
Automated Debugging of

Recommender User Interface Descriptions

Alexander Felfernig1,2, Erich Teppan1, Kostyantyn Shchekotykhin1

1University Klagenfurt, Computer Science and Manufacturing

Universitätsstrasse 65-67, A-9020 Klagenfurt, Austria

2ConfigWorks, Lakeside, B01, A-9020 Klagenfurt, Austria

contact: alexander.felfernig@uni-klu.ac.at

Abstract

Complex assortments of products and services offered by online selling plat-

forms require the provision of sales support systems assisting customers in the

product selection process. Knowledge-based recommendersare intelligent sales

assistance systems which guide online customers through personalized sales di-

alogs and automatically determine products which fit their needs and wishes. Such

systems have been successfully applied in application domains such as financial

services or digital cameras. In this context, the construction of recommender user

interfaces is still a challenging task. In many cases faultymodels of recommender

user interfaces are defined by knowledge engineers and no automated support for

debugging such models is available. In this paper we presenta formal model for

defining the intended behaviour of recommender user interfaces and show the ap-

plication of model-based diagnosis concepts which allow the automated debugging

of those definitions. An empirical evaluation shows significant time savings in rec-

ommender user interface development and maintenance processes.

1

1 Introduction

The selection of products from a complex assortment is stilla challenging task since

many online selling environments offer simple query interfaces based on the assump-

tion that users know technical product details. In this context, recommendation tech-

nologies [1, 2, 3, 9, 13, 19, 20, 30, 26] are of great importance for making product

assortments more accessible. Basically, there are three technological approaches to the

implementation of a recommender application:

• First, content-based filtering[20] derives recommendations by exploiting sim-

ilarities between the preferences of the current customer and existing product

descriptions. In this case, the recommender proposes products which are similar

to those the customer has liked in the past. If a customer has bought books re-

lated to theSAP system, similar books will be recommended in future advisory

sessions, i.e., no serendipity effects can be exploited in this context.

• Second,collaborative filtering[13, 22, 26] is based on preferences of a large

set of customers. Recommendations are derived by taking into account prefer-

ences of customers with similar purchasing patterns, for instance, movies not yet

bought by the current customer but positively rated by customers with similar

purchasing behavior will be recommended to the current customer.

• Third, knowledge-based recommendation[1, 3, 15, 23, 27, 30] exploits deep

knowledge about the product domain. Compared to domains such as books or

movies, customers purchasing complex products such as computers or finan-

cial services are much more in the need of intelligent interaction mechanisms

supporting the calculation of appropriate solutions. Therefore, we need an ex-

plicit representation of the existing product, marketing,and sales knowledge [9]

which makes it possible to (a) derive recommendations whichcomply with ex-

isting marketing and sales strategies and suit the wishes ofa customer, (b) to

explain those recommendations (why has a specific product been recommended

to a customer?), and (c) support customers in situations where the recommender

is unable to find a solution for the given requirements (repair of requirements).

2

When developing knowledge-based recommenders, two basic aspects have to be taken

into account. First, arecommender knowledge base[3, 6] has to be defined which con-

sists of a structural description of the provided products,a description of the possible

customer requirements and constraints restricting the allowed combinations of cus-

tomer requirements and related product recommendations. Second, aprocess model

has to be defined which describes the intended behavior of therecommender user in-

terface [3, 10], i.e., which questions have to be posed to a specific customer in which

contexts? Thereafter, both, knowledge bases and process definitions can be automati-

cally translated into a recommender application [3, 9, 5].

In the remainder of this paper we focus on a situation where knowledge engineers

develop a model of the intended behavior of a recommender user interface (process

model development). Knowledge acquisition as a collaborative process conducted by

technical and domain experts is still a very time-consumingtask. In this context, au-

tomated debugging support is an important contribution to the effective deployment of

recommender applications [4]. The time of a domain expert which can be dedicated

to the development of a recommender application is strictlylimited, i.e., time savings

related to the identification of faults in user interface descriptions play an important

role in recommender development processes.

The intended behavior of a recommender user interface can bedescribed by a fi-

nite state model [10, 14, 32]. Each state of such a model represents an input unit of

the application where a user can articulate his/her preferences by answering questions

posed by the recommender. Figure 1 depicts a simple example for the model of the

intended behavior of a financial services recommender application [9]. Figure 2 de-

picts the corresponding user interface of our process modeling environment (Process

Designer). This environment is part of a commercially available recommender de-

velopment environment [3, 8, 9]. Basically, this interfaceallows the specification of

a finite state model where the states represent input units allowing customers to ar-

ticulate their requirements, e.g., in stateq2 the customer is asked about the preferred

duration of investment.1 Having defined such a model, our development environment

1Note thatduration_of _investment(id) is the identifier for the corresponding question posed by the
recommender application (what is your required duration of investment?).

3

Figure 1: Example recommender user interface description.

automatically generates a corresponding application [3, 9].

Depending on the preferences articulated by the customer, the automaton of Figure

1 changes its state, e.g., an expert (kl = expert) who is not interested in financial services

advisory (aw = no), is forwarded to the stateq3, where a direct product search can be

performed. Consequently, different navigation paths determine different subsets of

input variables relevant for the preference elicitation process. After the completion

of the preference elicitation process (a final state of the process definition has been

reached), the recommender application can calculate and present a corresponding set

of solutions [3, 9].

Note that the specification of our financial services recommender interface in Fig-

ure 1 is faulty. A financial services expert (kl = expert) who wants to be advised by a

financial services recommender (aw = yes) and is interested in long-term investments

(id 6= shortterm) and doesn’t have any available funds (av = no) comes to a standstill

at the input of availability (the transition condition sets{ c2, c9} and {c2, c11} are con-

tradictory). In such situations, the developer of a knowledge base needs additional

debugging support in order to effectively identify the sources of the inconsistency.

