Automated Debugging of

Recommender User Interface Descriptions

Alexander Felferni§?, Erich Teppat, Kostyantyn Shchekotykhin
lUniversity Klagenfurt, Computer Science and Manufactirin
Universitatsstrasse 65-67, A-9020 Klagenfurt, Austria
2ConfigWorks, Lakeside, BO1, A-9020 Klagenfurt, Austria

contact: alexander.felfernig@uni-klu.ac.at

Abstract

Complex assortments of products and services offered hgeostlling plat-
forms require the provision of sales support systems asgististomers in the
product selection process. Knowledge-based recommendeiisitelligent sales
assistance systems which guide online customers througlomdized sales di-
alogs and automatically determine products which fit the&ds and wishes. Such
systems have been successfully applied in application ohensach as financial
services or digital cameras. In this context, the conswoaif recommender user
interfaces is still a challenging task. In many cases faultglels of recommender
user interfaces are defined by knowledge engineers and omatgd support for
debugging such models is available. In this paper we presémimal model for
defining the intended behaviour of recommender user irtesfand show the ap-
plication of model-based diagnosis concepts which all@stitomated debugging
of those definitions. An empirical evaluation shows sigaifictime savings in rec-

ommender user interface development and maintenancessexe

1 Introduction

The selection of products from a complex assortment isa&tilhallenging task since
many online selling environments offer simple query irdeds based on the assump-
tion that users know technical product details. In this egfjtrecommendation tech-
nologies [1, 2, 3, 9, 13, 19, 20, 30, 26] are of great imporafoc making product
assortments more accessible. Basically, there are theleedigical approaches to the

implementation of a recommender application:

o First, content-based filterinf20] derives recommendations by exploiting sim-
ilarities between the preferences of the current customeérexisting product
descriptions. In this case, the recommender proposes gioahich are similar
to those the customer has liked in the past. If a customer tvaght books re-
lated to theSAP systensimilar books will be recommended in future advisory

sessions, i.e., no serendipity effects can be exploiteaisgncbntext.

e Secondcollaborative filtering[13, 22, 26] is based on preferences of a large
set of customers. Recommendations are derived by takingactount prefer-
ences of customers with similar purchasing patterns, &iaimce, movies not yet
bought by the current customer but positively rated by custs with similar

purchasing behavior will be recommended to the currenbeouist.

e Third, knowledge-based recommendatidn 3, 15, 23, 27, 30] exploits deep
knowledge about the product domain. Compared to domairs asibooks or
movies, customers purchasing complex products such asuterspor finan-
cial services are much more in the need of intelligent imoa mechanisms
supporting the calculation of appropriate solutions. €fae, we need an ex-
plicit representation of the existing product, marketiagd sales knowledge [9]
which makes it possible to (a) derive recommendations wbashply with ex-
isting marketing and sales strategies and suit the wishasooistomer, (b) to
explain those recommendations (why has a specific prodect terommended
to a customer?), and (c) support customers in situationsanthe recommender

is unable to find a solution for the given requirements (nepiequirements).

When developing knowledge-based recommenders, two bspsécts have to be taken
into account. First, ecommender knowledge bd8e6] has to be defined which con-
sists of a structural description of the provided produgtdescription of the possible
customer requirements and constraints restricting trevell combinations of cus-
tomer requirements and related product recommendatioesond, aprocess model
has to be defined which describes the intended behavior setttenmender user in-
terface [3, 10], i.e., which questions have to be posed teeaifsp customer in which
contexts? Thereafter, both, knowledge bases and procfsiides can be automati-
cally translated into a recommender application [3, 9, 5].

In the remainder of this paper we focus on a situation wheosvl@dge engineers
develop a model of the intended behavior of a recommenderiniszface (process
model development). Knowledge acquisition as a collalh@gtrocess conducted by
technical and domain experts is still a very time-consuntés. In this context, au-
tomated debugging support is an important contributioméoeffective deployment of
recommender applications [4]. The time of a domain expeitiwban be dedicated
to the development of a recommender application is strigtiited, i.e., time savings
related to the identification of faults in user interfaceatggions play an important
role in recommender development processes.

The intended behavior of a recommender user interface calesaibed by a fi-
nite state model [10, 14, 32]. Each state of such a model septe an input unit of
the application where a user can articulate his/her praée®by answering questions
posed by the recommender. Figure 1 depicts a simple examipted model of the
intended behavior of a financial services recommender e [9]. Figure 2 de-
picts the corresponding user interface of our process nmaglehvironment (Process
Designer). This environment is part of a commercially al# recommender de-
velopment environment [3, 8, 9]. Basically, this interfadows the specification of
a finite state model where the states represent input umhitswiaf customers to ar-
ticulate their requirements, e.g., in stgtethe customer is asked about the preferred

duration of investment.Having defined such a model, our development environment

INote thatduration_of _investmentid) is the identifier for the corresponding question posed ley th
recommender applicationvbat is your required duration of investmeint

¢,: KI=beginner

Cg: id<>shortterm
¢;: ki<>heginner

var(gs;)=sh ‘ |var(q4)=av @
1 | >
95 Cio: AVEYES \q—y Cg: @V=NO @

¢4,: Kl=average C,: KI=beginner

C,. KI=expert

(

cg: id=shortterm

q,)=aw|

C3. aw=yes

C,l aw=no

Figure 1: Example recommender user interface description.

automatically generates a corresponding application][3, 9

Depending on the preferences articulated by the custoheeaitomaton of Figure
1 changesits state, e.g., an expert (kl = expert) who is tertgated in financial services
advisory (aw = no), is forwarded to the statg where a direct product search can be
performed. Consequently, different navigation paths rdetee different subsets of
input variables relevant for the preference elicitationgass. After the completion
of the preference elicitation process (a final state of tleegss definition has been
reached), the recommender application can calculate axspra corresponding set
of solutions [3, 9].

