems. Expert Systems with Applications 7(4), 467–481.

DeKleer, J. (1990). Using crude probability estimates to guide diagnosis. AI
Journal 45(3), 381–391.

DeKleer, J., Mackworth, A., & Reiter, R. (1992). Characterizing diagnoses
and systems. AI Journal 56(2–3), 197–222.

DeKleer, J., & Williams, B. (1987). Diagnosing multiple faults. AI Journal
32(1), 97–130.

Feldman, A., Provan, G., & Gemund, A. (2008). Computing minimal diag-
noses by greedy stochastic search. Proc. 23rd AAAI Conf. Artificial Intel-
ligence (AAAI’08), pp. 911–918, Chicago.

Felfernig, A., Friedrich, G., Isak, K., Shchekotykhin, K., Teppan, E., & Jan-
nach, D. (2007). Automated debugging of recommender user interface
descriptions. Journal of Applied Intelligence 31(1), 1–14.

Felfernig, A., Friedrich, G., Jannach, D., & Stumptner, M. (2004). Consis-
tency-based diagnosis of configuration knowledge bases. AI Journal
152(2), 213–234.

Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., & Teppan,
E. (2009). Plausible repairs for inconsistent requirements. Proc. 21st
Int. Joint Conf. Artificial Intelligence (IJCAI’09), pp. 791–796, Pasadena,
CA.

Felfernig, A., Friedrich, G., Teppan, E., & Isak, K. (2008). Intelligent debug-
ging and repair of utility constraint sets in knowledge-based recommen-
der applications. Proc. 13th ACM Int. Conf. Intelligent User Interfaces
(IUI’08), pp. 218–226, Canary Islands, Spain.

Fijany, A., & Vatan, F. (2004). New approaches for efficient solutions of hit-
ting set problems. Proc. Int. Symp. Information and Communication
Technologies, pp. 1–10, Cancun, Mexico.

Fleischanderl, G., Friedrich, G., Haselboeck, A., Schreiner, H., & Stumptner,
M. (1998). Configuring large systems using generative constraint satis-
faction. IEEE Intelligent Systems 13(4), 59–68.

Friedrich, G., & Shchekotykhin, K. (2005). A general diagnosis method for
ontologies. Proc. 4th Int. Semantic Web Conference (ISWC’05), LNCS,
Vol. 3729, pp. 232–246. New York: Springer.

Fröhlich, P., Nejdl, W., & Schroeder, M. (1994). A formal semantics for pref-
erences and strategies in model-based diagnosis. Proc. 5th Int. Workshop
on Principles of Diagnosis (DX-94), pp. 106–113.

Jannach, D., & Liegl, J. (2006). Conflict-directed relaxation of constraints in
content-based recommender systems. Proc. IEA/AIE 2006, pp. 819–829,
Annency, France.

Diagnosing inconsistent constraint sets 61



Junker, U. (2004). QuickXplain: preferred explanations and relaxations for
over-constrained problems. Proc. 19th National Conf. Artificial Intelli-
gence (AAAI’04), pp. 167–172, San Jose, CA.

Lin, L., & Jiang, Y. (2002). Computing minimal hitting sets with genetic al-
gorithms. Algorithmica 32(1), 95–106.

Lin, L., & Jiang, Y. (2003). The computation of hitting sets: review and new
algorithm. Information Processing Letters 86, 177–184.

Marques-Silva, J., & Sakallah, K. (1996). Grasp: a new search algorithm for
satisfiability. Proc. Int. Conf. Computer-Aided Design, pp. 220–227,
Santa Clara, CA.

Mittal, S., & Frayman, F. (1989). Towards a generic model of configuration
tasks. Proc. 11th Int. Joint Conf. Artificial Intelligence (IJCAI’89),
pp. 1395–1401, Detroit, MI.

O’Sullivan, B., Papdopoulos, A., Faltings, B., & Pu, P. (2007). Representative
explanations for over-constrained problems. Proc. 22nd National Conf. Ar-
tificial Intelligence (AAAI’07), pp. 323–328, Vancouver, Canada.

Reiter, R. (1987). A theory of diagnosis from first principles. AI Journal
23(1), 57–95.

Siddiqi, S., & Huang, J. (2007). Hierarchical diagnosis of multiple faults.
Proc. 20th Int. Joint Conf. Artificial Intelligence (IJCAI’07), pp. 581–
586, Hyderabad, India.

Sinz, C., & Haag, A. (2007). Configuration. IEEE Intelligent Systems 22(1),
78–90.

Tsang, E. (1993). Foundations of Constraint Satisfaction. New York: Aca-
demic.

Winterfeldt, D., & Edwards, W. (1986). Decision Analysis and Behavioral
Research. New York: Cambridge University Press.

Wotawa, F. (2001). A variant of Reiter’s hitting-set algorithm. Information
Processing Letters 79, 45–51.

Alexander Felfernig is a Professor of applied software engi-
neering at Graz University of Technology. Alexander is also
Cofounder and Director of ConfigWorks, a company focused
on the development of knowledge-based recommendation

technologies. Prof. Felfernig’s research focuses on intelligent
methods and algorithms supporting the development and main-
tenance of complex knowledge bases. Furthermore, he is inter-
ested in the application of AI techniques in the software engi-
neering context, for example, the application of decision and
recommendation technologies to make software requirements
engineering processes more effective. In 2009, Dr. Felfernig re-
ceived the Heinz–Zemanek Award from the Austrian Compu-
ter Society for his research.

Monika Schubert is a PhD student in the group of Applied
Software Engineering at Graz University of Technology.
She received her MS in software engineering and economy
from Graz University of Technology. Her research focuses
on knowledge-based systems, intelligent product configura-
tion, model-based diagnosis, and product recommendation.
Monika is also interested in user interaction with complex
knowledge bases.

Christoph Zehentner is a PhD student in the Applied Soft-
ware Engineering Group at Graz University of Technology.
He received his MS in software engineering and economy
from Graz University of Technology. His research focuses
on testing and debugging of knowledge-based systems as
well as recommendations in group decision environments.
Christoph is also interested in multiple-agent system coordina-
tion and decision making.

A. Felfernig et al.62