In this paper we demonstrate the application of Model-BasedDiagnosis (MBD)

[21] with the goal to be able to automatically identify minimal sets of faulty transition

conditions in recommender user interface descriptions. For this purpose we derive a

4

Figure 2: Modeling environment for user interface descriptions.

logical representation (system description) of a given finite state representation of a

recommender user interface (see Figure 1) which serves as input for the calculation of

hitting sets (diagnoses) introduced in [21].

The remainder of this paper is organized as follows. In Section 2 we introduce a

finite state representation formalism for modeling the navigational behavior of recom-

mender user interfaces. Using the concepts of Model-Based Diagnosis (MBD) [21], we

present an approach to the automated identification of minimal sets of faulty transition

conditions in recommender user interfaces (see Section 3).In Section 4 we evaluate the

performance of the presented debugging algorithm and present results of an empirical

study. Finally, Section 5 contains a discussion on related work.

5

2 Finite State Models of Recommender User Interfaces

For the definition of the intended behavior of a recommender user interface, we intro-

duce the concept of Predicate-based Finite State Automata (PFSA) [10, 32] (see Figure

1) which are a specific variant of finite state automata [14]. This type of automaton

is more compact in the way state transitions can be defined (domain restrictions of fi-

nite domain variables), which makes it an excellent formalism for the graphical design

and maintenance of recommender user interfaces. This representation of recommender

user interfaces is integrated into the recommender development environment presented

in [3, 9]. Note that in the context of building knowledge-based recommender applica-

tions, we are primarily interested inacyclicautomata.

Definition 1 (PFSA): a Predicate-based Finite State Automaton (recognizer)

(PFSA) is defined as a 6-tuple (Q,Σ, Π, E, S, F), where

• Q = {q1, q2, ...,qj} is a finite set of states, where var(qi) = {xi} is a finite domain

variable assigned toqi, prec(qi) = {φ1, φ2,..., φm} is the set of preconditions

of qi (φα = {cr, cs, ..., ct} ⊆ Π), postc(qi) = {ψ1, ψ2, ..., ψn} is the set of

postconditions ofqi (ψβ= {cu, cv, ...,cw} ⊆ Π), and dom(xi) = {xi=di1, xi=di2,

...,xi=dip} denotes the set of possible assignments ofxi, i.e., the domain ofxi.

• Σ = {xi = dij | xi ∈ var(qi), xi = dij ∈ dom(xi)} is a finite set of variable

assignments, the input alphabet.

• Π = {c1, c2, ..., cq} is a set of constraints (transition conditions) restricting the

set of words accepted by the PFSA.

• E is a finite set of transitions⊆ Q × Π × Q.

• S⊆ Q is a finite set of start states.

• F⊆ Q is a finite set of final states.�

Preconditions of a stateqi (prec(qi) = {φ1, φ2, ...,φm}) can be automatically derived

from the reachability tree of a PFSA. Figure 3 depicts the reachability tree for the PFSA

of Figure 1. The stateq2 is accessed twice in the reachability tree, consequently, we

6

can derive two preconditions for the stateq2 which directly correspond to the transition

conditions of paths in the reachability tree leading toq2, i.e., prec(q2) = {{ c1}, { c2,

c3}} where the different subsets are interpreted as being partof a disjunction (not

every precondition has to be fulfilled). Similarly, postc(qi) represents the set of possible

postconditions of the stateqi which are as well derived from the reachability tree, e.g.,

the stateq4 has two postconditions, namely {{c8, c9}, { c10, c11}}. Figure 4 depicts the

textual representation of the PFSA of Figure 1.

The set of input sequences leading to a final state is also denoted as the language

accepted by the PFSA. A word w∈ Σ* (i.e., a sequence of user inputs) is accepted by

a PFSA if there is an accepting run of w in the PFSA (see [10]).

When developing user interfaces, mechanisms have to be provided which support

the effective identification of violations ofwell-formedness properties, e.g., if a path in

the process definition reaches a stateqi, there must be at least one extension of this path

to a final state. Regarding our example of Figure 1, there exist accepted input sequences

visiting the states [q0, q1, q2, q4], but none of those sequences can be propagated to any

of the following states {q5, q6}. Path expressions form the basis for expressing well-

formedness properties on a PFSA (see Definition 2a,b).

Definition 2a (path): we define a sequence (of transitions) p = [(q1,C1,q2),

(q2,C2,q3), ..., (qi−1,Ci−1,qi)] ((qα,Cα,qβ) ∈ E) aspathof a given PFSA.�

Definition 2b (consistent path): Let p = [(q1,C1,q2), (q2,C2,q3), ...,

(qi−1,Ci−1,qi)] ((qα,Cα,qβ) ∈ E) be a path from a stateq1 ∈ S to a stateqi ∈ Q. p

is consistent(consistent(p)) iff
⋃

Cα is consistent.�

Following this definition of a consistent path we introduce aset of well-formedness

rules which specify important structural properties of a PFSA (counter examples for

these properties are depicted in Figure 5). These rules haveshown to be relevant for the

implementation of knowledge-based recommender applications. Note that if additional

well-formedness rules are needed, our framework allows theintroduction of further

domain-specific properties.

Extensibility. For each consistent path in a PFSA leading to a stateqi there must

exist a corresponding direct postcondition, i.e., (qi,Ci,qi+1) propagating the path (i.e.,

7

Figure 3: Reachability tree of a PFSA.

each consistent path must be extensible) (see Definition 3).