Note that the specification of our financial services recomueeinterface in Fig-
ure 1 is faulty. A financial services expert (kl = expert) whants to be advised by a
financial services recommender (aw = yes) and is interestihg-term investments
(id # shortterm) and doesn’t have any available funds (av = no)esoim a standstill
at the input of availability (the transition condition séts, co} and {cz, ¢11} are con-
tradictory). In such situations, the developer of a knogkthase needs additional
debugging support in order to effectively identify the smg of the inconsistency.

In this paper we demonstrate the application of Model-Bd3rednosis (MBD)
[21] with the goal to be able to automatically identify mirdhsets of faulty transition

conditions in recommender user interface descriptions.tie purpose we derive a

Initial state

State
transition

q0
knowledge_level

Questions posed to
customers, e.g.,
required duration
of investment?

EREIEE

knowledge_leve| = "expert’

knowledge_level = "beginner”
advisor_wanted

advisor_wanted = "yes"

duration_of_investment

advisor_wanted = "no"
/ duration_of_investment = "shortterm”
duration_of. mvestmebmo spomerm AND
egin

knowledge_Jevel <

availability_funds = "no" AND
knowledge_level = "beginner*

a4

direct product search

availability_funds

q6
low_risk_product_search
frue

availability_funds = "yes" AND trug
knowledgé_level = "average”

Final state,
presentation of
recommendations

a7
product_name
product_type

q5
- 2 true
high_risk_product_search

[V Show transition conditions ¥ S

o} | Q | Print |

save | cancel | Diagnose | I withtesteases Max numberofdiagnoses ([l ¥ |

Figure 2: Modeling environment for user interface desauips.

logical representation (system description) of a givertdistate representation of a
recommender user interface (see Figure 1) which servegpasfor the calculation of
hitting sets (diagnoses) introduced in [21].

The remainder of this paper is organized as follows. In $acti we introduce a
finite state representation formalism for modeling the gational behavior of recom-
mender user interfaces. Using the concepts of Model-BagaghDsis (MBD) [21], we
present an approach to the automated identification of naindets of faulty transition
conditions in recommender user interfaces (see Sectidn Sgection 4 we evaluate the
performance of the presented debugging algorithm and prressults of an empirical

study. Finally, Section 5 contains a discussion on relatedkw

2 Finite State Models of Recommender User Interfaces

For the definition of the intended behavior of a recommender interface, we intro-
duce the concept of Predicate-based Finite State AutorR&BA) [10, 32] (see Figure

1) which are a specific variant of finite state automata [14isType of automaton

is more compact in the way state transitions can be definaddaorestrictions of fi-
nite domain variables), which makes it an excellent foremalfor the graphical design
and maintenance of recommender user interfaces. Thissemeadion of recommender
user interfaces is integrated into the recommender dereapenvironment presented

in [3, 9]. Note that in the context of building knowledge-bdsecommender applica-
tions, we are primarily interested atyclicautomata.

Definition 1 (PFSA). a Predicate-based Finite State Automaton (recognizer)

(PFSA) is defined as a 6-tuple (8, 11, E, S, F), where

e Q={q1, ¢, ...,q;} is afinite set of states, where vay] = {«;} is a finite domain
variable assigned tg;, precg;) = {1, ¢2,..., ¢} iS the set of preconditions
of ¢; (¢ = {cr, Csy -y ¢} C I0), posteq;) = {¥1, Y2, ..., ¥n} is the set of
postconditions of; (¢¥3={cu, v,cw} C 1), and domg;) = {z;=d;1, z;=d;2,

..., ¢;=d;p} denotes the set of possible assignments;0i.e., the domain of;.

Y ={x; =di | z; € var(g), x; = d;; € dom(z;)} is a finite set of variable

assignments, the input alphabet.

IT = {c1, ca, ..., cg} is a set of constraints (transition conditions) restrigtithe

set of words accepted by the PFSA.

E is a finite set of transitions Q x IT x Q.

S C Qs afinite set of start states.

e F C Qis afinite set of final state§&l

Preconditions of a staig (prec@;) = {91, ¢2, ..., ®m}) can be automatically derived
from the reachability tree of a PFSA. Figure 3 depicts thehahility tree for the PFSA

of Figure 1. The statg; is accessed twice in the reachability tree, consequendy, w

can derive two preconditions for the stgtewhich directly correspond to the transition
conditions of paths in the reachability tree leadingjoi.e., precfs) = {{ c1}, { ¢,
c3}} where the different subsets are interpreted as being pa#g disjunction (not
every precondition has to be fulfilled). Similarly, pogtg¢(epresents the set of possible
postconditions of the statg which are as well derived from the reachability tree, e.g.,
the statey, has two postconditions, namelydy, co}, { c10, c11}}. Figure 4 depicts the
textual representation of the PFSA of Figure 1.

The set of input sequences leading to a final state is alsael@as the language
accepted by the PFSA. A word & X* (i.e., a sequence of user inputs) is accepted by
a PFSA if there is an accepting run of w in the PFSA (see [10]).

When developing user interfaces, mechanisms have to bédpbwhich support
the effective identification of violations efell-formedness properties.qg., if a path in
the process definition reaches a stgtehere must be at least one extension of this path
to a final state. Regarding our example of Figure 1, there agtepted input sequences
visiting the statesq, q1, ¢2, ¢4], but none of those sequences can be propagated to any
of the following states {5, ¢s}. Path expressions form the basis for expressing well-
formedness properties on a PFSA (see Definition 2a,b).

Definition 2a (path): we define a sequence (of transitions) p g1 {C1,q2),
(92:C2,g3), - @i—1,Ci-1,4:)] ((da,Ca,0s) € E) aspathof a given PFSAU

Definition 2b (consistent path) Let p = [(¢1,C1.42), (¢2.C2,q3), ...,
(¢i—1,Ci—1,4:)] ((90.Cq.08) € E) be a path from a staig € S to a state;; € Q. p
is consistentconsistent(p)) ifl JC, is consistentd

Following this definition of a consistent path we introdusetof well-formedness
rules which specify important structural properties of &SRFcounter examples for
these properties are depicted in Figure 5). These rulesstmven to be relevant for the
implementation of knowledge-based recommender appticatiNote that if additional
well-formedness rules are needed, our framework allowsrtieduction of further
domain-specific properties.

