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Abstract

Today’s economy exhibits a growing trend toward highly specialized solution providers cooperatively offering con-
figurable products and services to their customers. This paradigm shift requires the extension of current standalone
configuration technology with capabilities of knowledge sharing and distributed problem solving. In this context a
standardized configuration knowledge representation language with formal semantics is needed in order to support
knowledge interchange between different configuration environments. Languages such as Ontology Inference Layer
~OIL! and DARPAAgent Markup Language~DAML 1OIL! are based on such formal semantics~description logic! and
are very popular for knowledge representation in the Semantic Web. In this paper we analyze the applicability of those
languages with respect to configuration knowledge representation and discuss additional demands on expressivity. For
joint configuration problem solving it is necessary to agree on a common problem definition. Therefore, we give a
description logic based definition of a configuration problem and show its equivalence with existing consistency-based
definitions, thus joining the two major streams in knowledge-based configuration~description logics and predicate
logic0constraint based configuration!.
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1. INTRODUCTION

Knowledge-based configuration has a long history as a suc-
cessful AI application area~e.g., Barker et al., 1989; Mittal
& Frayman, 1989; Heinrich & Jüngst, 1991; Wright et al.,
1993; Fleischanderl et al., 1998; Mailharro, 1998!. Starting
with rule-based systems such as R10XCON ~Barker et al.,
1989!, various higher level representation formalisms have
been developed since the late 1980s to exploit the advan-
tages of more concise representation, faster application
development, higher maintainability, and more flexible
reasoning. Although these representations have proven their
applicability in various real-world applications, the hetero-
geneity of configuration knowledge representation is the
major obstacle to incorporating configuration technology

in E-commerce environments. The trend toward highly spe-
cialized solution providers results in a situation where dif-
ferent configurators of complex products and services must
be integrated in order to transparently support distributed
configuration problem solving. In such integration scenar-
ios, configurators must share a clear and common under-
standing of the problem definition and the semantics of the
exchanged knowledge. Consequently, it is necessary to agree
on the definition of a configuration problem and its solu-
tion. Of the two current main streams in representing and
solving configuration problems, the first approach is based
on predicate logic or various simplified variants thereof,
specifically constraint-based systems~including their dy-
namic and generative variants, e.g., Mittal & Falkenhainer,
1990; Fleischanderl et al., 1998; Mailharro, 1998! and re-
source balancing methods~e.g., Heinrich & Jüngst, 1991!.
The second approach uses description logics as knowledge
representation and reasoning mechanism~e.g., Wright et al.,
1993; McGuinness & Wright, 1998!. Clearly, an integration
of these approaches is a major milestone for the integration
of configuration systems.

Reprint requests to: Alexander Felfernig, Institut für Wirtschaftsinfor-
matik und Anwendungssysteme, Produktionsinformatik, Universitätsstrasse
65-67, A-9020 Klagenfurt, Austria. E-mail: alexander.felfernig@
uni-klu.ac.at

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2003!, 17, 31–50. Printed in the USA.
Copyright © 2003 Cambridge University Press 0890-0604003 $16.00
DOI: 10.10170S0890060403171041

31



In order to map the predicate logic based representations
into description logic based representations and vice versa,
the definition of a common view of a configuration task is
needed. A solution for the exchange of knowledge is the
provision of a standardized configuration knowledge repre-
sentation language, which is based on state of the art web
technologies that allow easy integration of existing propri-
etary configuration environments if this common view can
be obtained. Languages such as Ontology Inference Layer
~OIL; Fensel et al., 2001b! or DARPA Agent Markup Lan-
guage~DAML 1OIL; VanHarmelen et al., 2001!, which were
developed in the context of the Semantic Web~Berners–
Lee, 2000!, are intended for designing and sharing ontolo-
gies. These languages are strongly influenced by description
logics and therefore possess clear declarative semantics, an
important precondition for the exchange of knowledge. A
commonly accepted problem definition with formal seman-
tics on this basis will offer a well-defined interface between
configurator implementations and allow a joint provision-
ing of configuration services, a major step toward the inte-
gration goal identified above. Proprietary configuration
systems can then be independently implemented following
different approaches and still be able to interoperate. We
only require that cooperating configurators deliver valid
solutions with respect to the common definition of the prob-
lem and its solution.

In this paper we give a description logics based defini-
tion of a configuration task and show the equivalence of
this definition with a consistency-based definition given in
Felfernig et al.~2000b!. The major result of this equiva-
lence is that configuration tasks defined in terms of
description logics and predicate logic can be easily trans-
formed into each other and can consequently be repre-
sented in ontology representation languages such as OIL
or DAML1OIL. Using concepts of OIL,1 we present the
constituting elements of a configuration knowledge repre-
sentation language by formalizing modeling concepts of
de factostandard configuration ontologies~Soininen et al.,
1998; Felfernig et al., 2000a! employed in industrial ap-
plications.2 In addition, we point out extensions that the
ontology representation languages need for full fledged
configuration knowledge representation. Note that the goal
is not simply the representation of configuration knowl-
edge in description logics—this is a subject that has been
covered elsewhere as well~Klein et al., 1994; Schröder
et al., 1996; Weida, 1996; McGuinness & Wright, 1998!.
Instead our goal is to compare the requirements of a gen-
eral configuration ontology with the the logics chosen for
the Semantic Web and to describe the specific extensions
required for the purpose of communicating configuration

knowledge between state of the art configurators via OIL
and DAML1OIL.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce an example that provides an overview
of representative modeling concepts required for building
configuration knowledge bases. In Section 3 we give a
description logic based definition of a configuration task
and show its equivalence to the consistency-based defini-
tion given in Felfernig et al.~2000b!. In Section 4 we
describe an OIL-based as well as a corresponding predi-
cate logic based formalization of the modeling concepts
presented in Section 2. In Section 5 we summarize the
results and analyze the expressiveness of available Seman-
tic Web ontology representation languages with respect to
their capability for configuration knowledge representa-
tion. In Section 6 the CAWICOMS3 ~Ardissono et al.,
2001! environment is presented, which supports personal-
ized distributed configuration problem solving based on
the knowledge representation concepts discussed in this
paper. Section 7 discusses related work.

2. EXAMPLE CONFIGURATION
KNOWLEDGE BASE

The Unified Modeling Language~UML; Rumbaugh et al.,
1998! is the result of an integration of the object-oriented
approaches of Rumbaugh et al.~1991!, Jacobson et al.~1992!,
and Booch~1994!, which is well established in industrial
software development. UML is applicable throughout the
whole software development process from the require-
ments analysis phase to the implementation phase. In order
to allow the extension of the basic metamodel with domain-
specific modeling concepts, UML provides the concept of
profiles; the configuration domain–specific modeling con-
cepts presented in the following are the constituting ele-
ments of a UMLconfiguration profile. UML profiles can be
compared with ontologies discussed in the artificial intelli-
gence literature~e.g., Chandrasekaran et al., 1999, defines
an ontology as a theory about the sorts of objects, proper-
ties of objects, and relationships between objects that are
possible in a specified domain of knowledge!.