Definition 3 (extensible path): Let p = [(q1,C1,q2), (q2,C2,q3), ..., (qi−1,Ci−1,qi)]

be a consistent path from a stateq1 ∈ S to a stateqi ∈ Q - F. p isextensible(extensi-

ble(p)) iff ∃ (qi,Ci,qi+1): C1 ∪ C2 ∪ ... ∪ Ci−1 ∪ Ci is consistent.�

Figure 5 (a) depicts anon-extensible path, since the conditions {c0, c1}

of p=[(q0,{c0:x0>3},q1), (q1,{c1:x1>=3},q2)] are inconsistent with both condi-

tions of postc(q2)={{ c2},{ c3}}. Similarly, Figure 1 includes a non-extensible

path: [(q0,{c2:kl=expert},q1), (q1,{c3:aw=yes},q2), (q2,{c6:id 6= shortterm,c7:kl 6=

beginner},q4)] is inconsistent with the conditions of postc(q4)={{ c10, c11},{ c8, c9}}.

Determinism. Each stateqi is a decision point for the determination of the next

state. This selection strictly depends on the definition of the direct postconditions forqi,

where each postcondition has to be unique for determining the subsequent state. A state

qi is deterministic if each of its postconditions is unique fordetermining subsequent

states (see Definition 4).

Definition 4 (deterministic state): Let p = [(q1,C1,q2), (q2,C2,q3), ...,

(qi−1,Ci−1,qi)] be a path from a stateq1 ∈ S to a stateqi ∈ Q - F. A state (qi) is

8

Q = {q0, q1, q2, q3, q4, q5, q6}.

/* knowledge level */
var(q0) = {kl}.
/* advisory wanted */
var(q1) = {aw}.
/* duration of investment */
var(q2) = {id}.
/* direct product search */
var(q3) = {ds}.
/* availability of
financial resources*/

var(q4) = {av}.
/* high risk products */
var(q5) = {sh}.
/* low risk products */
var(q6) = {sl}.

dom(kl) = {kl=beginner,kl=average,
kl=expert}.

dom(aw) = {aw=yes,aw=no}.
dom(id) = {id=shortterm,id=mediumterm,

id=longterm}.
dom(ds) = {ds=savings,ds=bonds,

ds=stockfunds,
ds=singleshares}

dom(av) = {av=yes,av=no}.
dom(sh) = {sh=stockfunds,sh=singleshares}.
dom(sl) = {sl=savings,sl=bonds}.
prec(q0) = {{true}}.
prec(q1) = {{c2}}.
prec(q2) = {{c1}, {c2, c3}}.
prec(q3) = {{c2, c4}}.

postc(q0) = {{c2, c4}, {c2, c3, c5},
{c2, c3, c6, c7, c8, c9},
{c2, c3, c6, c7, c10, c11},
{c1, c5},
{c1, c6, c7, c8, c9},
{c1, c6, c7, c10, c11}}.

postc(q1) = {{c4}, {c3, c5},
{c3, c6, c7, c8, c9},
{c3, c6, c7, c10, c11}}.

/* ... */

postc(q4) = {{c8, c9}, {c10, c11}.

postc(q3) = {{true}}.
postc(q5) = {{true}}.
postc(q6) = {{true}}.

Σ = {kl=beginner, kl=average,
kl=expert,
aw=yes, aw=no, ...,
sl=savings, sl=bonds}.

Π = {c1, c2, ..., c11}.
E= {(q0, {c2}, q1), (q0, {c1}, q2),

(q1, {c4}, q3),
(q1, {c3}, q2), (q2, {c6, c7}, q4),
(q2, {c5}, q6),
(q4,{c8, c9}, q6),
(q4, {c10, c11}, q5)}.

S= {q0}.
F= {q3, q5, q6}.

Figure 4: Textual version of PFSA in Figure 1.

deterministiciff ∀(qi, Ci1, qj), (qi, Ci2, qk) ∈ E :C1 ∪ C2 ∪ ... ∪ Ci−1 ∪ Ci1 ∪ Ci2 is

contradictory (Ci1 6= Ci2). �

Well-formedness rules related to deterministic states require that each input se-

quence consistent with the transition conditions {C1, C2, ...,Ci−1} is consistent with

at most one of the following conditions {Ci1,Ci2}. Figure 5 (b) depicts anindetermin-

istic state, since the conditions {c0, c1} are consistent with {c2, c3}. By introducing

negated neighbour conditions (Ci1 is the neighbour ofCi2), we can achieve the in-

consistency required by Definition 4. Exchanging neighbourconditions is basically

realized by a pairwise exchange of the negations of existingtransition conditions.2

This approach is exemplified in Figure 6 where in case (a) the original semantics is

preserved and in case (b) an inconsistency (c2 : x0 > 4 ∧ c1 : ¬x0 > 3) is triggered

which has to be resolved by the diagnosis process (see Section 3).

2Note that this approach to a pairwise exchange of negated conditions is as well applicable in situations
with more that two post-conditions of a given state.

9

Figure 5: Counter examples for well-formedness rules.

Figure 6: Handling of indeterministic transition conditions: stateq1 is indeterministic
(b); on the basis of a pairwise exchange of negated neighbourconditions, we can trigger
an inconsistency which has to be handled by the diagnosis process.

10

Accessibility. Each transition should be accessible, i.e., for each transition there

exists at least one corresponding path (see Definition 5).

Definition 5 (accessible transition): A transition t = (qi,Ci,qi+1) (postcondition of

stateqi) is accessible(accessible(t)) iff there exists a path p = [(q1,C1,q2), (q2,C2,q3),

..., (qi−1,Ci−1,qi)] (q1 ∈ S):C1 ∪ C2 ∪ ... ∪ Ci−1 ∪ Ci is consistent.�

Figure 5 (c) depicts anot accessible transition, sincec2 (transition (q2,{c2},q3))

is inconsistent with {c0, c1}, the conditions of the only path leading toq2. Similarly,

Figure 1 contains a non-accessible transition: none of the possible paths are consistent

with the transition conditions of (q4,{c10:av=yes,c11:kl=average},q5).

