
1

Automated Repair of Scoring Rules in
Constraint-Based Recommender Systems

Alexander Felfernig a,∗, Stefan Schippel b,
Gerhard Leitner c, Florian Reinfrank a,
Klaus Isak a, Monika Mandl a, Paul Blazek d,
and Gerald Ninaus a

a Institute for Software Technology, Graz
University of Technology, Inffeldgasse 16b,
A-8010 Graz, Austria
E-mail: {firstname.lastname}@ist.tugraz.at
b Institute for Applied Informatics, Alpen-Adria
University Klagenfurt, Universitaetsstrasse
65–67, A-9020 Klagenfurt, Austria
E-mail: {Stefan.Schippel}@zh-tech.at
c Institute for Informatics Systems, Alpen-Adria
University Klagenfurt, Universitaetsstrasse
65–67, A-9020 Klagenfurt, Austria
E-mail: {gerhard.leitner}@aau.at
d cyLEDGE Media GmbH, Schottenfeldgasse 60,
1070 Vienna, Austria
E-mail: {p.blazek}@cyledge.com

Constraint-based recommender systems support cus-
tomers in preference construction processes related to
complex products and services. In this context, util-
ity constraints (scoring rules) play an important role.
They determine the order in which items (products
and services) are presented to customers. In many
cases utility constraints are faulty, i.e., calculate rank-
ings which are not expected and accepted by marketing
and sales experts. The adaptation of these constraints
is extremely time-consuming and often an error-prone
process. We present an approach to the automated
adaptation of utility constraint sets which is based on
solutions for nonlinear optimization problems. This ap-
proach increases the applicability of constraint-based
recommendation technologies by allowing the auto-
mated reproduction of example item rankings specified
by marketing & sales experts.

Keywords: Constraint-based Recommender Systems,
Knowledge Acquisition, Development Methods

*The work presented in this paper has been par-
tially funded by the Austrian Research Promotion Agency

(Projects: ICONE–827587 and Casa Vecchia–825889).

1. Introduction

Recommender systems support users in the
identification of relevant products and services in
situations where the amount and/or complexity of
an offer outstrips the capability to survey it and
to reach a decision [3,4,24].

The most well known recommendation approach
is collaborative filtering [14][15] which is an im-
plementation of word-of-mouth promotion where
buying decisions are influenced by the opinion of
friends. For example, if two customers bought sim-
ilar books in the past and rated them in a simi-
lar way, the recommender system would propose
books to one customer (books not known to him
yet) that the other customer has rated positively.

Content-based filtering [21] is an information fil-
tering approach which exploits item features a user
has liked in the past with the goal of deriving new
recommendations. For instance, if a customer has
bought books about the Linux operating system,
similar books (related to Linux) will be recom-
mended in future advisory sessions. Content-based
filtering does not exploit serendipity effects1 which
are in many cases required and welcome in rec-
ommendation contexts [2]. Typical applications of
content-based filtering are the recommendation of
Web content and news.

Collaborative filtering as well as content-based
filtering are based on user profiles and do not ex-
ploit deep knowledge about the product domain.
In contrast, knowledge-based recommender systems
[2][12][29] exploit deep knowledge about the prod-
uct domain in order to determine solutions fitting
the wishes and needs of customers. Compared to
customers purchasing simple products (e.g., books,
compact disks, or movies), customers purchasing
products such as digital cameras, computers, or fi-
nancial services are much more in the need of intel-

1Identifying something which is useful without explicitly

looking for it.

AI Communications

ISSN 0921-7126, IOS Press. All rights reserved

2 A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems

ligent interaction mechanisms supporting the re-
trieval and explanation of solutions. Such interac-
tion mechanisms are supported by two basic types
of knowledge-based recommender systems [2,12].
First, critiquing-based recommender systems [2]2

exploit the similarity between explicitly defined
user requirements and items of the product assort-
ment. Second, constraint-based recommender sys-
tems [12] exploit a set of explicitly defined con-
straints to calculate the set of products which
are assumed to be of relevance for the customer.
These constraints represent product, marketing,
and sales knowledge in an explicit fashion and
thus make it possible (1) to derive recommenda-
tions complying with existing marketing and sales
strategies, (2) to explain these recommendations,
and (3) to propose repair actions for inconsistent
customer requirements [10].

In this paper we focus on a specific knowl-
edge acquisition aspect in constraint-based recom-
mender systems development [12] which is the de-
velopment and maintenance of utility constraint
sets (scoring rules). Products included in a recom-
mendation have to be ranked according to their
relevance for the customer [10][12]. In the line of
serial position effects which induce customers to
preferably take a look at and select items at the be-
ginning of a list, the high-ranking of the most rele-
vant items is extremely important [13][19]. For the
determination of such rankings we apply the con-
cepts of Multi-Attribute Utility Theory (MAUT)
[17][25][30] where each product is evaluated ac-
cording to a predefined set of interest dimensions
which are abstract evaluation criteria for products.
Profit and availability are examples for such in-
terest dimensions in the domain of financial ser-
vices. For example, if a customer is interested in
high return rates and longterm investments, the
dimension profit is very important. Consequently,
customer requirements influence the importance of
corresponding interest dimensions.

The consistency between utility constraints
(scoring rules) and a company’s marketing and
sales strategy plays an important role for the suc-
cessful application of recommender technologies.
These constraints have to reflect marketing and
sales strategies (in our example case those of fi-

2Similarity-based approaches to the identification of so-
lutions have been originally developed for case-based rea-
soning (CBR) systems [27] and later on adopted for the de-

velopment of (critiquing-based) recommender systems [2].

nancial service providers). Experiences from com-
mercial projects [10] show a remarkable need for
a knowledge acquisition support that alleviates
the development and maintenance of utility con-
straint sets. The manual adaptation of utility con-
straints is a time-consuming and error-prone task
since such constraints are strongly interdependent.
Therefore, we developed techniques which support
knowledge engineers in the identification and re-
pair of faulty elements in utility constraint sets. We
present adaptation concepts which automatically
identify the sources of inconsistencies in utility
constraint sets and propose corresponding repair
actions. The presented approach has been imple-
mented for a commercially available recommender
environment [10] and is in the line of previous work
[9] related to effective knowledge acquisition inter-
faces for recommender applications.