Extensibility For each consistent path in a PFSA leading to a gtatkere must

exist a corresponding direct postcondition, i.e;,{;,q;+1) propagating the path (i.e.,

var(ap, pq)={kl;}
var(dg, p)={ki,}
var(g, pa)={Kls}
var(ap, pa)={kl,}

e (g, pg)={lg) o ..path p;
var(g,, p1)=(?d1 c var(dy, pg)={klg} z::::g: Eg;;ﬁ:xﬁ
o Py ! var(a,, py)={aws}
path P1.,--' var(g,, pa)={idy var(qa p7)={a:WT.)
= Cg: C7

ar(dy, pg)={id,}
ar(dy, pg)={id;}
ar(dy, Pg)={idg}

4 P)={avy

var(q, i
var(a,, pz)=(a

Cg Cof. i \C10s Gy

s path p24

(a)

var(gg, P1)={5|1){ ‘Var(qg, P2)={5h2)|

Figure 3: Reachability tree of a PFSA.

each consistent path must be extensible) (see Definition 3).
Definition 3 (extensible path) Let p = [(¢1,C1.92), (¢2,.C2,43), -, @i—1,Ci—1,¢:)]
be a consistent path from a statec S to a state; € Q - F. p isextensiblgextensi-
ble(p)) iff 3 (¢:,Ci,qi+1): C1 U C2 U ... U C;_1 U C; is consistent[]
Figure 5 (a) depicts anon-extensible pathsince the conditions ¢y, c1}
of p=[(go.{co:x0>3},q1), (q1,{c1:x1>=3},¢2)] are inconsistent with both condi-
tions of postcde)={{ c2},{ cs}}. Similarly, Figure 1 includes a non-extensible
path: [(go.{co:kl=expert}q1), (q1.{cs:aw=yes}gs), (g2.{cs:id # shortterm,c;:kl #
beginner}q,)] is inconsistent with the conditions of posig)={{ c10, c11},{ ¢s, co}}.
Determinism Each statey; is a decision point for the determination of the next
state. This selection strictly depends on the definitiohefdirect postconditions fat;,
where each postcondition has to be unique for determinmguibsequent state. A state
¢; is deterministic if each of its postconditions is unique d@termining subsequent
states (see Definition 4).
Definition 4 (deterministic state} Let p = [(¢1,C1.¢2), (¢2.C2,q3),

(¢i-1,Ci-1,4:)] be a path from a state; € S to a state;; € Q - F. A state ;) is

Q=1{q, 91, 92, 93, q4, g5, qe}- postc(qo) = {{cs, ca}, {ca, cs cs},

/* know edge | evel */ {c2, c3, c6, c7, cs, co},
var (qo) = {kl}. {c2, e3, c6, c7, cio, cii},
/+ advisory wanted */ {1, esh,

var(ql) - {aw} {Clv Cg, C7, C8, cQ}v

/* duration of investnent =/ ¢ fer, s, cr, cio, cud}
var(gz) = {id}. postc(qi) = {{ca}, {c3, cs},

/+ direct product search */ {es, o c7,ocsco},
var (gs) = {ds}. {cs, c6, c7, cio, ci1}}.
[+ availability of I y

financial resources*/ T

var = {av}.

| * Iglq;)h I’i{Sk }products */ postc(qs) = {{cs, co}, {cio, ci1}.
var(gs) = {sh}. -

I+ low risk products */ postc(gs) = {{true}}.

var(gs) = {sl}. postc(gs) = {{true}}.

postc(gs) = {{true}}.
dom(kl) = {kl =begi nner, kl =aver age,

ki =expert} . 3> = {kl =begi nner, kl =aver age,

kl =expert,

don(aw) = {aw=yes, aw=no}.
don(id) = {id=shorttermid=nediunterm z‘l"fgijl na:ani —honds)
id=l ongterny. B gs. B :
dom(ds) = {ds=savi ngs, ds=bonds, = {ei, e e}
destackiunds, =1l (&) e .
domaw) = {av=yes av=nol. i (a1, {csh, @), (@2 feo e}, as),
om(sh) = {sh=stockfunds, sh=si ngl eshares}.
don(sl) = {sl =savi ngs, sl =bonds}. EQQ’ {{065}’6 }qe),)
prec(ao) = {{true}}. (a1 Leror enids 4}
prec(qi) = {{ca2}}. S={qoi ' e
prec(qz2) = {{ci}, {c2, c3}}. F= { ' }
prec(as) = {{c2, ca}}. s @5 A6l

Figure 4: Textual version of PFSA in Figure 1.

deterministidff V(g;, Ci1, ¢;), (¢, Ci2, qx) EE:C1 UC2 U ...UC;1 UCy UCiais
contradictory (i1 # Cjz). O

Well-formedness rules related to deterministic statesiire¢hat each input se-
guence consistent with the transition conditiod§ {Cs, ..., C;_1} is consistent with
at most one of the following condition€¥;, C;2}. Figure 5 (b) depicts amdetermin-
istic state since the conditionsd), ¢,} are consistent with §s, c3}. By introducing
negated neighbour condition€'f is the neighbour of”;5), we can achieve the in-
consistency required by Definition 4. Exchanging neighbmumditions is basically
realized by a pairwise exchange of the negations of exigtiaugsition conditions.
This approach is exemplified in Figure 6 where in case (a) tiggnal semantics is
preserved and in case (b) an inconsistengy: (tg > 4 A ¢1 : —xzg > 3) is triggered

which has to be resolved by the diagnosis process (see 8&3tio

2Note that this approach to a pairwise exchange of negatetitzors is as well applicable in situations
with more that two post-conditions of a given state.