For the following discussions, the simple UML configu-
ration model shown in Figure 1 will serve as a working
example. This model represents the generic product struc-
ture, that is, all possible variants of a configurableCom-
puter. The basic structure of the product is modeled using
classes, generalization, and aggregation. The set of possible
products is restricted through a set of constraints that are
related to technical restrictions, economic factors, and re-
strictions according to the production process. The con-
cepts used stem from connection-based~Mittal & Frayman,
1989!, resource-based~Heinrich & Jüngst, 1991!, and1For presentation purposes we employ OIL text throughout the paper,

but this representation can be easily transformed into a corresponding
DAML 1OIL representation.

2Note that these differ from the configuration ontology that was de-
scribed for demonstration purposes in Gruber et al.~1996!.

3CAWICOMS is the acronym for Customer-Adaptive Web Interface
for the Configuration of Products and Services with Multiple Suppliers.
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structure-based~Stumptner, 1997! configuration approaches.
These configuration domain-specific concepts represent a
basic set useful for building configuration knowledge bases
and mainly correspond to those defined inde factostandard
configuration ontologies~Soininen et al., 1998; Felfernig
et al., 2000a!:

• Component types: Component types represent the ba-
sic building blocks of which a final product can be
built and they are characterized by attributes~e.g., in
Fig. 1 the component type CPU is characterized by the
attributeclockrate!.

• Generalization hierarchies: Component types with a
similar structure are arranged in a generalization hier-
archy ~e.g., in Fig. 1 the component type CPU1 is a
special kind of CPU!.

• Part–whole relationships: Part–whole relationships be-
tween component types state a range of how many
subparts an aggregate can consist of@e.g., a Computer
contains at least one and at most two motherboards
~MB!# .

• Incompatibilities and requirements: Some types of com-
ponents must not be used together within the same
configuration because they are incompatible~e.g., a

SCSIUnit is incompatible with a MB1!. In other cases,
the existence of one component of a specific type re-
quires the existence of another special component within
the configuration~e.g., an IDEUnit requires a MB1!.

• Resource constraints: Parts of a configuration task can
be seen as a resource balancing task, where some of
the component types produce some resources and oth-
ers are consumers~e.g., theconsumed hard-disk ca-
pacitymust not exceed theprovided hard-disk capacity!.
Dependencies are introduced for representing the
producer0consumer relationships between different
component types.

• Port connections: In addition to the amount of com-
ponents and their type specifications, the product
topology ~i.e., exactly how the components are inter-
connected! is often of interest as well in the final
configuration. The concept of a port is used for this
purpose~e.g., see the connection betweenVideocard
andScreenwhich is based on the portsvideoportand
screenport!. Note that in our example we do not ap-
ply generalization hierarchies for ports and resources.
Such a generalization hierarchy could be defined de-
pending on the application domain and the capabili-
ties of the underlying reasoning system. Our definitions

Fig. 1. An example of a configuration model.
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are general enough to allow these generalization
hierarchies.4

In the following we give a description logics based defini-
tion of a configuration problem and show its equivalence
with the consistency-based definition given in Felfernig et al.
~2000b!. Furthermore, we describe OIL5 based and corre-
sponding predicate logic based representations of the mod-
eling concepts presented in this section.

3. DEFINING CONFIGURATION TASKS IN
DESCRIPTION LOGIC AND PREDICATE
LOGIC

3.1. Description logic based configuration task

For the description of a configuration task we employ a
description logic language~e.g., OIL! starting from a schema
S5 ~CN,RN,IN ! of disjoint sets of names for concepts,
roles, and individuals~Borgida, 1996!. Concepts can be
seen as unary predicates defining classes~component types!.
Roles are used to express relationships between different
elements of a domain. Finally, individuals are specific named
elements of the domain.

Definition 1 ~configuration problem in description logic!
In general we assume a configuration problem is described
by a triple ~DDDL, SRSDL, CLANGDL !, where DL is de-
scription logic, DDDL represents the domain description of
the configurable product, and SRSDL specifies the particu-
lar system requirements defining an individual configura-
tion problem instance. CLANGDL comprises a set of concepts
Cconfig # CN and a set of rolesRconfig # RN that serve as
a configuration language for the description of actual con-
figurations~solutions!. n

One can think of additional restrictions on SRSDL, DDDL,
for example, that SRSDL may only contain concepts and
roles that also occur in DDDL. However, we leave this de-
cision to designers of domain-specific solutions.

In the following we will describe solutions to configura-
tion problems based on the interpretation of concepts and
roles. In order to make sure that roles in CLANGDL de-
scribe relationships only between concepts of CLANGDL,
we require that roles in CLANGDL are defined over
the domains given inCconfig; that is, we add for each
Ri [ Rconfig the role descriptions range~Ri ! 5 CDom and
dom~Ri ! 5 CDom for CDom 5• tCi[Cconfig

Ci to DDDL,
if such descriptions are not subsumed by other descrip-
tions already contained in the knowledge base. Note that
DDDL may contain auxiliary concepts or roles that are not
actually in CLANGDL.

Example 1: In this example we use a part of our com-
puter ontology~see Fig. 1! that comprises CPUs and MBs
as component types. On each MB at least one, but at most
two, CPUs are mounted~constraintc1 in DDDL !. A CPU
must always be mounted on a MB~constraintc2 in DDDL !.
A CPU of type CPU2 must be mounted on a MB of type
MB2 ~constraintc3 in DDDL !.

The domain description DDDL is defined as follows. Note
that subclass-ofanddisjoint are used to express the com-
pleteness and disjointness of the generalization hierarchy
where each individual must be instantiated to exactly one of
the leaf nodes. Note also that to avoid introducing a separate
operator we use subclass-of in reverse in one case, when
writing CPU subclass-of~CPU1 or CPU2! to specify that
the coverage of the subclasses is complete. These require-
ments together with the assumption that there is a fixed set
of component types corresponds to assumptions in other de-
scription logic based papers such as Klein et al.~1994! and
Weida~1996!. We will discuss the implications in Section 5.