The remainder of this paper is organized as fol-
lows. In the following section we introduce the con-
cepts of constraint-based recommendation. In Sec-
tion 3 we present a simple set of utility constraints
which serve as a working example throughout the
paper. In Section 4 we show a CSP encoding for
utility constraints. This encoding is then exploited
for the automated determination of repairs for in-
consistent utility constraint sets (Section 5). In
Section 6 we discuss empirical findings related to
the development of utility constraint sets for com-
mercial applications. A discussion of related and
future work is provided in Section 7. We conclude
the paper with Section 8.

2. Constraint-based Recommendation

Figure 1 depicts example screenshots of an in-
vestment recommender application we have devel-
oped for a large financial service provider in Aus-
tria. The major task of this application is to sup-
port customers and sales representatives in the
identification of appropriate investments (portfo-
lios). In this context, users are involved in pref-
erence construction processes [6][22] where ques-
tions have to be answered and repair alternatives
are proposed in situations where no solution can
be found (see Figure 1, a. and b.). In the follow-
ing, different investment alternatives are presented
where each alternative has an assigned set of ex-
planations as to why it has been recommended (see
Figure 1, c. and d.).

Informally, a recommendation problem descrip-
tion consists of the following elements:

A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems 3

Fig. 1. Example financial service recommender application: users (customers and sales representatives) can specify require-

ments (a). In the case that no solution can be found by the recommender application, possible repair alternatives are presented
(b). Solutions (results) are presented in the form of a recommendation list (c) where each entry in the recommendation list

is associated with a set of explanations as to why this item has been recommended (d).

customer property cpi ∈ CP dom(cpi)

cp1: investment period {long term, medium term, short term}
cp2: goal {rainy days, stable growth, speculation}

Table 1

Example customer properties CP = {cp1, cp2}.

– Customer properties (CP) define the set of

possible requirements which can be articu-

lated by a customer, for example, the intended

investment period and the investment goal

(see Table 1).

– Product properties (PP) define the set of pos-

sible product properties, for example, the

name, the inclusion of shares, and the amount

of value fluctuation (see Table 2).

– Customer requirements (CR) define the re-

quirements of a concrete customer, for exam-

ple, a medium term investment period and

4 A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems

product property ppi ∈ PP dom(ppi)

pp1: name {balanced funds, bonds, bonds2, equity}
pp2: shares {0%, 50%, 100%}

pp3: value fluctuation {low, medium, high, very high}
Table 2

Example product properties PP = {pp1, pp2, pp3}.

customer investment period goal

Robert medium term (r1) rainy days (r2)

Table 3

Example customer requirements CR = {r1, r2}.

filter constraint fci ∈ FC

fc1: goal = rainy days → shares 6= 100%

fc2: investment period = shortterm → value fluctuation 6= high

Table 4

Example filter constraints FC = {fc1, fc2}.

incompatibility constraint ici ∈ IC

ic1: ¬(goal = stable growth ∧ investment period = short term)

ic2: ¬(goal = rainy days ∧ investment period = long term)

Table 5

Example incompatibility constraints IC = {ic1, ic2}.

constraint name shares value fluctuation

prod1 balanced funds 50% medium

prod2 bonds 0% medium

prod3 bonds2 0% high

prod4 equity 100% very high

Table 6

Example set of financial services represented by PC = {prod : prod1 ∨ prod2 ∨ prod3 ∨ prod4} where prod1: name = balanced

funds ∧ shares = 50% ∧ value fluctuation = medium, prod2: name = bonds ∧ shares = 0% ∧ value fluctuation = medium,
prod3: name = bonds2 ∧ shares = 0% ∧ value fluctuation = high, and prod4: name = equity ∧ shares = 100% ∧ value

fluctuation = very high.

money for rainy days (see Table 3).
– Filter constraints (FC) define which products

should be recommended – see Table 4.
– Incompatibility constraints (IC) define restric-

tions on combinations of requirements – see
Table 5.

– Finally, a product catalog (PC) defines the
available product assortment (see Table 6).

More formally, a recommendation problem can
be defined as a Constraint Satisfaction Problem
CSP [32] as follows:

Definition 1 (Recommendation Problem). A rec-
ommendation problem can be defined as a triple
(V, D, C) where V = CP ∪ PP and D represents

the set of corresponding domain definitions. Fur-
thermore, C={CR, FC, IC, PC} includes all con-
straints of the recommendation problem.

On the basis of this definition of a recommen-
dation problem we can now introduce the defini-
tion of a corresponding recommendation result (a
recommendation):

Definition 2 (Recommendation). A recommen-
dation for a given recommendation problem (V, D,
C) is the set of consistent and complete instantia-
tions of all variables in V.

The recommendation result in our example is
shown in Table 7. In this example, product prod4
has been filtered out by the filter constraint fc2.

A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems 5

variable in V prod1 prod2 prod3

cp1: investment period medium term medium term medium term

cp2: goal rainy days rainy days rainy days

pp1: name balanced funds bonds bonds2

pp2: shares 50% 0% 0%

pp3: value fluctuation medium medium high

Table 7

Recommendation result for the recommendation problem (V, D, C).

3. Example Utility Constraint Set

We now present a simplified set of utility con-
straints (scoring rules) (UC) which is used as work-
ing example throughout the paper. Constraints in
UC determine a ranking in which items (products
and services) element of a recommendation result
are presented to the customer (see Tables 8, 9,
11, and 12). We determine item orderings by us-
ing the concepts of Multi-Attribute Utility Theory
(MAUT) [17][25][30]. The basic elements of MAUT
are interest dimensions such as profit or availabil-
ity describing interest focuses of a customer. For
instance, profit denotes the performance of finan-
cial services in terms of, for example, high return
rates. Furthermore, availability is related to as-
pects of accessibility of the invested sum within
the targeted investment period.