Well-formed PFSA. A PFSA is well-formed, if the defined set of well-formedness

rules is fulfilled (see Definition 6).

Definition 6 (well-formed PFSA): A PFSA is well-formed iff

• each consistent path p = [(q1,C1,q2), (q2,C2,q3), ..., (qi−1,Ci−1,qi)] (q1 ∈ S,

qi ∈ Q - F) is extensible to a consistent path p = [(q1,C1,q2), (q2,C2,q3), ...,

(qi−1,Ci−1,qi), (qi,Ci,qj)].

• ∀qk ∈ Q: deterministic(qk).

• ∀t = (qk,Ck,ql) ∈ E: accessible(t).�

Having specified necessary properties of a PFSA, we now present our approach to the

calculation of minimal sets of faulty transition conditions in a PFSA.

3 Debugging Finite State Models

Given a faulty (not well-formed) PFSA, we want to automatically identify a minimal set

of faulty transition conditions. In order to solve this task, we define a PFSA diagnosis

problem which is solved using the concepts provided by model-based diagnosis (MBD)

[21]. Model-based diagnosis starts with the description ofa system (SD) which is in

our case the structural description of the intended behavior of a PFSA (Definitions

3-5). If the actual behavior of the system conflicts with its intended behavior, the

diagnosis task is to determine those components (transitions) which, when assumed to

11

functioning abnormally, explain the discrepancy between the actual and the intended

system behavior.

In order to apply MBD concepts, we transform a PFSA into a corresponding

constraint-based representation which is composed of the following sets:

1. STAT: finite domain variables representing possible userinputs.

2. WF: constraints representing well-formedness rules.

3. TRANS: constraints representing the transition conditions of the PFSA.

The goal of a diagnosis task is to identify a minimal set of transition conditions

(⊆TRANS) which are responsible for the faulty behavior of the PFSA, i.e., are in-

consistent with the given set of well-formedness rules. Note that diagnoses do not need

to be unique, i.e., there can be different explanations for faulty transition conditions in

the PFSA. We define a PFSA Diagnosis Problem as follows.

Definition 7 (PFSA Diagnosis Problem): A PFSA Diagnosis Problem is repre-

sented by a tuple (SD, TRANS), where SD = STAT∪ WF. STAT is the structural

description of a PFSA represented by a set of finite domain variables. WF is the in-

tended behavior of a PFSA (set of well-formedness rules) which is represented by a set

of constraints on STAT. Finally, TRANS represents a set of transition conditions (as

well represented by constraints on STAT).�

Note that (STAT, WF, TRANS) defines a Constraint Satisfaction Problem (CSP)

[31]. STAT is a set of finite domain variables related to pathsof the reachability tree,

e.g., {kl3, id3, sl3} are variables related to the path p3 (Figure 3 depicts the relation-

ship between paths and variables∈ STAT, e.g., var(q0, p3) = {kl3}). The complete

set of variables related to paths of the reachability tree isincluded in Example 1.

Note that each of the variables∈ STAT is either active (ACT) or inactive (IACT).

This notion of variable activity has been introduced by [25]. Although we apply a

simplified version of this approach (every variable is either active or inactive without

any additional activation constraints), this representation perfectly supports our goal

of testing well-formedness properties of process definitions. The set of solutions to

the CSP defined by (STAT, WF, TRANS) represents all possible interaction sequences

12

(accepted runs). The projection of those solutions to, e.g., the variables {kl3, id3, sl3}

represents those input sequences accepted by path p3, i.e., [kl=beginner, id=shortterm,

sl=savings], [kl=beginner, id=shortterm, sl=bonds]. Forour example PFSA, STAT is

defined as follows.3

Example 1 (STAT): STAT = {

kl1, id1, av1, sl1, /* pathp1 */

kl2, id2, av2, sh2, /* pathp2 */

kl3, id3, sl3, /* pathp3 */

kl4, aw4, id4, av4, sh4, /* pathp4 */

kl5, aw5, id5, av5, sl5, /* pathp5 */

kl6, aw6, id6, sl6, /* pathp6 */

kl7, aw7, ds7 /* pathp7 */}. �

Since in our case a reachability tree (see, e.g., Figure 3) represents the complete

expansion of a corresponding PFSA, not all the paths are necessarily consistent. If a

path of the reachability tree represents such an illegal trajectory, i.e., no consistent value

assignment exists for the corresponding variables, all variables of this path have to be

inactive. In order to assure that all variables of a path are either active or inactive, we

introduce meta-constraints defined for each path in the reachability tree, e.g., for path

p3: ACT (kl3) ∧ ACT (id3) ∧ ACT (sl3) ∨ IACT (kl3) ∧ IACT (id3) ∧ IACT (sl3).

This constraint denotes the fact that either all variables of path p3 must be active or

all variables are inactive. In order to simplify the construction of well-formedness

rules, we introduce additional meta-constraints which define theactivity stateof a path

variable, e.g., for pathp3: ACT (kl3) ∧ ACT (id3) ∧ ACT (sl3) ↔ ACT (p3), and

IACT (kl3) ∧ IACT (id3) ∧ IACT (sl3) ↔ IACT (p3). In order to introduce such

meta-constraints, we have to introduce {p1, p2, ..., pk} ⊂ TRANS.

In the following we give examples for the construction of well-formedness rules

(WF) needed for the identification of minimal sets of faulty transition conditions in the

given example PFSA.