o o o

Co: %3 Co: Xo>3 Cq' Xo>3
var(q;)=x var(q)=x,
d1 a; d1
Cyi %4>=3 ¢y X >=3 Cy X>=3
qz

Cy: Xp=2
(a) not extensible path (b) indeterministic state (c) not accessible
transition

Figure 5: Counter examples for well-formedness rules.

var(qg)=xy ggere
& inconsistency
due to exchanged

negated transition
Jcoz x>0

. conditions
Co Xg™>3
var(q1)=x‘

(cancp)
|
Cq Xg>3 Cy, Xp>4

var(gy)=x,
az

(a) deterministic state q, (b) indeterministic state q1

Figure 6: Handling of indeterministic transition condit® statey; is indeterministic
(b); on the basis of a pairwise exchange of negated neigtdomditions, we can trigger
an inconsistency which has to be handled by the diagnostepso

10

Accessibility Each transition should be accessible, i.e., for eachitranghere
exists at least one corresponding path (see Definition 5).

Definition 5 (accessible transition) A transition t = ¢;,C;,q;+1) (postcondition of
stateg;) is accessibldaccessible(t)) iff there exists a path p g1[{C1,92), (¢2.C2.q3),
ooy (6-1,Ci-1,9:)] (1 € S): C1 U Cy U ... U C;_1 U C; is consistent]

Figure 5 (c) depicts aot accessible transitigrsincec, (transition ¢2,{c2}, g3))
is inconsistent with ¢, c1}, the conditions of the only path leading tg. Similarly,
Figure 1 contains a non-accessible transition: none of tissiple paths are consistent
with the transition conditions ofy{,{ c19:av=yes ¢ :kl=averagelys).

Well-formed PFSAA PFSA is well-formed, if the defined set of well-formedness
rules is fulfilled (see Definition 6).

Definition 6 (well-formed PFSA). A PFSA is well-formed iff

e each consistent path p =¢[(C1,¢2), (¢2,C2,q3), - @i—1,Ci—1,45)] (@1 € S,
q; € Q - F) is extensible to a consistent path p ;[C1,92), (¢2,C2.q3), ---
(2i-1,.Ci-1.9:), (2:,C3,q5)]-

e VYg; € Q: deterministicgy).
e Vt=(qx,Cr,q) € E: accessible(t)]

Having specified necessary properties of a PFSA, we now presie approach to the

calculation of minimal sets of faulty transition conditim a PFSA.

3 Debugging Finite State Models

Given a faulty (not well-formed) PFSA, we want to automdtcaentify a minimal set
of faulty transition conditions. In order to solve this tasle define a PFSA diagnosis
problem which is solved using the concepts provided by mbdskd diagnosis (MBD)
[21]. Model-based diagnosis starts with the descriptioa sfstem (SD) which is in
our case the structural description of the intended behafi@a PFSA (Definitions
3-5). If the actual behavior of the system conflicts with ii¢ended behavior, the

diagnosis task is to determine those components (transjtishich, when assumed to

11

functioning abnormally, explain the discrepancy betwdendctual and the intended
system behavior.
In order to apply MBD concepts, we transform a PFSA into a esponding

constraint-based representation which is composed obtlening sets:
1. STAT: finite domain variables representing possible irgauts.
2. WF: constraints representing well-formedness rules.
3. TRANS: constraints representing the transition coadgiof the PFSA.

The goal of a diagnosis task is to identify a minimal set ohsiion conditions
(STRANS) which are responsible for the faulty behavior of tHeSR, i.e., are in-
consistent with the given set of well-formedness rules eNloat diagnoses do not need
to be unique, i.e., there can be different explanationsdolty transition conditions in
the PFSA. We define a PFSA Diagnosis Problem as follows.

Definition 7 (PFSA Diagnosis Problem) A PFSA Diagnosis Problem is repre-
sented by a tuple (SD, TRANS), where SD = STATWF. STAT is the structural
description of a PFSA represented by a set of finite domaiiabtws. WF is the in-
tended behavior of a PFSA (set of well-formedness rulesgiisirepresented by a set
of constraints on STAT. Finally, TRANS represents a set afigition conditions (as
well represented by constraints on STAT).

Note that (STAT, WF, TRANS) defines a Constraint Satisfactwoblem (CSP)
[31]. STAT is a set of finite domain variables related to paththe reachability tree,
e.g., {kls, ids, sls} are variables related to the path fFigure 3 depicts the relation-
ship between paths and variablesSTAT, e.g., vardy, ps) = {kis}). The complete
set of variables related to paths of the reachability tremdtuded in Example 1.
Note that each of the variables STAT is either active ACT) or inactive L. ACT).
This notion of variable activity has been introduced by [2B]lthough we apply a
simplified version of this approach (every variable is aithetive or inactive without
any additional activation constraints), this represéoiaperfectly supports our goal
of testing well-formedness properties of process defingioThe set of solutions to

the CSP defined by (STAT, WF, TRANS) represents all possitiraction sequences

12

(accepted runs). The projection of those solutions to, thg.variables {k, ids, sls}
represents those input sequences accepted by patk.p[kl=beginner, id=shortterm,
sl=savings], [kl=beginner, id=shortterm, sl=bonds]. Bar example PFSA, STAT is
defined as follows.