The degree to which a customer is interested
in such dimensions can be derived from the ar-
ticulated requirements. Tables 8–9 include typical
scoring rules (utility constraints uci ∈ UC) of re-
liable financial service providers. A customer in-
terested in long term investments (investment pe-
riod = long term) typically has a lower interest in
availability than a customer who is interested in
short term investments (investment period = short
term). Similarly, customers interested in specula-
tions (goal = speculation) have a lower interest in
availability than those interested in putting money
aside for rainy days (goal = rainy days). For the
purposes of our example, we use the customer re-
quirements specified in Table 3: customer Robert
is interested in medium term investments with the
goal of putting money aside for rainy days.

By interpreting the information of Tables 3, 8,
and 9 we can figure out to which extent Robert has
a focus on the interest dimensions profit and avail-
ability. Robert requires a medium term investment
solution which contributes an importance of 6 to
the interest dimension profit and an importance
of 5 to the interest dimension availability (see Ta-

ble 8). Furthermore, Robert is interested in putting
money aside for rainy days which contributes an
importance of 2 to the dimension profit and 6 to
availability. Table 10 summarizes the preferences
of Robert.

On the basis of such customer preferences we
are able to evaluate which of a given set of alter-
native products (services) best suits a customer’s
wishes and needs. For the purpose of our simplified
example we use the recommendation result shown
in Table 7. We now define the dependencies be-
tween product attribute values and the interest di-
mensions profit and availability. For instance, fi-
nancial services including shares support a higher
profit (see Table 11). Furthermore financial ser-
vices without shares have a higher availability, and
those with a higher value fluctuation have a higher
(potential) profit.

By interpreting the constraints of Tables 7, 11,
and 12, we can derive product assortment specific
scoring rules upi ∈ UC (see Tables 13 and 14).

On the basis of these scoring rules we can deter-
mine the extent to which our financial services con-
tribute to the interest dimensions profit and avail-
ability (see Table 15). By exploiting the identified
product utilities, we can determine the customer-
specific utility of each product x which is contained
in the recommendation result (see Table 15). The
utility of a product or service can be determined
on the basis of Formula (1)

utility(x) =

n∑
i=1

ini · coni(x) (1)

where utility(x) specifies the overall utility of
a product/service x for a specific customer. The
overall utility of x is defined as sum over the cus-
tomer’s interest in dimension i (ini) times the con-
tribution of product x (in our case financial ser-
vice) to dimension i (coni). In our example, bal-
anced funds have a higher utility for Robert than
bonds and bonds2 (see Table 16).

6 A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems

investment period profit availability

short term 4 (uc1) 9 (uc2)

medium term 6 (uc3) 5 (uc4)

long term 8 (uc5) 1 (uc6)

Table 8

Scoring rules {uc1, ..., uc6} ⊆ UC for customer property investment period.

goal profit availability

rainy days 2 (uc7) 6 (uc8)

stable growth 6 (uc9) 4 (uc10)

speculation 9 (uc11) 2 (uc12)

Table 9

Scoring rules {uc7, ..., uc12} ⊆ UC for customer property goal.

customer profit availability

Robert 6+2=8 5+6=11

Table 10

Interests of the customer Robert derived from the constraints in Tables 3, 8, and 9.

shares profit availability

0% 2 7

50% 5 5

Table 11

Scoring rules for product property shares.

value fluctuation profit availability

medium 5 6

high 7 4

Table 12

Scoring rules for product property value fluctuation.

name profit availability

balanced funds 5 (up1) 5 (up2)

bonds 2 (up3) 7 (up4)

bonds2 2 (up5) 7 (up6)

Table 13

Product-specific scoring rules {up1, ..., up6} ⊆ UC for product attribute shares.

name profit availability

balanced funds 5 (up7) 6 (up8)

bonds 5 (up9) 6 (up10)

bonds2 7 (up11) 4 (up12)

Table 14

Product-specific scoring rules {up7, ..., up12} ⊆ UC for product attribute value fluctuation.

A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems 7

name profit availability

balanced funds 5+5=10 5+6=11

bonds 2+5=7 7+6=13

bonds2 2+7=9 7+4=11

Table 15

Utilities of products regarding interest dimensions (result of interpreting Tables 13 and 14).

customer product profit availability utility

Robert balanced funds 8*10 11*11 201

bonds 8*7 11*13 199

bonds2 8*9 11*11 193

Table 16

Utilities of products for customer Robert.

example investment period goal ranking

e1 medium term for rainy days utility(bonds) > utility(balanced funds)

e2 medium term for rainy days utility(bonds2) > utility (balanced funds)

e3 medium term for rainy days utility(bonds) > utility(bonds2)

Table 17

Examples E = {e1, e2, e3} of intended service orderings.

In order to test whether a given set of utility
constraints calculates intended rankings, a corre-
sponding set of examples (test cases) can be pro-
vided by marketing and sales experts (see, e.g., Ta-
ble 17). In the case that the rankings calculated by
the utility constraint set are in contradiction with
the rankings of the given examples, we have to
identify repairs such that the consistency with the
examples is restored. In our scenario, the examples
(E = {e1, e2, e3}) are partially contradicting with
the rankings (utilities) shown in Table 16 (e.g., the
utility of bonds is lower than the utility of balanced
funds if a customer is interested in medium term
investments for rainy days, the contrary is speci-
fied in e1: utility(bonds) > utility(balancedfunds)).
Consequently, we have to identify an adaptation of
our utility constraints. An approach to derive such
adaptations automatically will be discussed in the
following sections.