DDDL 5 $

class-def MB subclass-of~MB1 or MB2!

slot-constraint cpu-of-mb min-cardinality 1 CPU

slot-constraint cpu-of-mb max-cardinality 2 CPU.
@c1#

class-def MB1 subclass-of MB.

class-def MB2 subclass-of MB.

disjoint MB1 MB2.

class-def CPU subclass-of~CPU1 or CPU2!

slot-constraint mb-of-cpu cardinality 1 MB.@c2#

class-def CPU1 subclass-of CPU.

class-def CPU2 subclass-of CPU

slot-constraint mb-of-cpu cardinality 1 MB2.@c3#

disjoint CPU1 CPU2.

disjoint CPU MB.

slot-def mb-of-cpu

inverse cpu-of-mb domain CPU range MB.

slot-def cpu-of-mb

inverse mb-of-cpu domain MB range CPU.% n

The customer requirement that there must be~at least!
“two CPUs of type CPU1 and one CPU of type CPU2” is
expressed by SRSDL 5 $~instance-ofc1 CPU1!, ~instance-of
c2 CPU1!, ~instance-ofc3 CPU2!%.

The configuration language CLANGDL is defined
by Cconfig 5 $CPU1, CPU2, MB1, MB2% and Rconfig 5
$mb-of-cpu%.

In our example we do not include the concepts CPU and
MB and the role cpu-of-mb in CLANGDL because we are
only interested in the leaf concepts of a generalization hi-
erarchy and specific relationships~e.g., to manufacture the
final system we only need to know the most specific type

4Note that UML interfaces can be used as an alternative representation
for ports, although in our configuration profile we decided to use special-
ized classes for this purpose.

5In the following we assume that the reader is familiar with the con-
cepts of OIL. See Fensel et al.~2001b! for an introductory text.
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for each component and its connections!. The semantics of
description terms are usually given denotationally using an
interpretationI 5 ^DI, ~{!I &, whereDI is a domain~non-
empty universe! of values and~{!I is a mapping from con-
cept descriptions to subsets of the domain and from role
descriptions to sets of 2-tuples over the domain. The map-
ping also associates with every individual name inIN some
distinct value inDI. The reason for this distinctness is the
unique name assumption~UNA! we employ in our formal-
ism. We require the UNA for concepts and roles that de-
scribe configurations in order to make sure that different
identifiers for individuals~e.g., modules of a system! refer
to different individuals. The UNA can be lifted, if neces-
sary, for those concepts and roles that are not used to de-
scribe configurations. In the following we give a description
logic based definition of a valid configuration and show its
equivalence with consistency-based definitions given in the
literature~Felfernig et al., 2000b!. This definition serves as
a joint foundation of configuration knowledge representa-
tion in the Semantic Web.

We use the extensions of concepts and roles that corre-
spond to a logical model to specify valid configurations.
Note that, depending on the domain, only specific con-
cepts and roles are considered relevant for describing
configurations~i.e., those roles and concepts defined in
CLANGDL !.

Our definition of a valid configuration does not make use
of extraneous requirements such as minimality. Following
our definitions, the domain description joined with the sys-
tem requirements specification~describing the expectations
of a customer! must enforce configuration solutions~de-
scribed by the configuration language! such that these so-
lutions deliver services which match the expectations of the
customer. In practice~Fleischanderl et al., 1998! we have
to allow solutions that may even include components that
are unnecessary with respect to the current system require-
ments because some of these components might be needed
in later extensions~reconfigurations!. Accepting solutions
that are satisfactory with respect to costs or to the number
of components used is common practice in real-world ap-
plications. Although the optimality of such solutions is not
shown, these solutions are appreciated because they are as
good as or even better than good quality solutions provided
by human experts.

Definition 2 ~valid configuration in description logic!.
Given a configuration problemC 5 ~DDDL , SRSDL ,
CLANGDL!, letI5 ^DI,~{!I& be a model of DDDL ø SRSDL.
CLANGDL 5 Cconfig ø Rconfig is the configuration lan-
guage of the problem. Let COMPS be a set of tuples^Ci ,
INDIVSCi

& for everyCi [ Cconfig, where INDIVSCi
5 $ci1,

. . . ,cini
% 5 Ci

I is the set of individuals of conceptCi in I.
These individuals identify components in an actual con-
figuration. Let TUPLESRj

5 $^rj1, sj1&, . . . , ^rjmj
, sjmj

&% 5

Rj
I be the set of tuples of roleRj , then we define ROLES5

$^Rj , TUPLESRj
&6Rj [ Rconfig%.

We call CONFDL 5 COMPSø ROLES a valid configu-
ration forC. n

Example 2. A valid configuration for our example con-
figuration problem is CONFDL 5 $^CPU1, $c1, c2% &,
^CPU2, $c3%&, ^MB1, $m1%&, ^MB2, $m2%&, ^mb-of-cpu,
$^m1, c1&, ^m1, c2& ^m2, c3&%&%. n

We also have to describe component parameter settings
in addition to components and their connections. Using de-
scription logics, such parameter settings of components are
modeled by special functional roles~also calledfeatures!
expressing the relation between the component and the data
value assigned to a particular attribute. Therefore, compo-
nent structure and parameter settings can be treated in a
uniform manner except that the parameter values come from
some data value domain dom~D! ~Sattler, 2000!, which is
disjunct from the individuals in COMPS.

In addition to the definition of a valid configuration given
above, we can provide an equivalent characterization based
on checking the consistency of a set of axioms.

Remark 1. Let DDDL, SRSDL, CLANGDL 5 Cconfig ø
Rconfig be a configuration problem, and CONFDL 5
COMPSø ROLES be a description of a configuration.

The conceptsCi are defined by the component axioms

AXCOMPS5 $Ci 5• one-of@ci1, . . . ,cini
#6^Ci , INDIVSCi

&

[ COMPS where INDIVSCi
5 $ci1, . . . ,cini

%%.

The rolesRj are defined by the role axioms

AX ROLES 5 HRj 5• t
^rj ,sj&[TUPLESRj

product@one-of@rj # ,

one-of@sj ##6^Rj , TUPLESRj
& [ ROLES

where TUPLESRj
5 $^rj1,sj1&, . . . ,̂ rjmj

,sjmj
&%J .

CONFDL is a valid configuration iff

DDDL ø SRSDL ø AXCOMPSø AXROLES

is satisfiable. n

Note that we use the above notation for defining the com-
plete extension of roles in order to apply the translation
function from description logics to predicate logic defined
in Borgida~1996!. An alternative to theproductconstructor
would be a constructor that~similar to theone-ofconstruc-
tor for concepts! permits the enumeration of permissible
entries for a role. However, computation of the product
requires only constant effort because we only applyprod-
uct to singleton arguments.
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Example 3. In order to verify that a given configura-
tion is valid with respect to our example configuration
problem ~defined by DDDL and SRSDL !, we need to
add the axioms CPU15• one-of@c1,c2# , CPU2 5•

one-of@c3# , MB1 5• one-of@m1# , MB2 5• one-of@m2# ,

mb-of-cpu5• product@one-of@m1# , one-of@c1## t product

@one-of@m1# , one-of@c2## t product@one-of@m2# , one-
of@c3## . n

We now give a consistency-based definition of a config-
uration problem using predicate logic6 ~corresponding to
the definition given in Felfernig et al., 2000b! and show the
equivalence with the description logic based definition given
before.