First, we give an example for the construction of anaccessibilityrule related to the

3The corresponding variable domains are depicted in Figure 4.

13

transition (q2, {c6, c7}, q4) of our example PFSA (see Example 2).

Example 2 (well-formedness rules for accessibility): WFaccessibility ((q2, {c6,

c7}, q4)) = {ACT (p1) ∨ ACT (p2) ∨ ACT (p4) ∨ ACT (p5)}. �

This rule denotes the fact that the transition (q2, {c6, c7}, q4) must be accessible for

at least one of the pathsp1, p2, p4, p5 (see Figure 3), i.e., at least one of the variable

sets {kl1, id1, av1, sl1}, { kl2, id2, av2, sh2}, { kl4, id4, av4, sh4}, { kl5, id5, av5, sl5}

must be active in a solution for the CSP defined by (STAT, WF, TRANS).

Second, we give an example for the construction of anextensibilityrule related to

the consistent path p = [(q0,{c2},q1)].

Example 3 (well-formedness rules for extensibility): WFextensibility ([(q0, {c2},

q1)]) = {ACT (p4) ∨ ACT (p5) ∨ ACT (p6) ∨ ACT (p7)}. �

This rule denotes that fact that at least one of the pathsp4, p5, p6, p7 must be

extensible in the stateq1, i.e., the corresponding variables must be active.

Third, we give an example for the construction of a well-formedness rule related to

thedeterminismof the stateq1.

Example 4 (well-formedness rules for determinism): WFdeterminism (q1) =

{(kl7 6=kl4 ∨ aw7 6=aw4 ∨ IACT (p4) ∨ IACT (p7)) ∧ (kl7 6=kl5 ∨ aw7 6=aw5 ∨

IACT (p5) ∨ IACT (p7)) ∧ (kl7 6=kl6 ∨ aw7 6=aw6 ∨ IACT (p6) ∨ IACT (p7))}. �

This rule denotes that fact that each instantiation of {kl7, aw7} must be differ-

ent from the possible instantiations of variables of the paths p4, p5 andp6. Figure

7 depicts a simple example which demonstrates the application of this type of well-

formedness rule. This rule allows to determine whether there exists an extension of a

given PFSA which is well-formed regarding the determinism property. This is useful

in situations where the diagnosis process assumes that a certain transition is faulty (in

Figure 7: {c1, c2} are assumed to be faulty). If this is the case, we have to identify

a substitution of the faulty transition conditions which fulfills the given set of well-

formedness rules. For our simple example of Figure 7 we have to define the following

determinism well-formedness rule:(x1 6= x2 ∨ IACT (p1) ∨ IACT (p2)) ∧ (y1 6=

y2 ∨ IACT (p1) ∨ IACT (p2)). In the case of Figure 7.a such an extension exists for

the transition conditions {c1, c2} (e.g., {c1 : x = 1 ∧ y = 1, c2 : x = 2 ∧ y = 2}), the

14

Figure 7: Calculation of extensions for a PFSA (the transition conditionsc1, c2 are
assumed to be faulty): in case (a) an extension is possible (e.g., {c1 : x = 1 ∧ y = 1,
c2 : x = 2 ∧ y = 2}), case (b) does not allow the calculation of an extension.

case of Figure 7.b does not allow such an extension which means that no diagnosis can

be found in this case.

An example for the definition of a transition condition (TRANS) is the following.

We represent the transition conditionc1 of our example PFSA.

Example 5 (TRANS for PFSA): { c1: (kl1 = beginner∨ IACT (kl1)) ∧ (kl2 =

beginner∨ IACT (kl2)) ∧ (kl3 = beginner∨ IACT (kl3))} ⊆ TRANS.�

This generated condition forc1 contains those variables which belong to paths in-

cluding the transition (q0, {c1}, q2), i.e., the variables {kl1, kl2, kl3} which belong

to the paths {p1, p2, p3}. For the CSP defined by (STAT, WF, TRANS) the possible

values of the variables {kl1, kl2, kl3} are defined by conditionc1, i.e., the value of

{kl1, kl2, kl3} must bebeginnerif the corresponding variable is active.

Given a specification of (SD, TRANS), a PFSA Diagnosis is defined as follows.

Definition 8 (PFSA Diagnosis): A PFSA Diagnosis for a PFSA Diagnosis Problem

(SD, TRANS) is a set S⊆ TRANS s.t. SD∪ TRANS - S consistent.�

Given a PFSA Diagnosis Problem (SD, TRANS), a Diagnosis S for(SD = STAT

∪ WF, TRANS) exists under the reasonable assumption that STAT∪ WF is consistent.

Assuming that SD = STAT∪ WF is inconsistent, it follows from the definition of a

diagnosis S that SD∪ TRANS-S is inconsistent∀S⊆ TRANS. Assuming that SD∪

15

TRANS-S is consistent, it follows that STAT∪ WF is consistent.

The calculation of diagnoses is based on the concept of minimal conflict sets [16].

Definition 9 (Conflict Set): a Conflict Set (CS) for (SD, TRANS) is a set {c1, c2,

..., cn} ⊆ TRANS, s.t. {c1, c2, ...,cn} ∪ SD is inconsistent. CS is minimal iff¬∃ CS’

⊂ CS : conflict set (CS’).�

The algorithm for calculating a set of minimal diagnoses fora process definition is

the following (Algorithm 1).

Algorithm 1 PFSA-Diagnosis (SD, TRANS)
(a) Generate a pruned HSDAG T for the collection of conflict sets induced by tran-
sitions of TRANS in breadth-first manner (we generate diagnoses in order of their
cardinality). With every theorem prover (TP) call at a node nof T the consistency
of (TRANS - H(n)∪ SD) is checked. If there exists an inconsistency, a conflict set
CS is returned, otherwise ok is returned. If (TRANS - H(n)∪ SD) is consistent, a
corresponding diagnosis H(n) is found.