4. Utility Constraint Set (CSP Representation)

We now transform our utility constraint set
(tabular representation of Section 3) into a corre-
sponding constraint-based representation which is
used as input for solving a non-linear optimization
problem [31] (see Section 5). Following the defi-
nitions of Tables 8–9, we introduce the following

set of utility constraints related to the required
investment period and the personal goals of the
customer. For instance, constraint uc1 denotes
the fact that for customers requiring financial
services with short term investment periods, the
dimension profit is of medium importance on
value scale of [1..10], whereas availability aspects
play a significantly more important role (uc2).
{uc1, ..., uc6} represent the utility definitions of
Table 8, {uc7, ..., uc12} represent the definitions
of Table 9.

uc1: profit(investmentperiod short) = 4
uc2: availability(investmentperiod short) = 9
uc3: profit(investmentperiod medium) = 6
uc4: availability(investmentperiod medium) = 5
uc5: profit(investmentperiod long) = 8
uc6: availability(investmentperiod long) = 1
uc7: profit(goal rainydays) = 2
uc8: availability(goal rainydays) = 6
uc9: profit(goal growth) = 6
uc10: availability(goal growth) = 4
uc11: profit(goal speculation) = 9
uc12: availability(goal speculation) = 2

We denote each constraint defining such utility
values as utility constraint uci ∈ UC. Since we
are interested in a utility constraint set which is
consistent with all the examples ei ∈ E, we have

8 A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems

to check the consistency of the given set of utility
constraints with

⋃
ei. This type of consistency

check requires a representation where each exam-
ple is described by a separate set of finite domain
variables. For instance, the contribution to profit
provided by the customer attribute investment
period in example e1 is stored in the variable
profit(investmentperiod e1). The following represen-
tation of examples can be directly interpreted by
a non-linear optimization algorithm [31].

e1: profit(investmentperiod e1)=
profit(investmentperiod medium) ∧
availability(investmentperiod e1)=
availability(investmentperiod medium) ∧
profit(goal e1)=profit(goal rainydays) ∧
availability(goal e1)=
availability(goal rainydays) ∧
utility(balancedfunds e1) < utility(bonds e1)

e2: profit(investmentperiod e2)=
profit(investmentperiod medium) ∧
availability(investmentperiod e2)=
availability(investmentperiod medium) ∧
profit(goal e2)=profit(goal rainydays) ∧
availability(goal e2)=
availability(goal rainydays) ∧
utility(balancedfunds e2) < utility(bonds2 e2)

e3: profit(investmentperiod e3)=
profit(investmentperiod medium) ∧
availability(investmentperiod e3)=
availability(investmentperiod medium) ∧
profit(goal e3)=profit(goal rainydays) ∧
availability(goal e3)=
availability(goal rainydays) ∧
utility(bonds2 e3) < utility(bonds e3)

The overall customer interest in the dimension
profit is stored in profit(ei). The values of these
variables represent the sum over all defined con-
tributions of customer requirements of example
ei to the dimension profit. This approach is
analogously applied to the dimension availability
(availability(ei)). We denote constraints summing
up customer utilities as si ∈ S. The following
constraints implement the definitions for e1, e2, e3.

s1: profit(e1)=profit(investmentperiod e1) +
profit(goal e1)

s2: availability(e1)=availability(investmentperiod e1)

+ availability(goal e1)

s3: profit(e2)= profit(investmentperiod e2) +
profit(goal e2)

s4: availability(e2)=availability(investmentperiod e2)

+ availability(goal e2)

s5: profit(e3)= profit(investmentperiod e3) +
profit(goal e3)

s6: availability(e3)=availability(investmentperiod e3)

+ availability(goal e3)

For each service part of our example assortment,
we specify its contribution to the given interest
dimensions. For instance, the shares percentage
specified for the service balancedfunds defines an
average interest in the dimension profit. In our
CSP, we define this fact as

profitshares(balancedfunds) = 5.

Analogously, we define the relationship between
the interest dimension availability and shares per-
centage as

availabilityshares(balancedfunds) = 5.

We denote each constraint defining a utility
value for a certain product (service) as utility
constraint upi ∈ UC. The following constraints
implement the definitions of Tables 13–14.

up1: profitshares(balancedfunds)=5
up2: availabilityshares(balancedfunds)=5
up3: profitshares(bonds)=2
up4: availabilityshares(bonds)=7
up5: profitshares(bonds2)=2
up6: availabilityshares(bonds2)=7
up7: profitfluctuation(balancedfunds)=5
up8: availabilityfluctuation(balancedfunds)=6
up9: profitfluctuation(bonds)=5
up10: availabilityfluctuation(bonds)=6
up11: profitfluctuation(bonds2)=7
up12: availabilityfluctuation(bonds2)=4

For each uci ∈ UC (and each upi ∈ UC) we
add a corresponding repair constraint cri (pri)
which specifies possible repairs for uci (upi). The
idea behind repair constraints is that if the utility
constraint set is inconsistent with the examples,
a non-linear optimization process can identify
minimal repairs for uci (upi) which are within the
boundaries defined by repair constraints. These
repairs should change the original uci (upi) as

A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems 9

little as possible.3 Therefore, we define an interval
for the accepted changes for each uci ∈ C and
each upi ∈ P. Each of the following example repair
constraints allows changes of the given evaluations
by at most one unit. We denote

⋃
cri ∪

⋃
pri as

set of repair constraints R.

cr1:profit(investmentperiod short) ∈ {3,4,5}
cr2:availability(investmentperiod short) ∈ {8,9,10}
cr3:profit(investmentperiod medium) ∈ {5,6,7}
cr4:availability(investmentperiod medium) ∈ {4,5,6}
cr5:profit(investmentperiod long)∈ {7,8,9}
cr6:availability(investmentperiod long) ∈ {0,1,2}
cr7:profit(goal rainydays) ∈ {1,2,3}
cr8 availability(goal rainydays) ∈ {5,6,7}
cr9:profit(goal growth) ∈ {5,6,7}
cr10:availability(goal growth) ∈ {4,5,6}
cr11 profit(goal speculation) ∈ {8,9,10}
cr12:availability(goal speculation) ∈ {1,2,3}
pr1:profitshares(balancedfunds) ∈ {4,5,6}
pr2:availabilityshares(balancedfunds) ∈ {4,5,6}
pr3:profitshares(bonds) ∈ {1,2,3}
pr4:availabilityshares(bonds)∈ {6,7,8}
pr5:profitshares(bonds2) ∈ {1,2,3}
pr6:availabilityshares(bonds2) ∈ {6,7,8}
pr7:profitfluctuation(balancedfunds) ∈ {4,5,6}
pr8:availabilityfluctuation(balancedfunds)∈{5,6,7}
pr9:profitfluctuation(bonds) ∈ {4,5,6}
pr10:availabilityfluctuation(bonds) ∈ {5,6,7}
pr11:profitfluctuation(bonds2) ∈ {6,7,8}
pr12:availabilityfluctuation(bonds2) ∈ {3,4,5}