3.2. Predicate logic based configuration task

Definition 3 ~configuration problem in predicate
logic!. In general we assume a configuration problem
is described by a triple~DDLOG, SRSLOG, CLANGLOG!
where DDLOG and SRSLOG are sets of logical sentences and
CLANGLOG is a set of predicate symbols. DDLOG repre-
sents the domain description and SRSLOG specifies the par-
ticular system requirements. A configuration CONFLOG is
described by a set of positive ground literals whose predi-
cate symbols are in the set of CLANGLOG. n

Example 4. For our example, DDLOG can be expressed
by using monadic and dyadic predicates and numerical quan-
tifiers, that is:

DDLOG 5 $

;X : MB ~X ! a MB1~X ! ∨ MB2~X !.

;X : ¬MB1~X ! ∨ ¬MB2~X !.

;X : MB ~X ! r '1
2 Y: cpu-of-mb~Y, X !. @c1#

;X : CPU~X ! a CPU1~X ! ∨ CPU2~X !.

;X : ¬CPU1~X ! ∨ ¬CPU2~X !.

;X : CPU~X ! r '1
1 Y: mb-of-cpu~Y, X !. @c2#

;X : CPU2~X ! r '1
1 Y: mb-of-cpu~Y, X ! ∧ MB2~Y!. @c3#

;X : ¬MB ~X ! ∨ ¬CPU~X !.

;X,Y: mb-of-cpu~X,Y! a cpu-of-mb~Y, X !.

;X,Y: mb-of-cpu~X,Y! r MB ~X ! ∧ CPU~Y!%.

SRSLOG 5 $CPU1~c1!. CPU1~c2!. CPU2~c3!.%.

CLANGLOG 5 $CPU1, CPU2, MB1, MB2, mb-of-cpu%. n

Definition 4 ~consistent configuration in predicate
logic!. Given a configuration problem~DDLOG, SRSLOG,
CLANGLOG!, a configuration CONFLOG is consistent iff
DDLOG ø SRSLOG ø CONFLOG is satisfiable. n

This definition allows determining the consistency of
partial configurations but does not guarantee the complete-
ness of configurations~Felfernig et al., 2000b!. It is nec-
essary that a configuration explicitly includes all needed
components~and their connections and attribute values!
in order to assemble a correctly functioning system. We
need to introduce an explicit formula for each predicate
symbol in CLANGLOG to enforce its completeness prop-
erty. In order to stay within first order logic, we model
the property by first order formulae. For our example we
have to add the completeness axiom;X : CPU1~X ! ]

~∨Z[CONFLOG
CPU1~X ! 5 Z! for the predicate CPU1 and

similar axioms for CPU2 and mb-of-cpu. Note that∨Z[CONFLOG
CPU1~X ! 5 Z serves as a macro, which is

expanded into a set of formulas by substituting the ele-
ments of CONFLOG for Z. Also note that if there are no
parts of a particular type, the consequent of this rule de-
generates to the empty clause~preventing spurious
parts of that type from appearing in the configuration!. We
refer to CONFLOG extended by completeness axioms as
C ZONFLOG.

Note that the empty configuration can be a valid config-
uration. This is in keeping with the standard approach to
specifying configuration problems, where it is a problem-
dependent explicit specification expressed through key com-
ponents~Mittal & Frayman, 1989; Heinrich & Jüngst, 1991;
Fleischanderl et al., 1998! or some sort of functionality
~which can only be satisfied by including components in
the configuration, e.g., because of the existence of resource
constraints! that prevents empty configurations from being
consistent.

Example 5. CONFLOG 5 $CPU1~c1!. CPU1~c2!.
CPU2~c3!. MB1~m1!. MB2~m2!. mb-of-cpu~m1,c1!.
mb-of-cpu~m1,c2!. mb-of-cpu~m2,c3!.%

The completeness axiom for CPU1 is

;X : CPU1~X ! ]

CPU1~X ! 5 CPU1~c1! ∨ CPU1~X ! 5 CPU1~c2!,

where unsatisfiable literals are deleted. n

Definition 5 ~valid configuration in predicate logic!.
Let ~DDLOG, SRSLOG, CLANGLOG! be a configuration prob-
lem. A configuration CONFLOG is valid iff DDLOG ø
SRSLOG ø C ZONFLOG is satisfiable. n

Note that CONFLOG in Example 5 is a valid configuration.

3.3. Equivalence

In order to show the equivalence of valid configurations for
description logic and predicate logic, we apply a translation

6We employ a notation where variables are all quantified if not explic-
itly mentioned.
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functionT ^{& that maps description logics to predicate logic,
that is, axioms to formulas with no free variables, concepts
to formulas with one free variable, and roles to formulas
with two free variables.

Borgida ~1996, Theorem 1 and subsequent corollaries!
provides such a translation functionT ^{& such that con-
cepts, roles, terms, and axioms of a description language
~DL! without transitive closure7 are translated into equiv-
alent formulas in the first-order predicate logic\LCNT

3 . This
language \LCNT

3 allows only monadic and dyadic predicates,
counting quantifiers and subformulas with at most three free
variables. The UNA is assumed from the outset. For a con-
ceptC in CN T X^C& 5 C~X !, for a roler in RN T X,Y ^r &
produces a predicater ~X,Y!. Following this approach,Cv
D can be translated as;X : T X^C& r T X^D&, and@C, D#
can be translated asT X^C& ∧ T X^D&, or @C, D# can be
translated asT X^C& ∨ T X^D&, one-of@b1,b2, . . . ,bm# can
be translated asX 5 b1 ∨ X 5 b2 ∨ {{{ ∨ X 5 bm, and
product@C, D# can be translated asT X^C& ∧ T Y^D&.

Similar to the above-mentioned translation function~Bor-
gida, 1996, Theorem 2 and subsequent corollaries! defines
a translation function that maps sentences of\LCNT

3 intoDL.
Given functionT ^{&, DDLOG ø SRSLOG 5 T ^DDDL ø
SRSDL & holds for all DDDL and SRSDL, and DDLOG ø
SRSLOG is satisfiable iff DDDL ø SRSDL is satisfiable.