(b) Return {H(n) | n is a node of T labeled with ok}.

The labelling of the search tree (Hitting Set Directed Acyclic Graph - HSDAG) is

based on the labelling of the original HSDAG (details on the calculation of hitting sets

can be found in [21]). A node n is labelled by a corresponding conflict set CS(n). The

set of edge labels from the root to node n is referred to as H(n). Conflict sets determined

by TP calls are {c2, c11}, { c7, c9}, { c2, c9}, and {c1, c9}. One minimal diagnosis S

for our example PFSA is {c2, c9}, i.e., {c2, c9} have to be changed in order to make to

PFSA consistent w.r.t. to the given set of well-formedness rules.

Applicability for Interactive Settings. The process flow diagnosis concepts pre-

sented in this paper have been implemented as a component of the knowledge-based

recommender development environment presented in [3, 9]. Our approach comple-

ments the existing knowledge acquisition interface with a set of intelligent mecha-

nisms allowing the automated identification of faulty transition conditions in process

definitions, i.e., does not fundamentally change the structure of the knowledge acqui-

sition interface. Typically, process definitions include between 15 and 40 transition

conditions (see Table 1). Faulty PFSA definitions typicallyexhibit 2-5 conflicts which

makes our approach applicable to settings where a knowledgeengineer is interactively

16

transitions 2 conflicts 3 conflicts 4 conflicts 5 conflicts 10 conflicts

5 0.05 0.071 0.12 0.16 -
10 0.141 0.171 0.251 0.321 0.36
20 0.401 0.621 1.152 1.343 2.268
30 0.891 1.092 1.421 1.692 2.826
40 1.352 1.791 2.096 2.813 3.912

Table 1: Performance of PFSA Diagnosis (in secs).

developing a recommender application (see Table 1). Conflicts of this magnitude occur

in settings where knowledge engineers develop recommenderprocess definitions who

have a basic understanding of the well-formedness properties discussed in this paper.

The presented debugging concepts are a first approach to makedevelopment and

maintenance of recommender process definitions more effective. Due to the feedback

from knowledge engineers and domain experts, further concepts will be integrated into

future versions of our software. Domain experts (as well as knowledge engineers) often

tend to think in terms of examples. We intend to integrate example-driven testing mech-

anisms where the developer himself provides an example set of paths which should be

accessible. On the technical level such examples representadditional well-formedness

rules for a given process definition (specific type of accessibility well-formedness rule).

In many cases there exist a number of alternative diagnoses explaining the sources of

inconsistencies in a given process definition. In this context we will include additional

ranking mechanisms for diagnoses which take into account the probability of a transi-

tion condition to be faulty (e.g., the probability of a transition condition to be faulty is

higher if there exists a large number of incoming paths to therelated state, similarly, the

probability is higher, if the complexity of the transition condition in terms of number

of referenced variables etc. is high). Currently, the selection of a diagnosis strictly de-

pends on its cardinality, i.e., diagnoses with the lowest number of transition conditions

are presented first.

17

4 Empirical Analysis

Analysis Approach.We have conducted an experiment with the goal to highlight and

quantify potential reductions of development and maintenance efforts facilitated by our

process flow debugging environment. For the experiment we have defined three exam-

ple (faulty) process definitions (pd1, pd2, pd3) with an increasing complexity regarding

the number of states and transition conditions. The types oferroneous transition con-

ditions are similar to those occurring in industrial recommender development projects

[9]. On the basis of these process definitions, participantsof the experiment had to

identify solutions for the following types of tasks:

1. Diagnosis task (d) - identify a minimum cardinality set offaulty transition con-

ditions (without an automated debugging support): participants had to provide

an answer to the question which minimum cardinality set S of faulty transition

conditions has to be removed from the set of given transitionconditions in the

PFSA, such that the transition conditions in the resulting PFSA are consistent

with the well-formedness rules (SD∪ TRANS - S has to be consistent).

2. Repair task (r) - select consistent repair actions: the participants had to select a

maximum set of consistent repair actions T out of a proposed set of (partially

faulty) repair actions, s.t. SD∪ TRANS - S∪ T consistent.

The participants of the experiment were interacting with anonline questionnaire where

each participant had to solve the given tasks autonomously.The time efforts needed to

complete a given task were stored in an underlying knowledgebase. Participants were

randomly assigned to one of the two testgroups shown in Table2. For each process def-

inition, the members of one testgroup had to solve a diagnosis and repair task whereas

the members of the other testgroup had only to solve a corresponding repair task. Fol-

lowing this approach, we were able to compare process definition maintenance efforts

with and without a corresponding debugging support.

The participants (Computer Science students at the Klagenfurt University) of the

study (n=40) had knowledge engineering experiences in the development of recom-

mender applications. The types of error identification tasks which had to be solved

18

pd1 pd2 pd3

testgroup1(n = 20) pd1dr pd2r pd3dr

testgroup2(n = 20) pd1r pd2dr pd3r

Table 2: Assignment of error identification and repair tasksto test groups (dr = manual
diagnosis and repair,r = automated diagnosis and manual repair), e.g.,testgroup1 had
a diagnosis and repair task for process definitionpd1.

within the scope of the experiment were similar to those tasks knowledge engineers

have to solve within the scope of commercial projects. The similarity of the partici-

pants’ education level as well as the similarity of the posederror identification tasks to

real-world settings clearly show the external validity (similarity-based) of the results of

our experiment. The participants of the study had to solve the given error identification

and repair tasks autonomously. For the comparison of time efforts related to diagnosis

and repair tasks, we applied an independent (two-sample) t-test (parametric statistical

test), which is applicable since the error identification and repair times are normally

distributed and the effort data sets for the two testgroups are independent.