The profit of a financial service is defined by the
sum of contributions of the values of shares and
value fluctuation. Availability of a service is as well
defined by the sum of related contributions. We
denote each rule summing up service utility values
as si ∈ S. The following constraints implement
the definitions of Table 15.

s7: profit(balancedfunds)=
profitshares(balancedfunds) +
profitfluctuation(balancedfunds)

s8: profit(bonds)=
profitshares(bonds) +
profitfluctuation(bonds)

s9: profit(bonds2)=

3Note that changes of at most one unit are only intro-
duced for this example, the range of possible changes is
more flexible. In the current implementation it can be spec-

ified by knowledge engineers.

profitshares(bonds2) +
profitfluctuation(bonds2)

s10: availability(balancedfunds)=
availabilityshares(balancedfunds) +
availabilityfluctuation(balancedfunds)

s11: availability(bonds)=
availabilityshares(bonds) +
availabilityfluctuation(bonds)

s12: availability(bonds2)=
availabilityshares(bonds2) +
availabilityfluctuation(bonds2)

The following constraints specify the calculation
of product utilities, where utility(xei) specifies the
utility of product x in the context of example ei.

s13: utility(balancedfunds e1)=
profit(balancedfunds) · profit(e1)+
availability(balancedfunds) · availability(e1)

s14: utility(bonds e1)=
profit(bonds) · profit(e1) +
availability(bonds) · availability(e1)

s15: utility(bonds2 e1)=
profit(bonds2) · profit(e1) +
availability(bonds2) · availability(e1)

s16: utility(balancedfunds e2)=
profit(balancedfunds) · profit(e2)+
availability(balancedfunds) · availability(e2)

s17: utility(bonds e2)=
profit(bonds) · profit(e2) +
availability(bonds) · availability(e2)

s18: utility(bonds2 e2)=
profit(bonds2) · profit(e2) +
availability(bonds2) · availability(e2)

s19: utility(balancedfunds e3)=
profit(balancedfunds) · profit(e3)+
availability(balancedfunds) · availability(e3)

s20: utility(bonds e3)=
profit(bonds) · profit(e3) +
availability(bonds) · availability(e3)

s21: utility(bonds2 e3)=
profit(bonds2) · profit(e3) +
availability(bonds2) · availability(e3)

5. Automated Repair of Scoring Rules

All the mentioned constraints are constituting
elements of a corresponding nonlinear optimiza-
tion problem [31] which represents a Constraint
Set Adaptation Problem (see Definition 3).

10 A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems

Definition 3 (Constraint Set Adaptation Prob-
lem). A constraint set adaptation problem is de-
fined by the tuple (V, D, UC, Con, Opt), where V
is a set of variables referred to by the constraints
in Con = R ∪ S ∪ E, D contains the domain def-
initions of the variables in V, and UC represents
the set of scoring roles inconsistent with the exam-
ples in E. Opt is the optimization function of the
underlying nonlinear optimization problem.

The constraints Con defined in Section 4 are the
basic elements of an optimization problem of min-
imizing repair distances between original scoring
values and corresponding repair values using the
following minimization function – see Formula (2).

Minimize :
∑m

i=1 |val(uci)− val(cri)|+ (2)∑n
j=1 |val(upj)− val(prj)|

In this formula, |val(uci) − val(cri)| denotes
the degree to which the original value of the
utility constraint (scoring value for customer
requirements) has been changed. Furthermore,
|val(upj) − val(prj)| denotes the degree to which
the original value of the (product) utility con-
straint has been changed. Now the Minos solver
[31] can calculate a solution to a constraint set
adaptation problem (see Definition 4).

Definition 4 (Constraint Set Adaptation). A con-
straint set adaptation for a given constraint set
adaptation problem (V, D, UC, Con, Opt) is an
assignment of the variables in V s.t. all constraints
in Con are satisfied.

If we want to restrict the proposed repair ac-
tions to the utility constraints upi ∈ UC (uci ∈
UC), we have to include ∪uci (∪upi) into the set of
constraint definitions (Con). The following adap-
tations (repairs) to the original scoring rules (util-
ity constraints) in UC represent a constraint set
adaptation for our example constraint set adapta-
tion problem.
profit(investmentperiod short) = 4
availability(investmentperiod short) = 9
profit(investmentperiod medium) = 5
availability(investmentperiod medium) = 4
profit(investmentperiod long) = 8
availability(investmentperiod long) = 1
profit(goal rainydays) = 2
availability(goal rainydays) = 5
profit(goal growth) = 6
availability(goal growth) = 4
profit(goal speculation) = 9

availability(goal speculation) = 2
profitshares(balancedfunds) = 5
availabilityshares(balancedfunds) = 4.99
profitshares(bonds) = 2
availabilityshares(bonds) = 6.33
profitshares(bonds2) = 2
availabilityshares(bonds2) = 7
profitfluctuation(balancedfunds) = 5
availabilityfluctuation(balancedfunds) = 5
profitfluctuation(bonds) = 5
availabilityfluctuation(bonds) = 6.22
profitfluctuation(bonds2) = 6
availabilityfluctuation(bonds2) = 4.67

The application of these repairs results in the
new rankings depicted in Table 18. These rankings
are now consistent with ei ∈ E.