Remark 2 ~equivalence of configuration problems!.
Let CLANGLOG 5 CLANGDL where each concept is
interpreted as monadic and each role is interpreted
as dyadic predicate. DDDL and SRSDL are sets of sen-
tences in the description logic languageDL without
transitive closure. DDLOG and SRSLOG are sets of sen-
tences in \LCNT

3 . CONFLOG describes the actual config-
uration by two sets of facts CONFLOG 5 COMP-factsø
ROLE-facts. The construction of CONFLOG is based on
CONFDL 5 COMPS ø ROLES where COMP-facts5
$Ci ~ci !6ci [ INDIVSCi

,Ci [ Cconfig% and ROLE-facts5
$Rj ~rj ,sj!6^rj ,sj& [ TUPLESRj

, Rj [ Rconfig%. DDLOG 5
T ^DDDL & and SRSLOG 5 T ^SRSDL &.

CONFLOG is a valid configuration for~DDLOG,SRSLOG,
CLANGLOG! iff CONFDL is a valid configuration for
~DDDL,SRSDL,CLANGDL !. n

Remark 2 follows from Remark 1 and the equivalence
property of the translation function. Note that CLANGLOG

is restricted to exactly the monadic and dyadic predicates
that correspond to the concept and role definitions of
CLANGDL and no others. The equivalence result stated in
the last sentence of the remark is made specifically for lan-
guages restricted in this manner~i.e.,DL without transitive
closure and \LCNT

3 !, and in this case the equivalence holds.
Note also that the completeness axioms correspond exactly
to the translation of the axioms AXCOMPSand AXROLESby

applying the translation function proposed in Borgida~1996!.
For example, by employing the translation function, aCi in
AXCOMPSis translated toCi ~X ! a X5 ci1 ∨ {{{ ∨ X5 cini

for INDIVSCi
5 ci1, . . . ,cini , which is equivalent to our

completeness axioms~predicate logic! for Ci . Note that in
the formulation of the completeness axioms only one direc-
tion of the implication needs to be expressed because the
Ci ~ci ! facts about the individualsci are asserted by defini-
tion ~they are contained in CONFLOG!. The5• corresponds
to identity andt corresponds to a disjunction. The equiv-
alence for AXROLESfollows immediately by using the trans-
lation rules for the termsone-ofandproduct.

Note that there is a one to one relationship between
CONFLOG and CONFDL. Applying Remarks 1 and 2, every
valid configuration in the corresponding restricted predi-
cate logic ~i.e., \LCNT

3 ! corresponds to a valid config-
uration in description logic. In addition, every valid
configuration in description logic corresponds to a valid
configuration in predicate logic. It follows that no config-
uration is missed using either of the two representations.

From the equivalence of configuration problems follow
two important consequences. First, the two main streams in
solving configuration problems based on description logics
on the one hand, and predicate or propositional logic on the
other hand can be easily transformed to each other. Second,
because description logics without transitive closure are
equally expressive to dyadic predicate logic with counting
quantifiers and at most three free variables in each subfor-
mula ~Borgida, 1996!, it follows that the predicate logic
based approach is strictly more expressive than the descrip-
tion logics based approach, implying that some logic con-
structions have to be simulated by more complex description
logic constructions, and also that certain complex structural
restrictions~Immerman, 1982; Cai et al., 1989; Schröder
et al., 1996! are not expressible in the language directly but
have to be incorporated using a more expressive assertional
language.

4. STANDARDIZED KNOWLEDGE
REPRESENTATION

UML ~Rumbaugh et al., 1998! is a well-established model-
ing language in industrial software development processes.
Felfernig et al.~2000a! demonstrated the applicability of
UML for configuration knowledge representation. In order
to bridge the gap between research and development orga-
nizations, we think it is indispensable to relate the knowl-
edge representation concepts to UML. In the following, we
employ UML as a basis for showing the representation of
configuration knowledge in OIL and in predicate logic. For
the modeling concepts discussed in Section 2, we present a
set of rules for translating those concepts into an OIL based
representation, as well as into an equivalent predicate logic
based representation. The equivalence of the description
logic and the predicate logic based representations is founded
in the translation functionT ^{& proposed in Borgida~1996!.

7This description language contains a comprehensive list of operators
based on an analysis of a set of corresponding survey papers.

Configuration knowledge representations 37



UML is based on a graphical notation; therefore, our trans-
lation starts from such a graphical description of a con-
figuration domain. In the following, GREP denotes the
graphical representationof the UML configuration model.
For the model elements of GREP~i.e., component types,
generalization hierarchies, part–whole relationships, require-
ment constraints, incompatibility constraints!, we propose
rules for translating those concepts into a description logic
based and into a predicate logic based representation. Note
that we do not discuss the translation of resource con-
straints in this section because resource constraints cannot
be represented using standard predicate logic or standard
description logic~i.e., OIL, DAML1OIL!. Semantics for
resource constraints are presented in Section 5.

Rule 1a ~component types!. Let c be a component type
in GREP, then

• DDDL is extended by class-defc.

For all attributesa of c in GREP, andd the domain ofa in
GREP,

• DDDL is extended by
slot-defa.
c: slot-constrainta cardinality 1d.

• DDLOG is extended by

;X : c~X ! r '1
1 Y: a~X,Y!.

;X,Y: c~X ! ∧ a~X,Y! r d~Y!. n

Rule 1b ~component types!. For those component types
ci ,cj [ $c1, . . . ,cm% ~ci Þ cj !, which do not have any super-
types in GREP,

• DDDL is extended bydisjoint ci ,cj .

• DDLOG is extended by;X : ¬ci ~X ! ∨ ¬cj ~X !. n

Example 6a ~component type CPU!.

class-def CPU.

slot-def clockrate.

CPU: slot-constraint clockrate cardinality 1~~min 300!
and~max 500!!.

disjoint CPU MB.

disjoint MB Screen.

. . . n

Example 6b ~component type CPU!.

;X : CPU~X ! r '1
1 Y: clockrate~X,Y!.

;X,Y: CPU~X ! ∧ clockrate~X,Y! r min~Y,300! ∧ max~Y,500!.

;X : ¬CPU~X ! ∨ ¬MB ~X !.

;X : ¬MB ~X ! ∨ ¬Screen~X !.

. . . n

Subtyping in the configuration domain means that
attributes and roles of a given component type are inherited
by its subtypes. In most configuration environments, a dis-
junctive and complete semantics is assumed for generaliza-
tion hierarchies, where the disjunctive semantics can be
expressed using thedisjoint axiom and the completeness
can be expressed by forcing the superclass to conform to
one of the given subclasses as follows.