Result. Our experiment clearly shows the applicability of our debugging approach

in terms of time savings related to development and maintenance processes. The goal

of our analysis was to investigate differences in time efforts related to the identification

and repair of faulty process definitions depending on whether a corresponding auto-

mated debugging support was available or not.

Hypothesis: Automated debugging support for process definitions leads to signifi-

cant time savings in the detection and repair of faulty transition conditions.

The averagerepair effort for process definitionpd1 was 71.458 seconds (std. dev.

28.915 seconds), the corresponding averagediagnosis and repaireffort was 110.750

seconds (std. dev. 63.704 seconds). Similar results have been obtained by examin-

ing the remaining example (faulty) process definitions which allows us to accept the

defined hypothesis.

19

Process definition meandr(sec.) t-score p meanr (sec.)

pd1 110.750 2.263 0.034 71.458
pd2 155.417 2.277 0.033 78.417
pd3 246.167 3.308 0.003 72.458

Table 3: Reduced error detection/repair times with debugging support (meanr) com-
pared to error detection/repair times without debugging support (meandr).

5 Related Work

Colloborative filtering [13], content-based filtering [20]and knowledge-based recom-

mendation [1, 3, 30] are the three basic approaches to the implementation of a recom-

mender application. Collaborative Filtering is based on the assumption that customer

preferences are correlated, i.e., similar products are recommended to customers with

similar interest profiles. Content-based filtering focuseson the analysis of a given

set of products already ordered by a customer. Based on this information, products

are recommended which resemble products already ordered (products related to simi-

lar categories). Using knowledge-based approaches, the relationship between customer

requirements and offered products is explicitly modeled [7] - compared to collaborative

and content-based filtering, knowledge-based approaches do exploit deep knowledge

about the application domain.

Such knowledge representations are the major preconditionfor the application of

model-based diagnosis techniques [21, 12]. An overview of the application of model-

based diagnosis techniques in software debugging can be found in [28]. The com-

plexity of configuration knowledge bases motivated the application of model-based

diagnosis (MBD) [21] in knowledge-based systems development [6]. Similar moti-

vations led to the application of model-based diagnosis in technical domains such as

the development of hardware designs [11], onboard diagnosis for automotive systems

[24] and in software development [18]. The work presented inthis paper has a spe-

cial relationship to the work presented in [6]. [6] focus on the identification of faults

in configuration knowledge bases, where a set of test cases isused to induce conflicts

with a configuration knowledge base. In contrast to this work, we provide an abstract

representation of finite state models which is checked against a set of well-formedness

20

rules, i.e., well-formedness rules correspond to test cases presented in [6]. Test cases

used in [6] are, e.g., configurations calculated by previousversions of configuration

knowledge bases. In many cases, such test cases have to be defined by domain experts

which makes testing and debugging a time-consuming task. Although our debugging

approach for recommender process definitions allows the specification of test cases as

well (input sequences which have to be accepted by the process definition), one of the

major strengths of the approach is that well-formedness rules (generic test cases) can

be automatically derived from given process definitions. Incontrast to the evaluation

presented in this paper, [4] contains an analysis of the effectiveness of recommender

knowledge base diagnosis concepts.

The representation of recommender processes in the form of finite state represen-

tations is discussed in [3, 10]. This approach is novel in thecontext of developing

knowledge-based recommender applications and due to its formal basis it allows a

direct and automated translation of the graphical model into a corresponding recom-

mender application. The automated debugging of such process definitions on the basis

of MBD [21] has so far not been discussed in the literature. Related work can be found,

e.g., in [17], where an algorithm for checking the consistency of workflow definitions is

presented. Compared to our work, [17] focus on assuring workflow properties such as

each component of the workflow has at least one output parameter or all components

of the workflow are executable. Compared to these basic types of consistency checks,

our work provides intelligent mechanisms which effectively support the automated in-

dication of potential sources of inconsistencies.

A number of studies have been conducted related to the evaluation of Knowledge

Acquisition (KA) tools. A corresponding overview on those approaches can be found

in [29]. All those studies concentrate on different aspectsof user behaviour when in-

teracting with a certain knowledge acquisition environment. Examples for hypotheses

tested in these experiments are:all users would employ the same set of commands even

if told nothing in advance about the modeling environment; users will make less mis-

takes during KA tasks using KA tools; or users will be able to complete a KA task in

less time using KA tools. Compared to these evaluations, our experiment focuses on

21

the specific aspect of debugging support in the context of recommender user interface

development which to our knowledge has not been conducted sofar.

6 Conclusions and Future Work

Automated debugging support for the design of recommender user interfaces can sig-

nificantly reduce related development and maintenance efforts. In this paper we have

presented concepts supporting the identification of minimal sets of faulty transition

conditions in finite state models of recommender user interfaces. Although this paper

focused on the development of recommender user interfaces,the presented approach is

not restricted to this domain but is generally applicable tosettings where a finite state

model of a user interface is given. The proposed approach hasbeen implemented as

part of a commercially available recommender development environment.

References

[1] R. Burke. Knowledge-based Recommender Systems.Encyclopedia of Library

and Information Systems, 69(32), 2000.

[2] R. Burke. Hybrid Recommender Systems: Survey and Experiments.User Mod-

eling and User-Adapted Interaction, 12(4):331–370, 2002.

[3] A. Felfernig. Koba4MS: Selling Complex Products and Services Using

Knowledge-Based Recommender Technologies. In G. Müller and K. Lin, edi-

tors,7th IEEE International Conference on E-Commerce Technology (CEC’05),

pages 92–100, Munich, Germany, 2005.