Example 1 (STAT): STAT ={

kly, idy, aw, sh, /* pathp; */

klp, ids, aw, shy, /* pathpy */

kls, ids, sls, /* pathps */

kly, awy, idy, avy, shy, /* pathpy */

kl5, aws, ids, avs, sls, /* pathps */

klg, awg, idg, Sls, /* pathpg */

kl;, aw, ds; /* pathp; */}. O

Since in our case a reachability tree (see, e.g., Figure@gsents the complete
expansion of a corresponding PFSA, not all the paths aressadly consistent. If a
path of the reachability tree represents such an illegigidtary, i.e., no consistent value
assignment exists for the corresponding variables, aidkbas of this path have to be
inactive. In order to assure that all variables of a path @heeactive or inactive, we
introduce meta-constraints defined for each path in thenedality tree, e.g., for path
ps: ACT (kls) N ACT (id3) N ACT (sl3) V ZACT (kl3) N TACT (ids) AN ZACT (sl3).
This constraint denotes the fact that either all variabfgsath p; must be active or
all variables are inactive. In order to simplify the constion of well-formedness
rules, we introduce additional meta-constraints whichnaetfieactivity stateof a path
variable, e.g., for pathps: ACT (kis) A ACT (ids) N ACT (sl3) < ACT(ps3), and
ZACT (kis) N TACT (ids) N ZACT (sl3) < ZACT (p3). In order to introduce such
meta-constraints, we have to introduge {p», ..., pr} C TRANS.

In the following we give examples for the construction of ifefmedness rules
(WF) needed for the identification of minimal sets of faulgrtsition conditions in the
given example PFSA.

First, we give an example for the construction ofetessibilityrule related to the

3The corresponding variable domains are depicted in Figure 4

13

transition ¢2, {cg, c7}, q4) Of our example PFSA (see Example 2).

Example 2 (well-formedness rules for accessibility)WFaccessibility ({2, {cs,
crhy a)) ={ACT (p1) V ACT (p2) V ACT (ps) V ACT (p5)}. U

This rule denotes the fact that the transitigs, { cg, 7}, g4) must be accessible for
at least one of the paths, p2, p4, p5 (See Figure 3), i.e., at least one of the variable
sets §l1, idy, avy, sli}, { kla, ida, ave, sha}, { kly, idyg, avy, shy}, { kls, ids, avs, sls}
must be active in a solution for the CSP defined by (STAT, WFANR).

Second, we give an example for the construction o&sensibilityrule related to
the consistent path p =d{,{ c2}, ¢1)].

Example 3 (well-formedness rules for extensibility) WFextensibility ([¢o, { c2},
q)]) = {ACT (ps) V ACT (p5) V ACT (ps) V ACT (p7)}. O

This rule denotes that fact that at least one of the path®s, ps, p7 must be
extensible in the statg, i.e., the corresponding variables must be active.

Third, we give an example for the construction of a well-fedness rule related to
thedeterminisnof the statey; .

Example 4 (well-formedness rules for determinisnt) WFdeterminism ;) =
{(klz#£kly V awr#aws V ZACT (ps) V ZACT (p7)) N (klz#£kls V awr#aws V
TACT (ps) V ZACT (p7)) A (klz#kls V awr#aws V ZACT (ps) V ZACT (p7))}. O

This rule denotes that fact that each instantiation /df { aw-} must be differ-
ent from the possible instantiations of variables of thehgat, p; andpg. Figure
7 depicts a simple example which demonstrates the applicafi this type of well-
formedness rule. This rule allows to determine whetheretlegists an extension of a
given PFSA which is well-formed regarding the determinisiogerty. This is useful
in situations where the diagnosis process assumes thataénceansition is faulty (in
Figure 7: {c1, co} are assumed to be faulty). If this is the case, we have totifyen
a substitution of the faulty transition conditions whicHfifls the given set of well-
formedness rules. For our simple example of Figure 7 we hadefine the following
determinism well-formedness ruléz; # zo V ZACT (p1) V ZACT (p2)) A (y1 #
ya VIACT (p1) VZACT (p2)). In the case of Figure 7.a such an extension exists for

the transition conditionsd, co} (€.9.,{c1 :x =1Ay=1,c0: x =2 Ay =2}), the

14

path p, cy: true
path p,

var(q,)=y

faulty —— D8y 55« faulty

(a) dom(x,y)=[1,2] (b) dom(x,y)=[1]

Figure 7: Calculation of extensions for a PFSA (the traasittonditionscy, c; are
assumed to be faulty): in case (a) an extension is possile{e, : z =1 Ay =1,
co :x =2 Ny =2}), case (b) does not allow the calculation of an extension.

case of Figure 7.b does not allow such an extension which sthahno diagnosis can
be found in this case.

An example for the definition of a transition condition (TR&Nis the following.
We represent the transition conditionof our example PFSA.

Example 5 (TRANS for PFSA). {¢;: (kl; = beginnerv ZACT (kl1)) A (ki =
beginners ZACT (kls)) A (ki3 = beginnery ZACT (kis))} € TRANS.O

This generated condition fef, contains those variables which belong to paths in-
cluding the transitionq, {c1}, ¢2), i.e., the variables#l,, kl-, kl3} which belong
to the paths $1, po, ps}. For the CSP defined by (STAT, WF, TRANS) the possible
values of the variablesk{:, kls, kis} are defined by conditiory, i.e., the value of
{ ki1, ko, kl3} must bebeginnerif the corresponding variable is active.

Given a specification of (SD, TRANS), a PFSA Diagnosis is defias follows.

Definition 8 (PFSA Diagnosis) A PFSA Diagnosis for a PFSA Diagnosis Problem
(SD, TRANS) is a set & TRANS s.t. SDU TRANS - S consistent]

Given a PFSA Diagnosis Problem (SD, TRANS), a Diagnosis §3&r = STAT
U WF, TRANS) exists under the reasonable assumption that STWIF is consistent.
Assuming that SD = STATU WF is inconsistent, it follows from the definition of a

diagnosis S that S TRANS-S is inconsisteritS C TRANS. Assuming that SDJ

15

TRANS-S is consistent, it follows that STAT WF is consistent.

The calculation of diagnoses is based on the concept of rairdomflict sets [16].

Definition 9 (Conflict Set). a Conflict Set (CS) for (SD, TRANS) is a set;{ c»,
.} € TRANS, s.t. {1, ca, ...,cn} U SD is inconsistent. CS is minimal iffi3 CS’
C CS : conflict set (CS")

The algorithm for calculating a set of minimal diagnosesf@rocess definition is

the following (Algorithm 1).