Rule 2 ~generalization hierarchies!. Let u andd1, . . . ,dn

be classes~component types! in GREP, whereu is the su-
perclass ofd1, . . . ,dn, then

• DDDL is extended by

d1, . . . ,dn: subclass-ofu.

u: subclass-of~d1 or {{{ or dn!.

;di , dj [ $d1, . . . ,dn% ~di Þ dj ! : disjoint di dj .

• DDLOG is extended by

;X : u~X ! a d1~X ! ∨ {{{ ∨ dn~X !.

;X : ¬di ~X ! ∨ ¬dj ~X ! for di , dj [ $d1, . . . ,dn%

~di Þ dj !. n

Example 7a ~CPU1, CPU2 subclasses of CPU!.

CPU1: subclass-of CPU.

CPU2: subclass-of CPU.

CPU: subclass-of~CPU1 or CPU2!.

disjoint CPU1 CPU2. n

Example 7b ~CPU1, CPU2 subclasses of CPU!.

;X : CPU~X ! a CPU1~X ! ∨ CPU2~X !.

;X : ¬CPU1~X ! ∨ ¬CPU2~X !.
n

Part–whole relationships are important model properties
in the configuration domain. Artale et al.~1996!, Soininen
et al.~1998!, and Sattler~2000! pointed out that part–whole
relationships have quite variable semantics depending on
the application domain. In most configuration environ-
ments, a part–whole relationship is described by the two
basic rolespartof andhaspart. Depending on the intended
semantics, different additional restrictions can be placed on
the usage of those roles. Note that we do not require acy-
clicity because particular domains such as software config-
uration allow cycles on the type level. In the following we
discuss two facets of part–whole relationships that are widely
used for configuration knowledge representation~Soininen
et al., 1998! and are also provided by UML, namelycom-
posite and sharedpart–whole relationships. In UML the
composite part–whole relationships are denoted by a black
diamond and shared part–whole relationships are denoted
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by a white diamond.8 If a component is acompositional
part of another component, then strong ownership is re-
quired, that is, it must be part of exactly one component. If
a component is anoncompositional~shared! part of an-
other component, it can be shared between different com-
ponents. Multiplicities used to describe a part–whole
relationship denote how many parts the aggregate can con-
sist of and among how many aggregates a part can be shared
if the aggregation isnoncomposite. The basic structure of a
part–whole relationship is shown in Figure 2.

Rule 3 ~part–whole relationships!. Let w andp be com-
ponent types in GREP, wherep is a part ofw, ubp is the
upper bound and lbp is the lower bound of the multiplicity
of the part, and ubw is the upper bound and lbw is the lower
bound of the multiplicity of the whole. Furthermore, let
w-of-p and p-of-w denote the names of the roles of the
part–whole relationship betweenw and p, where w-of-p
denotes the role connecting the part with the whole and
p-of-w denotes the role connecting the whole with the part,
that is, p-of-w v haspart,w-of-p v Partofmode, where
Partofmode [ $partofcomposite,partofshared%. A part p can be
either a shared part~concept partshared! or a composite part
~concept partcomposite!. Given a part–whole relationship be-
tweenp andw in GREP, then

• DDDL is extended by
slot-def w-of-p subslot-ofPartofmode inversep-of-w

domainp rangew.
slot-def p-of-w subslot-of haspart inverse w-of-p

domainw rangep.
p: subclass-of~partsharedor partcomposite!.
p: slot-constraintw-of-p min-cardinality lbw w.
p: slot-constraintw-of-p max-cardinality ubw w.
w: slot-constraintp-of-w min-cardinality lbp p.
w: slot-constraintp-of-w max-cardinality ubp p.

• DDLOG is extended by

;X,Y: w-of-p~X,Y! r Partofmode~X,Y!.

;X,Y: p-of-w~X,Y! r haspart~X,Y!.

;X,Y: w-of-p~X,Y! r w~X ! ∧ p~Y!.

;X,Y: p-of-w~X,Y! a w-of-p~Y, X !.

;X : p~X ! r partshared~X ! ∨ partcomposite~X !.

;X : p~X ! r ' lbw

ubw Y: w-of-p~Y, X !.

;X : w~X ! r ' lbp

ubp Y: p-of-w~Y, X !. n

Remark 3. The following properties have to hold for
shared and composite part–whole relationships.

• Each shared part is connected to at least one whole,
that is,

~DDDL ! partshared: slot-constraintpartofshared

min-cardinality 1 top.
~DDLOG! ;X : partshared~X ! r 'Y: partofshared~Y, X !.

• Each composite part is connected to exactly one whole,
that is,

~DDDL ! partcomposite: slot-constraintpartofcomposite

min-cardinality 1 top.
slot-constraintpartofcomposite

max-cardinality 1 top.

~DDLOG! ;X : partcomposite~X ! r '1
1 Y:

partofcomposite~Y, X !.

• A shared part cannot be a composite part at the same
time, that is,

~DDDL ! disjoint partsharedpartcomposite

~DDLOG! ;X : ¬partshared~X ! ∨ ¬partcomposite~X !. n

Example 8a ~MB partof Computer!.

slot-def computer-of-mb subslot-of partofcomposite

inverse mb-of-computer domain MB range Computer.

slot-def mb-of-computer subslot-of haspart

inverse computer-of-mb domain Computer range MB.

MB: subclass-of~partsharedor partcomposite!

MB: slot-constraint computer-of-mb min-cardinality 1
Computer.

MB: slot-constraint computer-of-mb max-cardinality 1
Computer.

Computer: slot-constraint mb-of-computer min-cardinality
1 MB.

Computer: slot-constraint mb-of-computer max-
cardinality 2 MB. n

8Note that in our Computer configuration example we only use com-
posite part–whole relationships. As mentioned in Soininen et al.~1998!,
composite part–whole relationships are often used when modeling physi-
cal products, whereas shared part–whole relationships are used to describe
abstract entities such as services.

Fig. 2. The part–whole relationship~p, part; w, whole!.
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Example 8b ~MB partof Computer!:

;X,Y: computer-of-mb~X,Y! r partofcomposite~X,Y!.

;X,Y: mb-of-computer~X,Y! r haspart~X,Y!.

;X,Y: computer-of-mb~X,Y! r computer~X ! ∧ mb~Y!.

;X,Y: mb-of-computer~X,Y! a computer-of-mb~Y, X !.

;X : MB ~X ! r partshared~X ! ∨ partcomposite~X !.

;X : MB ~X ! r '1
1 Y: computer-of-mb~Y, X !.