6. Evaluation

Experiences from Commercial Projects. On the
basis of our experiences from commercial recom-
mender projects (see, e.g., [10]) we identified a
clear need for more effective engineering tech-
niques in the context of utility constraint devel-
opment and maintenance. The investment recom-
mender of an Austrian financial service provider
(see Figure 1) has been implemented without the
repair functionalities presented in this paper. The
system comprises 15 parameters for specifying cus-
tomer requirements, 10 item properties and about
150 scoring rules (interest dimensions: availabil-
ity, profit, risk). The recommender application has
been designed, developed, and deployed with an
overall effort of about 12 man months. Before de-
ploying the first version of the application, new
versions of the utility constraint set have been re-
leased every third week and tested by domain ex-
perts. About 15 adaptation cycles were needed be-
fore deploying the utility constraint set in the pro-
ductive environment. Adaptation efforts related to
the utility constraint set consumed about 12 hours
per adaptation cycle. This results in 180 hours of
development and maintenance efforts specifically
related to the adaptation of the utility constraint
set. In each adaptation cycle, the knowledge engi-
neer tried to adapt the current utility constraint
set to be consistent with the example rankings pro-
vided by domain experts. The process was error-
prone and time-consuming and triggered require-

A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems 11

customer item utility ranking after repair ranking before repair

Robert balanced funds 160.004 3 1

bonds 162.004 1 2

bonds2 161.004 2 3

Table 18

Utilities of items for customer Robert (before and after the repair process). The utilities are now consistent with the examples
shown in Table 17.

ments to automate the adaptation process. The
major problem was the task of manually detect-
ing a set of repair actions that make a utility con-
straint set consistent with the set of examples. By
exploiting the presented repair functionalities, a
reduction of the overall development and mainte-
nance efforts related to utility constraint sets by
about 60% (effort directly related to the adaption
of the utility constraints) can be expected which
means more than 100 hours of time savings in
projects similar to the described case.

Optimality and Performance. Optimality prop-
erties of solutions to optimization problems are de-
pending on the used optimization approach [20].
We had to deal with a non-linear optimization
problem since non-linear constraints are part of
the constraint set adaptation problem. Non-linear
optimization solvers can not guarantee the opti-
mality of an identified solution [20]. For this rea-
son we had to evaluate the quality (degree of op-
timality) of results calculated by the Minos Solver
[31] which we used for calculating solutions to a
constraint set adaptation problem. For our evalu-
ations we used commercial utility constraint sets
from the product domains of refrigerators (refrig1-
4), financial services (finserv1-4), and computer
monitors (mon1-4) (see Table 19). For each of the
above mentioned application domains we have de-
fined four different settings which differed in the
number of examples (#e) and the number of prod-
ucts (#p). For example, in finserv4 #e=20 exam-
ples were defined for #p=71 products. The corre-
sponding utility constraint set comprised #su=503
constraints (scoring rules). In order to make the 20
examples consistent with the given set of scoring
rules, #so=340 rules have been adapted with an
average change distance avg(d)=0.056 where each
scoring rule is defined over the domain [0..10]. The
time needed by the Minos solver [31] to calculate
the adaptations for finserv4 was t=9464 millisec-
onds. The Minos solver is capable of calculating
adaptations for faulty utility constraint sets within
a reasonable time span acceptable for utility con-

straints engineering scenarios. In such scenarios,
the system uses either examples defined by mar-
keting and sales experts or examples automatically
derived from existing user interaction logs. In our
test settings, we used examples which have been
specified manually – the automated derivation of
examples is the goal for future work. For a detailed
discussion of the handling of constraint set adap-
tation problems without a corresponding solution
(e.g., the set of provided examples is inconsistent)
the reader is referred to the work of [8,16].

7. Related and Future Work

Recommendation Approaches. There are three
basic recommendation approaches [2]. Collabora-
tive Filtering [14][15] is based on the assumption
of the correlation of preferences, i.e., similar prod-
ucts are recommended to customers with similar
purchasing behavior in the past. Content-based fil-
tering [21] focuses on the analysis of a given set
of products already purchased by the customer.
By exploiting historical purchasing data, products
are recommended which resemble those already
purchased. One of the major advantages of both
approaches lies in the simple set-up procedure
which does not require complex knowledge acqui-
sition and maintenance. In contrast, knowledge-
based approaches [2][6][10] rely on deep knowledge
about the offered product and service assortments
as well as on deep knowledge about the company’s
marketing and sales strategy. In this context, the
relationship between customer requirements and
offered products has to be explicitly modeled in
a recommender knowledge base. Deep knowledge
representations are the basis for knowledge-based
recommendation technologies. They are the ma-
jor precondition for deriving recommendations, ex-
plaining recommendations, and for determining re-
pair actions for inconsistent requirements [18][23].
The repair approach presented in this paper has

12 A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems

rec. #e #p #su #so avg(d) t(msec)

refrig1 5 16 39 39 <0.001 761

refrig2 10 30 69 55 0.085 1221

refrig3 15 43 80 62 0.082 1998

refrig4 20 55 100 74 0.077 2252

finserv1 5 19 266 160 0.070 1622

finserv2 10 37 396 244 0.054 5599

finserv3 15 53 439 288 0.055 6389

finserv4 20 71 503 340 0.056 9464

mon1 5 22 109 40 0.046 731

mon2 10 42 177 75 0.041 1813

mon3 15 61 214 105 0.044 1542

mon4 20 80 246 125 0.047 2063

Table 19

Performance of the Minos solver [31] for the calculation of solutions for our example test settings in three different domains

(refrigerators, financial services, and computer monitors) where #e=#examples, #p=#products, #su=#scoring rules (util-
ity constraints), #so=#scoring rules adapted by the non-linear optimization process, avg(d)=average distance to the original

scoring values (before the repair process has been started), t(msec) = calculation time in milliseconds.

been designed for the application in constraint-
based recommendation scenarios.