[4] A. Felfernig. Reducing Development and Maintenance Efforts for Web-based

Recommender Applications.International Journal of Web Engineering and Tech-

nology, page to appear, 2006.

22

[5] A. Felfernig, G. Friedrich, D. Jannach, and M.Zanker. AnIntegrated Environment

for the Development of Knowledge-Based Recommender Applications.Interna-

tional Journal of Electronic Commerce, 11(2):11–34, 2006.

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-based Di-

agnosis of Configuration Knowledge Bases.Artificial Intelligence, 2(152):213–

234, 2004.

[7] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker. Configu-

ration knowledge representations for Semantic Web applications.AI Engineering

Design, Analysis and Manufacturing Journal, 17:31–50, 2003.

[8] A. Felfernig, K. Isak, and C. Russ. Knowledge-based Recommendation: Tech-

nologies and Experiences from Projects. In G. Brewka, S. Coradeschi, A. Perini,

and P. Traverso, editors,17th European Conference on Artificial Intelligence

(ECAI06), pages 632–636, Riva del Garda, Italy, 2006.

[9] A. Felfernig and A. Kiener. Knowledge-based Interactive Selling of Financial

Services using FSAdvisor. In17th Innovative Applications of Artificial Intelli-

gence Conference (IAAI’05), pages 1475–1482, Pittsburgh, Pennsylvania, 2005.

[10] A. Felfernig and K. Shchekotykhin. Debugging User Interface Descriptions of

Knowledge-based Recommender Applications. InWorkshop Notes of the IJ-

CAI’05 Workshop on Configuration, pages 13–18, Edinburgh, Scottland, 2005.

[11] G. Friedrich, M. Stumptner, and F. Wotawa. Model-baseddiagnosis of hardware

designs.AI Journal, 111(2):3–39, 1999.

[12] R. Greiner, B. Smith, and R. Wilkerson. A correction to the algorithm in Reiter’s

theory of diagnosis.Artificial Intelligence, 41(1):79–88, 1989.

[13] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. Riedl. Evaluating Collab-

orative Filtering Recommender Systems.ACM Trans. on Information Systems,

22(1):5–53, 2004.

23

[14] J. Hopcroft and J. Ullman.Introduction to Automata Theory, Languages and

Computation. Addison-Wesley Publishing Company, Massachusetts, USA,1979.

[15] B. Jiang, W. Wang, and I. Benbasat. Multimedia-Based Interactive Advising

Technology for Online Consumer Decision Support.Communications of the

ACM, 48(9):93–98, 2005.

[16] U. Junker. QUICKXPLAIN: Preferred Explanations and Relaxations for Over-

Constrained Problems.19th National Conference on AI (AAAI04), pages 167–

172, 2004.

[17] J. Kim, M. Spraragen, and Y. Gil. An Intelligent Assistant for Interactive Work-

flow Composition. InInternational Conference on Intelligent User Interfaces

(IUI-2004), pages 125–131, Madeira, Portugal, 2004.

[18] Mateis, M. Stumptner, and F. Wotawa. Modeling Java programs for diagnosis.

In 14th European Conference on Artificial Intelligence, pages 171–175, Berlin,

Germany, 2000.

[19] M. Montaner, B. Lopez, and J. De la Rose. A Taxonomy of Recommender Agents

on the Internet.Artificial Intelligence Review, 19:285–330, 2003.

[20] M. Pazzani. A Framework for Collaborative, Content-Based and Demographic

Filtering. Artificial Intelligence Review, 13(5-6):393–408, 1999.

[21] R. Reiter. A theory of diagnosis from first principles.Artificial Intelligence,

23(1):57–95, 1987.

[22] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: An

Open Architecture for Collaborative Filtering of Netnews.In ACM Conference

on Computer Supported Cooperative Work, pages 175–186, 1994.

[23] F. Ricci, A. Venturini, D. Cavada, N. Mirzadeh, D. Blaas, and M. Nones. Product

Recommendation with Interactive Query Management and Twofold Similarity.

In 5th International Conference on Case-Based Reasoning (ICCBR 2003), pages

479–493, Trondheim, Norway, 2003.

24

[24] M. Sachenbacher, Pr. Struss, and C.M Carlen. A Prototype for Model-Based

On-Board Diagnosis of Automotive Systems.AI Communications, 13(2):83–97,

2000.

[25] S.Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In8th

National Conference on Artificial Intelligence, pages 25–32, Detroit, MI, 1990.

MIT Press.

[26] B. Smyth, E. Balfe, O. Boydell, K. Bradley, P. Briggs, M.Coyle, and J. Freyne.

A Live User Evaluation of Collaborative Web Search. In19th International Joint

Conference on Artificial Intelligence, pages 1419–1424, Edinburgh, Scotland,

2005.

[27] M. Stolze, S. Field, and P. Kleijer. Combining Configuration and Evaluation

Mechanisms to Support to Selection of Modular Insurance Products. In8th Eu-

ropean Conference on Information Systems, pages 858–865, 2000.

[28] M. Stumptner and F. Wotawa. A Survey of Intelligent Debugging. European

Journal on Artificial Intelligence (AICOM), 11(1):35–51, 1998.

[29] M. Tallis and Y.G. Kim. User studies of knowledge acquisition tools: methodol-

ogy and lessons learned. InKAW-99, 1999.

[30] C. Thompson, M. Göker, and P. Langley. A Personalized System for Conver-

sational Recommendations.Journal of Artificial Intelligence Research, 21:393–

428, 2004.

[31] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London,

1993.

[32] G. VanNoord and D. Gerdemann. Finite State Transducerswith Predicates and

Identities.Grammars, 4(3):263–286, 2004.

25