;X : Computer~X ! r '1
2 Y: mb-of-computer~Y, X !. n

4.1. Necessary part-of structure properties

In the following we show how the constraints contained in
a product configuration model~e.g., an IDEUnit requires
an MB1! can be translated into a corresponding OIL repre-
sentation. For a consistent application of the translation rules,
it must be ensured that the components involved are parts
of the same subconfiguration, that is, the involved compo-
nents must be connected to the same instance of the com-
ponent type that represents the common root9 for these
components, meaning that they are within the same mere-
ological context~Soininen et al., 1998!. This can be simply
expressed by the notion that component types in such a
hierarchy must each have a unique superior component type
in GREP. If this uniqueness property is not satisfied, the
meaning of the imposed~graphically represented! con-
straints becomes ambiguous, because one component can
be part of more than one substructure. Consequently, the
scope of the constraint becomes ambiguous.

For the derivation of constraints on the product model,
we introduce the macronavpath as an abbreviation for a
navigation expression over roles. For the definition of nav-
path the UML configuration model can be interpreted as a
directed graph, where component types are represented by
vertices and part–whole relationships are represented by
edges.

Definition 6 ~navigation expression!. Let path~c1,cn!
be a path from a component typec1 to a component typecn

in GREP represented through a sequence of expressions of
the form haspart~Ci ,Cj , NameCi ! denoting a direct partof
relationship between the component typesCi andCj . Fur-
thermore, NameCi represents the name of the correspond-
ing haspart role. Such a path in GREP is represented as

path~c1,cn! 5 ^haspart~c1,c2,namec1!,

haspart~c2,c3,namec2!, . . . ,

haspart~cn21,cn,namecn21!&.

Based on the definition of path~c1,cn! we can define the
macro navpath~c1,cn! as

slot-constraintnamec1

has-value~slot-constraintnamec2 {{{
has-value~slot-constraint namecn21 has-value

cn!{{{!.

For the translation into DDLOG the macro navpath~c1,cn!
is defined as

'Y1,Y2, . . . ,Yn21,Yn :

namec1~Y1, X ! ∧ namec2~Y2,Y1! ∧ {{{ ∧ namecn21~Yn,Yn21! ∧

cn~Yn!,

whereX is a free variable quantified outside the scope of
this expression and represents an instance of conceptc1.

n

Example 9a ~navpath~Computer,CPU1!!.

slot-constraintmb-of-computer
has-value~slot-constraintcpu-of-mbhas-value CPU1!.

n

Example 9b ~navpath~Computer,CPU1!!.

'Y1,Y2 : mb-of-computer~Y1, X ! ∧ cpu-of-mb~Y2,Y1! ∧

CPU1~Y2!. n

The concept of anearest common rootis based on the
definition of navpath as follows.

Definition 7 ~nearest common root!. A component type
r is denoted as the nearest common root of the component
typesc1 and c2 in GREP, iff there exist paths path~r,c1!,
path~r,c2! and there does not exist a component typer ',
wherer ' is a part10 of r with paths path~r ',c1!, path~r ',c2!.n

When regarding the example configuration model of Fig-
ure 1, MB is the nearest common root of CPU and Video-
card. Note that the component type Computer is not a nearest
common root of CPU and Videocard but it is the nearest
common root of CPU1 and IDEUnit~see Fig. 3!.

4.2. Requirement constraints

A requiresconstraint between two component types,c1 and
c2, in GREP denotes the fact that the existence of an in-
stance of component typec1 requires an instance of com-
ponent typec2 in the same~sub!configuration.

Rule 4 ~requirement constraints!. Given the relationship
c1 requires c2 between the component typesc1 and c2 in
GREP withr as the nearest common root ofc1 andc2, then

• DDDL is extended byr : ~~not~navpath~r , c1!! ! or
~navpath~r,c2!!!.

• DDLOG is extended by;X : r ~X!r ~~navpath~r,c1!!r
~navpath~r,c2!!!. n

9In Figure 3 the component type Computer is the unique common root
of IDEUnit and CPU1. 10In this context partof is assumed to be transitive.
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The condition part of the inner implication is a path from
the nearest common root to the componentc1; the conse-
quent is a path to the required componentc2.

Example 10a~IDEUnit requires MB1!.

Computer:~~not ~slot-constrainthdunit-of-computerhas-
valueIDEUnit!! or

~slot-constraintmb-of-computerhas-
value MB1!!. n

Example 10b ~IDEUnit requires MB1!.

;X : Computer~X ! r ~~ 'Y1 : hdunit-of-computer~Y1, X ! ∧

IDEUnit~Y1!! r

~ 'Y2 : mb-of-computer~Y2, X ! ∧ MB1~Y2!!!. n

4.3. Incompatibility constraints

An incompatibility constraint between a set of component
typesc 5 $c1, c2, . . . ,cn% in GREP denotes the fact that the
existence of a tuple of instances corresponding to the types
in c is not allowed in a final configuration~result!.

Rule 5 ~incompatibility constraints!. Given an incom-
patibility constraint between a set of component typesc 5
$c1,c2, . . . ,cn% in GREP withr as the nearest common root
of $c1,c2, . . . ,cn% , then

• DDDL is extended by
r:~not~~navpath~r,c1!! and~navpath~r,c2!! and{{{ and
~navpath~r,cn!!!!.

• DDLOG is extended by
;X : r ~X! r ~~navpath~r,c1!! ∧ ~navpath~r,c2!! ∧ {{{
∧ ~navpath~r,cn!! r false!. n

Example 11a~SCSIUnit incompatible with MB1!.

Computer:~not ~~slot-constraint
hdunit-of-computer has-value SCSIUnit! and

~slot-constraint mb-of-computer has-value MB1!!!. n

Example 11b ~SCSIUnit incompatible with MB1!.

;X : Computer~X ! r ~~ 'Y1 : hdunit-of-computer~Y1, X ! ∧

SCSIUnit~Y1!! ∧

~ 'Y2 : mb-of-computer~Y2, X ! ∧ MB1~Y2!! r false!. n

4.4. Resource constraints

In order to introduce resource constraints, additional expres-
sivity requirements must be fulfilled. This issue will be
discussed in Section 5.

4.5. Port connections

Ports in the UML configuration model~see Fig. 4! repre-
sent physical connection points between components~e.g.,
a Videocard can be connected to a Screen using the port
combinationvideoport1 andscreenport2!. In UML we in-
troduce ports using classes with stereotypePort; these ports
are connected to component types using relationships.

In order to represent port connections in OIL, we intro-
duce them via a separate concept Port.11 The rolecompnt
indicates the component concept that the port belongs to,
the roleportnamedetermines its name, and the roleconn

11Note that in OIL there are only predicates with arity 1 or 2 available.
Therefore, the representation of port connections must be realized by the
definition of additional concepts.