Utility-based Ranking of Repair Alternatives.
The utility-based evaluation of different decision
alternatives is not restricted to the ranking of
product alternatives (which was the focus of dis-
cussion in this paper). If no solution can be found
for a given set of customer requirements, repair ac-
tions represent minimal changes to those require-
ments such that the calculation of a correspond-
ing recommendation is possible [10,28]. If we as-
sign a priority (represented as utility value) to each
customer requirement we can apply MAUT con-
cepts for evaluating which of the alternative re-
pairs should be first proposed to the customer [10].
Such personalized rankings can alleviate the re-
trieval of products and contribute to a significantly
lower number of interaction cycles with the rec-
ommender. Utility values can be either predefined
or directly specified by the customer. In contrast
to the ranking of products, the importance of cus-
tomer requirements negatively influences the rank-
ing of a repair alternative, i.e., the utility of a re-
pair alternative decreases if the corresponding re-
quirements are of importance to the customer. At
this point we also want to emphasize that ethi-
cal aspects play an important role when applying
the concepts presented in this paper. Ranking ex-
amples can also be misused for pushing the sales
of specific items – a detailed discussion of related
biasing effects can be found, for example, in [11].

Utility-based Ranking of Explanations. When
presenting recommendation results, each product
part of the result set has a corresponding list of ex-
planations [12] (e.g., argumentations as to why this
product fits to the wishes and needs of a customer).
Similar to products, explanations can be as well
ordered conform to a predefined set of interest di-
mensions, i.e., the most interesting explanations
are presented first. Such rankings can increase the
trust in explanations and the corresponding prod-
uct recommendations [5]. Rankings can be easily
calculated since each recommended product is di-
rectly connected to filter constraints responsible
for the selection of this product. The higher the
overall importance of the customer requirements
referenced in a filter constraint, the higher is the
utility of the explanation for the customer. Thus
the ranking of explanations plays an important
role in the configuration of argumentation chains
where the ordering of sub-arguments has a ma-
jor influence on whether the main argument is ac-
cepted by the customer or not (see, e.g., [5]). The
application of the concepts presented in this paper
to the automated repair of scoring rules used for
the ranking of explanations is within the focus of
future work.

Repairing Inconsistent Constraint Sets. The re-
pair concepts presented in this paper are com-
pletely different from those presented in [9]. The
work of [9] focuses on the automated identification
of faults in recommender user interface descrip-
tions which requires a different knowledge repre-

A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems 13

sentation in terms of finite state models and a di-
agnosis algorithm based on conflicts induced by
navigation patterns in finite state automata. Com-
pared to the work of [9], the approach presented
in this paper determines repair actions on the ba-
sis of the results of a non-linear optimization pro-
cess. Such a type of optimization requires specific
constraint representations which allow to take into
account the set of utility constraints as well as all
examples provided by knowledge engineers and do-
main experts. The work presented in [7] follows
a pure learning-based approach where preference
functions are learned on the basis of examples.
These functions are subsequently used to order a
set of new solutions. In contrast to pure learning-
based approaches, our approach defines a kind of
ranking seed knowledge (the initial utility con-
straint set) which is subsequently automatically
repaired to conform with new situations. Thus we
avoid cold start problems and effectively support
continuous updates of utility constraint sets. The
work of [1] deals with modeling constraint prob-
lems using soft constraints. In this context, solu-
tion preferences are treated as examples which are
exploited for the learning of constraint preferences.
Compared to our work, [1] apply a learning algo-
rithm that does not require the consistency be-
tween the given set of solution preferences and the
learned constraint preferences. In this case, the op-
timality of a solution strongly depends on the ac-
cepted/supported solution preferences. Finally, [8]
present an approach to the identification of mini-
mal sets of scoring rules which should be adapted
in order to recover consistency between the exam-
ples ei ∈ E and the defined set of scoring rules.
The major difference between the work presented
in this paper and the approach of [8] is the focus
on the determination of minimal-cardinality sets
of scoring rules which have to be adapted in order
to achieve consistency between examples and util-
ity constraint set. This is accomplished using the
concepts of model-based diagnosis that calculates
minimal sources of inconsistencies on the basis of
pre-calculated conflict sets [8]. Minimality in the
sense of [8] is interpreted in terms of the number of
identified faulty utility constraints (scoring rules)
whereas minimality in the sense of this paper is
interpreted as minimal distance between the orig-
inal scoring definitions and the scoring definitions
in the adapted set of scoring rules – see Formula
(2). Both approaches have their advantages. The

approach presented in [8] can be applied to iden-

tify typical modeling faults and the approach of

this paper can be used to support periodical up-

date processes which keep the new set of scoring

rules as near as possible to the original version.

Future Work. We will evaluate our repair ap-

proach in further product and service domains. In

this context we will extend the application of our

approach to the repair of faulty rankings of ex-

planations [12] and faulty rankings of repair ac-

tions for inconsistent customer requirements [10].

Furthermore, we will focus on the development of

concepts that enable the automated generation of

ranking examples from user interaction logs (e.g.,

on the basis of association rule mining). Finally,

we will extend the expressivity of ranking exam-

ples by allowing to define further criteria on the

ranking of items in a result set, such as the mini-

mal and maximal utility distance between specific

items, the minimal and maximal allowed ranking

of an item, and ranking alternatives.

8. Conclusion

We have presented knowledge engineering tech-

niques which support knowledge engineers and do-

main experts in the development of utility con-

straint sets used for the calculation of item rank-

ings (the ranking of products and services on the

result page of a recommender). We have proposed

an approach to the identification and repair of

faulty elements in utility constraint sets which is

based on an application of non-linear optimiza-

tion methods. Summarizing, the presented con-

cepts are an important step towards more effective

knowledge-based systems development processes.

Acknowledgements

The work presented in this paper has been con-

ducted within the scope of the research projects

ICONE (827587) and Casa Vecchia (825889)

funded by the Austrian Research Promotion

Agency.

14 A. Felfernig et al. / Automated Repair of Scoring Rules in Constraint-Based Recommender Systems

References

[1] A. Biso, F. Rossi, and A. Sperduti. Experimental Re-
sults on Learning Soft Constraints, 7th Intl. Conf. on

the Principles of Knowledge Representation and Rea-

soning (KR02), Breckenridge, CO, pp. 435–444, 2000.

[2] R. Burke. Knowledge-based Recommender Systems.