Algorithm 1 PFSA-Diagnosis (SD, TRANS)

(a) Generate a pruned HSDAG T for the collection of conflics seduced by tran-
sitions of TRANS in breadth-first manner (we generate diagedn order of their
cardinality). With every theorem prover (TP) call at a nodefril the consistency
of (TRANS - H(n)U SD) is checked. If there exists an inconsistency, a confitt s
CS is returned, otherwise ok is returned. If (TRANS - H(nBD) is consistent, a
corresponding diagnosis H(n) is found.

(b) Return {H(n) | nis a node of T labeled with ok}.

The labelling of the search tree (Hitting Set Directed Aagy&raph - HSDAG) is
based on the labelling of the original HSDAG (details on thkewlation of hitting sets
can be found in [21]). A node n is labelled by a correspondingflict set CS(n). The
set of edge labels from the root to node nis referred to as. ld{onflict sets determined
by TP calls are §s, c11}, { ¢7, co}, { 2, co}, and {c1, cg}. One minimal diagnosis S
for our example PFSA isd, co}, i.€., {¢2, co} have to be changed in order to make to
PFSA consistent w.r.t. to the given set of well-formednesss:

Applicability for Interactive Settings The process flow diagnosis concepts pre-
sented in this paper have been implemented as a compondr khbwledge-based
recommender development environment presented in [3, @ approach comple-
ments the existing knowledge acquisition interface withetif intelligent mecha-
nisms allowing the automated identification of faulty triéina conditions in process
definitions, i.e., does not fundamentally change the sireatf the knowledge acqui-
sition interface. Typically, process definitions includetween 15 and 40 transition
conditions (see Table 1). Faulty PFSA definitions typicabyibit 2-5 conflicts which

makes our approach applicable to settings where a knowkelgjaeer is interactively

16

| transitions || 2 conflicts | 3 conflicts | 4 conflicts | 5 conflicts | 10 conflicts |

5 0.05 0.071 0.12 0.16 -

10 0.141 0.171 0.251 0.321 0.36
20 0.401 0.621 1.152 1.343 2.268
30 0.891 1.092 1.421 1.692 2.826
40 1.352 1.791 2.096 2.813 3.912

Table 1: Performance of PFSA Diagnosis (in secs).

developing a recommender application (see Table 1). Ctsdiichis magnitude occur
in settings where knowledge engineers develop recommémdeess definitions who
have a basic understanding of the well-formedness presatiscussed in this paper.
The presented debugging concepts are a first approach to deakpment and
maintenance of recommender process definitions more iwfe®@ue to the feedback
from knowledge engineers and domain experts, further queedll be integrated into
future versions of our software. Domain experts (as welrasledge engineers) often
tend to think in terms of examples. We intend to integratemga-driven testing mech-
anisms where the developer himself provides an exampld petlos which should be
accessible. On the technical level such examples repraddiitonal well-formedness
rules for a given process definition (specific type of actwlitsiwell-formednessrule).
In many cases there exist a number of alternative diagnogxaieing the sources of
inconsistencies in a given process definition. In this cdnte will include additional
ranking mechanisms for diagnoses which take into accoerptbbability of a transi-
tion condition to be faulty (e.g., the probability of a tréims condition to be faulty is
higher if there exists a large number of incoming paths toehated state, similarly, the
probability is higher, if the complexity of the transitioomdition in terms of number
of referenced variables etc. is high). Currently, the s@la®f a diagnosis strictly de-
pends on its cardinality, i.e., diagnoses with the lowestiner of transition conditions

are presented first.

17

4 Empirical Analysis

Analysis ApproachWe have conducted an experiment with the goal to highlighbt an
guantify potential reductions of development and maimepafforts facilitated by our
process flow debugging environment. For the experiment we tefined three exam-
ple (faulty) process definitiongd: , pdz, pds) with an increasing complexity regarding
the number of states and transition conditions. The typesroheous transition con-
ditions are similar to those occurring in industrial recoemder development projects
[9]. On the basis of these process definitions, participahtbe experiment had to

identify solutions for the following types of tasks:

1. Diagnosis task (d) - identify a minimum cardinality seffadilty transition con-
ditions (without an automated debugging support): pauéicts had to provide
an answer to the question which minimum cardinality set Saafty transition
conditions has to be removed from the set of given transitmmditions in the
PFSA, such that the transition conditions in the resultif§R are consistent

with the well-formedness rules (SDTRANS - S has to be consistent).

2. Repair task (r) - select consistent repair actions: thiégg@ants had to select a
maximum set of consistent repair actions T out of a proposeafs(partially

faulty) repair actions, s.t. SD TRANS - SU T consistent.

The participants of the experiment were interacting witloaline questionnaire where
each participant had to solve the given tasks autonomotlistytime efforts needed to
complete a given task were stored in an underlying knowlédge. Participants were
randomly assigned to one of the two testgroups shown in Tatier each process def-
inition, the members of one testgroup had to solve a diagraosl repair task whereas
the members of the other testgroup had only to solve a carnekipg repair task. Fol-
lowing this approach, we were able to compare process defimtaintenance efforts
with and without a corresponding debugging support.
The participants (Computer Science students at the Klagedhiversity) of the

study (n=40) had knowledge engineering experiences in ¢veldpment of recom-

mender applications. The types of error identification $askich had to be solved

18

| pdy | pd> | pds |
testgroupi(n = 20) | pdigr | pdor | pdsdr
testgroupa(n = 20) | pdi, | pdagr | pds,

Table 2: Assignment of error identification and repair taskest groupsdr = manual
diagnosis and repair,= automated diagnosis and manual repair), éegtgroup; had
a diagnosis and repair task for process definition

within the scope of the experiment were similar to thosegddsiowledge engineers
have to solve within the scope of commercial projects. Thalarity of the partici-
pants’ education level as well as the similarity of the posedr identification tasks to
real-world settings clearly show the external validityr{garity-based) of the results of
our experiment. The participants of the study had to solggythen error identification
and repair tasks autonomously. For the comparison of tifieetefrelated to diagnosis
and repair tasks, we applied an independent (two-sampéds} (parametric statistical
test), which is applicable since the error identification agpair times are normally
distributed and the effort data sets for the two testgrou@saependent.

Result Our experiment clearly shows the applicability of our dgdpng approach
in terms of time savings related to development and maim@mprocesses. The goal
of our analysis was to investigate differences in time ¢ffoglated to the identification
and repair of faulty process definitions depending on whetheorresponding auto-
mated debugging support was available or not.

Hypothesis Automated debugging support for process definitions leadggnifi-
cant time savings in the detection and repair of faulty tiios conditions

The averageepair effortfor process definitiopd; was 71.458 seconds (std. dev.
28.915 seconds), the corresponding averdiggnosis and repaieffort was 110.750
seconds (std. dev. 63.704 seconds). Similar results haae digtained by examin-
ing the remaining example (faulty) process definitions Whatlows us to accept the

defined hypothesis.

19

| Process definition meang,(sec.)| t-score] p | mean, (sec.)]

pdy 110.750 2.263 | 0.034 71.458
pds 155.417 2.277 | 0.033 78.417
pds 246.167 3.308 | 0.003 72.458

Table 3: Reduced error detection/repair times with deggupport {rean,.) com-
pared to error detection/repair times without debuggirngpsut (neanq,).

5 Related Work

Colloborative filtering [13], content-based filtering [2&hd knowledge-based recom-
mendation [1, 3, 30] are the three basic approaches to thiemnegmtation of a recom-
mender application. Collaborative Filtering is based andbhsumption that customer
preferences are correlated, i.e., similar products aremetended to customers with
similar interest profiles. Content-based filtering focusasthe analysis of a given
set of products already ordered by a customer. Based onntfwigriation, products
are recommended which resemble products already orderedugts related to simi-
lar categories). Using knowledge-based approaches,ldt@reship between customer
requirements and offered products is explicitly modeldd §bmpared to collaborative
and content-based filtering, knowledge-based approaanhegmoit deep knowledge
about the application domain.

Such knowledge representations are the major preconddraine application of
model-based diagnosis techniques [21, 12]. An overview@fipplication of model-
based diagnosis techniques in software debugging can Imel iou[28]. The com-
plexity of configuration knowledge bases motivated the iapfibn of model-based
diagnosis (MBD) [21] in knowledge-based systems develagrf@]. Similar moti-
vations led to the application of model-based diagnosigahnical domains such as
the development of hardware designs [11], onboard diagriosautomotive systems
[24] and in software development [18]. The work presentethis paper has a spe-
cial relationship to the work presented in [6]. [6] focus b identification of faults
in configuration knowledge bases, where a set of test caseedsto induce conflicts
with a configuration knowledge base. In contrast to this wan provide an abstract

representation of finite state models which is checked ataiset of well-formedness

20

rules, i.e., well-formedness rules correspond to testscpsesented in [6]. Test cases
used in [6] are, e.g., configurations calculated by previarsions of configuration
knowledge bases. In many cases, such test cases have torteldgfidomain experts
which makes testing and debugging a time-consuming tastkhoagh our debugging
approach for recommender process definitions allows theifggaion of test cases as
well (input sequences which have to be accepted by the pagdmition), one of the
major strengths of the approach is that well-formednessr(deneric test cases) can
be automatically derived from given process definitionscdntrast to the evaluation
presented in this paper, [4] contains an analysis of the@feness of recommender
knowledge base diagnosis concepts.

The representation of recommender processes in the formitef fitate represen-
tations is discussed in [3, 10]. This approach is novel indbetext of developing
knowledge-based recommender applications and due toritsafdasis it allows a
direct and automated translation of the graphical model intorresponding recom-
mender application. The automated debugging of such psatefmitions on the basis
of MBD [21] has so far not been discussed in the literaturdated work can be found,
e.g., in[17], where an algorithm for checking the consisyeaf workflow definitions is
presented. Compared to our work, [17] focus on assuring flawkproperties such as
each component of the workflow has at least one output paearoeall components
of the workflow are executabl€ompared to these basic types of consistency checks,
our work provides intelligent mechanisms which effectivalipport the automated in-
dication of potential sources of inconsistencies.

A number of studies have been conducted related to the gi@iuz Knowledge
Acquisition (KA) tools. A corresponding overview on thogepaoaches can be found
in [29]. All those studies concentrate on different aspe€tsser behaviour when in-
teracting with a certain knowledge acquisition environm&xamples for hypotheses
tested in these experiments aafl:users would employ the same set of commands even
if told nothing in advance about the modeling environmesers will make less mis-
takes during KA tasks using KA toplsr users will be able to complete a KA task in

less time using KA toolsCompared to these evaluations, our experiment focuses on

21

the specific aspect of debugging support in the context afmesender user interface

development which to our knowledge has not been conductéat.so

6 Conclusions and Future Work

Automated debugging support for the design of recommenskarinterfaces can sig-
nificantly reduce related development and maintenancetefftn this paper we have
presented concepts supporting the identification of mihisets of faulty transition

conditions in finite state models of recommender user iate$. Although this paper
focused on the development of recommender user interfdeepresented approach is
not restricted to this domain but is generally applicabledtiings where a finite state
model of a user interface is given. The proposed approachéas implemented as

part of a commercially available recommender developmeritenment.

References

[1] R. Burke. Knowledge-based Recommender SysteEscyclopedia of Library
and Information System69(32), 2000.

[2] R. Burke. Hybrid Recommender Systems: Survey and Erpents.User Mod-
eling and User-Adapted Interactiph2(4):331-370, 2002.

[3] A. Felfernig. Koba4MS: Selling Complex Products and \8&gs Using
Knowledge-Based Recommender Technologies. In G. MilldrkanLin, edi-
tors, 7t IEEE International Conference on E-Commerce TechnolodyQ05),

pages 92—-100, Munich, Germany, 2005.