Encyclopedia of Library and Information Systems,

69(32):180–200, 2000.

[3] R. Burke. Hybrid Web Recommender Systems. in: The

adaptive web: methods and strategies of web personal-

ization, P. Bruzsilovsky, A. Kobsa, and W. Nijdl, eds.,
pp. 377–408, 2007.

[4] R. Burke. A. Felfernig, and M. Goeker. Recommender

Systems: An Overview. AI Magazine, AAAI, 32(3):13–
18, 2011.

[5] G. Carenini and J. Moore. Generating and evaluating

evaluative arguments. AI Journal, 170:925–952, 2006.

[6] L. Chen, and P. Pu. Survey of Preference Elicitation

Methods, EPFL. Technical Report, 2004.

[7] W. Cohen, R. Schapire, and Y. Singer. Learning to
order things. Journal of AI Research, 10:243–270, 1999.

[8] A. Felfernig, E. Teppan, G. Friedrich, and K. Isak. In-

telligent Debugging and Repair of Utility Constraint
Sets in Knowledge-based Recommender Applications,

13th ACM International Conference on Intelligent User

Interfaces, Canary Islands, Spain, Jan. 13-16, pp. 218–
226, 2008.

[9] A. Felfernig and K. Shchekotykhin. Debugging User

Interface Descriptions of Knowledge-based Recom-
mender Applications. ACM Conference on Intelligent

User Interfaces, IUI06, pp. 234–241, 2006.

[10] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker.
An Environment for the Development of Knowledge-

based Recommender Applications, International Jour-

nal of Electronic Commerce (IJEC), 11(2):11–34, 2006.

[11] A. Felfernig, G. Friedrich, B. Gula, M. Hitz, T.

Kruggel, R. Melcher, D. Riepan, S. Strauss, E. Teppan,

and O. Vitouch. Persuasive Recommendation: Explor-
ing Serial Position Effects in Knowledge-based Recom-

mender Systems, Persuasive 2007, Stanford, Califor-

nia, Springer Lecture Notes in Computer Science, pp.
283–294, 2007.

[12] A. Felfernig and R. Burke. Constraint-based Recom-

mender Systems: Technologies and Research Issues,
ACM International Conference on Electronic Com-

merce (ICEC’08), Innsbruck, Austria, Aug. 19-22, pp.

17-26, 2008.

[13] F. Gershberg and A. Shimamura. Serial position ef-

fects in implicit and explicit tests of memory. Journal

of Experimental Psychology: Learning, Memory, and
Cognition, 20:1370–1378, 1994.

[14] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.

Evaluating Collaborative Filtering Recommender Sys-
tems. ACM Transactions on Information Systems,

22(1):5–53, 2004.

[15] Z. Huang, D. Zeng, and H. Chen. A Comparison of
Collaborative-Filtering Recommendation Algorithms

for E-commerce. IEEE Intelligent Systems, 22(5):68–
78, 2007.

[16] U. Junker. QUICKXPLAIN: Preferred Explanations
and Relaxations for Over-Constrained Problems. 19th

National Conference on AI, pp. 167–172, 2004.

[17] R. Keeney, H. Raiffa. Decisions with Multiple Objec-

tives: Preferences and Value Tradeoffs, John Wiley and
Sons, 1976.

[18] J. de Kleer, A. Mackworth, and R. Reiter. Character-

izing diagnoses and systems, Artificial Intelligence 56

(2-3) pp. 197–222, 1992.

[19] K.S. Lashley. The problem of serial order in behav-
ior. In L. A. Jeffress (Ed.), Cerebral mechanisms in

behaviour (pp. 112–136). New York: Wiley, 1951.

[20] A. Neumaier, O. Shcherbina, W. Huyer and T. Vinko.

A comparison of complete global optimization solvers,

Mathematical Programming, 103(2):335–356, 2005.

[21] M. Pazzani and D. Billsus. Content-based Recom-
mender Systems. in: The adaptive web: methods and

strategies of web personalization, P. Bruzsilovsky, A.

Kobsa, and W. Nijdl, eds., pp. 325–341, 2007.

[22] J.W. Payne, J.R. Bettman, and E.J. Johnson. The
Adaptive Decision Maker. Cambridge University Press,

1993.

[23] R. Reiter. 1987. A theory of diagnosis from first prin-

ciples. AI Journal, 23, 1, 57–95, 1987.

[24] P. Resnick and H. Varian. 1997. Special Issue on Rec-

ommender Systems. Communications of the ACM, 40,
1997.

[25] C. Schmitt, D. Dengler, and M. Bauer. Multivari-

ate Preference Models and Decision Making with the

MAUT Machine. User Modeling, 297–302, 2003.

[26] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. in: The

adaptive web: methods and strategies of web personal-

ization, P. Bruzsilovsky, A. Kobsa, and W. Nijdl, eds.,
pp. 291–324, 2007.

[27] R. Mantaras, D. McSherry, D. Bridge, D. Leake, B.

Smyth, S. Craw, B. Faltings, M. Maher, M. Cox, K.

Forbus, M. Keane, A. Aamodt, and I. Watson. Re-
trieval, reuse, revision, and retention in case-based

reasoning, Knowledge Engineering Review, 20(3):215–

240, 2005.

[28] B. O’Sullivan, A. Papadopoulos, B. Faltings, P.
Pu: Representative Explanations for Over-Constrained

Problems. 22nd National Conference on AI, 323–328,

2007.

[29] C. Thompson, M. Goeker, and P. Langley. A Person-
alized System for Conversational Recommendations.

Journal of AI Research 21:393–428, 2004.

[30] D. Winterfeldt, W. Edwards. Decision Analysis and

Behavioral Research, Cambridge University Press,

Cambridge, England, 1986.

[31] R. Fourer, D. Gay, and B. Kernighan. AMPL: A Mod-
eling Language for Mathematical Programming, Cole

Publishing Company, 2002.

[32] E. Tsang. Foundations of Constraint Satisfaction, Aca-

demic Press, London and San Diego, 1993.