[4] A. Felfernig. Reducing Development and Maintenanceoi# for Web-based
Recommender Applicationkternational Journal of Web Engineering and Tech-

nology, page to appear, 2006.

22

[5] A. Felfernig, G. Friedrich, D. Jannach, and M.Zanker.lAtegrated Environment
for the Development of Knowledge-Based Recommender Aatitins. Interna-

tional Journal of Electronic Commerc#&1(2):11-34, 2006.

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptr@asnsistency-based Di-
agnosis of Configuration Knowledge Basé¥tificial Intelligence 2(152):213-
234, 2004.

[7] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptnerdan. Zanker. Configu-
ration knowledge representations for Semantic Web agpditss Al Engineering

Design, Analysis and Manufacturing Journal:31-50, 2003.

[8] A. Felfernig, K. Isak, and C. Russ. Knowledge-based Rem@ndation: Tech-
nologies and Experiences from Projects. In G. Brewka, Sa@schi, A. Perini,
and P. Traverso, editord,7*" European Conference on Artificial Intelligence

(ECAIO6) pages 632—636, Riva del Garda, Italy, 2006.

[9] A. Felfernig and A. Kiener. Knowledge-based Interaetelling of Financial
Services using FSAdvisor. 1h7" Innovative Applications of Artificial Intelli-

gence Conference (IAAI'O5)ages 1475-1482, Pittsburgh, Pennsylvania, 2005.

[10] A. Felfernig and K. Shchekotykhin. Debugging User hdee Descriptions of
Knowledge-based Recommender Applications. Warkshop Notes of the 13-

CAI'05 Workshop on Configuratiopages 13—-18, Edinburgh, Scottland, 2005.

[11] G. Friedrich, M. Stumptner, and F. Wotawa. Model-badiedjnosis of hardware
designs Al Journal 111(2):3-39, 1999.

[12] R. Greiner, B. Smith, and R. Wilkerson. A correctionhe talgorithm in Reiter’s
theory of diagnosisArtificial Intelligence 41(1):79—-88, 1989.

[13] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. Ridélvaluating Collab-
orative Filtering Recommender SystenCM Trans. on Information Systems

22(1):5-53, 2004.

23

[14] J. Hopcroft and J. Ullman.Introduction to Automata Theory, Languages and

Computation Addison-Wesley Publishing Company, Massachusetts, USA9.

[15] B. Jiang, W. Wang, and |. Benbasat. Multimedia-Basae@rhctive Advising
Technology for Online Consumer Decision Suppo@ommunications of the

ACM, 48(9):93-98, 2005.

[16] U. Junker. QUICKXPLAIN: Preferred Explanations andl&etions for Over-
Constrained Problemsl9th National Conference on Al (AAAIQ4ages 167—
172, 2004.

[17] J. Kim, M. Spraragen, and Y. Gil. An Intelligent Assistdor Interactive Work-
flow Composition. Ininternational Conference on Intelligent User Interfaces

(IU1-2004), pages 125-131, Madeira, Portugal, 2004.

[18] Mateis, M. Stumptner, and F. Wotawa. Modeling Java paiots for diagnosis.
In 14th European Conference on Artificial Intelligengages 171-175, Berlin,
Germany, 2000.

[19] M. Montaner, B. Lopez, and J. De la Rose. A Taxonomy ofdd@mender Agents
on the InternetArtificial Intelligence Reviewl9:285-330, 2003.

[20] M. Pazzani. A Framework for Collaborative, ContentsBd and Demographic

Filtering. Artificial Intelligence Reviewl3(5-6):393—-408, 1999.

[21] R. Reiter. A theory of diagnosis from first principledtrtificial Intelligence
23(1):57-95, 1987.

[22] P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, and&dIR GroupLens: An
Open Architecture for Collaborative Filtering of Netnewis. ACM Conference

on Computer Supported Cooperative Wqrkges 175-186, 1994.

[23] F. Ricci, A. Venturini, D. Cavada, N. Mirzadeh, D. Blaasnd M. Nones. Product
Recommendation with Interactive Query Management and diddsimilarity.
In 5t" International Conference on Case-Based Reasoning (ICGER)2pages

479-493, Trondheim, Norway, 2003.

24

[24] M. Sachenbacher, Pr. Struss, and C.M Carlen. A Protofgp Model-Based
On-Board Diagnosis of Automotive Systen®sl. Communicationsl13(2):83-97,
2000.

[25] S.Mittal and B. Falkenhainer. Dynamic constraintsfatition problems. 18"
National Conference on Artificial Intelligencpages 25-32, Detroit, Ml, 1990.
MIT Press.

[26] B. Smyth, E. Balfe, O. Boydell, K. Bradley, P. Briggs, Koyle, and J. Freyne.
A Live User Evaluation of Collaborative Web Search1Bi" International Joint
Conference on Artificial Intelligencepages 1419-1424, Edinburgh, Scotland,
2005.

[27] M. Stolze, S. Field, and P. Kleijer. Combining Configiiwma and Evaluation
Mechanisms to Support to Selection of Modular Insurancelfets. In8" Eu-

ropean Conference on Information Systepeges 858—-865, 2000.

[28] M. Stumptner and F. Wotawa. A Survey of Intelligent Dghing. European
Journal on Artificial Intelligence (AICOM)11(1):35-51, 1998.

[29] M. Tallis and Y.G. Kim. User studies of knowledge acdjiis tools: methodol-
ogy and lessons learned. KAW-99 1999.

[30] C. Thompson, M. Goker, and P. Langley. A Personalizesté&y for Conver-
sational Recommendationgournal of Artificial Intelligence ResearcR21:393—

428, 2004.

[31] E. Tsang. Foundations of Constraint SatisfactionAcademic Press, London,

1993.

[32] G. VanNoord and D. Gerdemann. Finite State TransdueghsPredicates and

Identities.Grammars 4(3):263—-286, 2004.

25