Fig. 3. The navigation paths from Computer to CPU1 and IDEUnit.
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describes the relation to the counterpart port concept of the
connected component.

Rule 6 ~port connections!. Let $a, b% be component
types in GREP,$ pa, pb% be the corresponding connected
port types,$ma, mb% be the multiplicities of the port types
with respect to$a, b% ,12 and $$lbpa, ubpa%, $ lbpb, lbpb%% be
the lower and upper bounds of the multiplicities of the port
types with respect to$ pa, pb% , then

• DDDL is extended by
class-defpa subclass-ofPort.
class-defpb subclass-ofPort.
pa: slot-constraintportnamecardinality 1~one-ofpa1

{{{ pama!.
13

pa: slot-constraintconnmin-cardinality lbpa pb.
pa: slot-constraintconnmax-cardinality ubpa pb.
pa: slot-constraintconnvalue-typepb.
pa: slot-constraintcompntcardinality 1a.
pb: slot-constraintportnamecardinality 1~one-ofpb1

{{{ pbmb!.
pb: slot-constraintconnmin-cardinality lbpb pa.
pb: slot-constraintconnmax-cardinality ubpb pa.
pb: slot-constraintconnvalue-typepa.
pb: slot-constraintcompntcardinality 1b.

• DDLOG is extended by

;X : pa~X ! r ~ 'Y: portname~X,Y! ∧
~Y5 pa1 ∨ {{{ ∨ Y5 pama!!.

;X : pa~X ! r ~ ' lbpa

ubpa Y: conn~X,Y! ∧ pb~Y!!.

;X,Y: pa~X ! ∧ conn~X,Y! r pb~Y!.

;X : pa~X ! r ~ '1
1 Y: compnt~X,Y! ∧ a~Y!!.

;X : pb~X ! r ~ 'Y: portname~X,Y! ∧
~Y5 pb1 ∨ . . . ∨ Y5 pbmb!!.

;X : pb~X ! r ~ ' lbpb

ubpb Y: conn~X,Y! ∧ pa~Y!!.

;X,Y: pb~X ! ∧ conn~X,Y! r pa~Y!.

;X : pb~X ! r ~ '1
1 Y: compnt~X,Y! ∧ b~Y!!. n

Example 12a~Videocardconnected toScreen!.

class-defvideoportsubclass-ofPort.

class-defscreenportsubclass-ofPort.

videoport: slot-constraintportnamecardinality 1 one-of
~videoport1 videoport2!.

videoport: slot-constraintconnmin-cardinality 0screen-
port.

videoport: slot-constraintconnmax-cardinality 1screen-
port.

videoport: slot-constraintconnvalue-typescreenport.

videoport: slot-constraintcompntcardinality 1 Video-
card.

screenport: slot-constraintportnamecardinality 1~one-of
screenport1 screenport2!.

screenport: slot-constraint conn min-cardinality 1
videoport.

screenport: slot-constraintconn max-cardinality 1
videoport.

screenport: slot-constraintconnvalue-typevideoport.

screenport: slot-constraintcompntcardinality 1Screen.
n

Example 12b ~Videocard connected to Screen!.

;X : videoport~X ! r ~ 'Y: portname~X,Y! ∧
~Y5 videoport1 ∨ Y5 videoport2!!.

;X : videoport~X ! r ~ '0
1 Y: conn~X,Y! ∧ screenport~Y!!.

;X,Y: videoport~X ! ∧ conn~X,Y! r screenport~Y!.

;X : videoport~X ! r ~'1
1Y : compnt~X,Y! ∧ Videocard~Y!!.

;X : screenport~X ! r ~ 'Y: portname~X,Y! ∧
~Y 5 screenport1 ∨ Y5 screenport2!!.

;X : screenport~X ! r ~ '1
1 Y: conn~X,Y! ∧ videoport~Y!!.

;X,Y: screenport~X ! ∧ conn~X,Y! r videoport~Y!.

;X : screenport~X ! r ~ '1
1 Y: compnt~X,Y! ∧ Screen~Y!!. n

Using the port connection structure defined above, the
constraint “a Videocard must be connected via videoport1

with a Screen via screenport1” can be written as follows.

Example 13a.

Videocard: ~slot-constraint videoport-of-videocard
has-value

~~slot-constraintportnamehas-value~one-ofvideoport1!!
and

~slot-constraintconn has-value~~slot-constraintcompnt
has-valueScreen! and

~slot-constraint portname has-value ~one-of
screenport1!!!!!!. n

12In this context no differentiation between lower and upper bound is
needed because the number of ports of a component is exactly known
beforehand.

13In this contextpai denotes onepa port.

Fig. 4. The ports in the configuration model.
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Example 13b.

;X : Videocard~X ! r ~ 'Y1 : videoport-of-videocard~Y1, X ! ∧

~ 'Y2 : portname~Y1,Y2! ∧ ~Y2 5 videoport1!! ∧

~ 'Y3 : conn~Y1,Y3! ∧

~ 'Y4 : compnt~Y3,Y4! ∧ Screen~Y4!! ∧

~ 'Y5 : portname~Y3,Y5! ∧

~Y5 5 screenport1!!!!. n

5. ANALYSIS

Although the basic frame structure and formal basis of
description logics based languages makes them one of
the natural choices for configuration representation, cer-
tain demands on expressiveness must be met. This section
deals with the functions that are not currently expressible
in OIL and therefore require extensions to the language:
aggregation functions and built-in predicates, representa-
tion of resources, structural properties andn-ary relation-
ships, and the possible incorporation of specific assertional
languages. These will be considered in the following
subsections.

5.1. Aggregation functions and built-in predicates

The current versions of OIL~Fensel et al., 2001b! and
DAML 1OIL ~VanHarmelen et al., 2001! do not support
aggregation functions~e.g., sum or avg! which are funda-
mental representation concepts frequently used in the con-
figuration domain. Baader and Sattler~1998! provided
concrete domains and aggregation functions over them as
extensions to the basic description logicALC. In addition
to aggregation functions, built-in predicates must be al-
lowed in order to support comparisons on the results of
aggregation functions as well as on local features. In con-
figuration knowledge representation aggregation functions
are used for designing resource constraints enforcing the
balance between produced and consumed resources.

Resource constraints can be modeled in UML using ste-
reotyped classes representing types of resources and stereo-
typed dependencies with a corresponding tagged value
indicating resource production and consumption~see Fig. 1!.
Resource balancing tasks~Heinrich & Jüngst, 1991! are
defined within a~sub!tree ~context! of the configuration
model. To map a resource balancing task into DD, addi-
tional attributes~resp and resc in the following! have to be
defined for the component types acting as producers and
consumers. In addition, we have to introduce aggregation
functions as representation concepts, which are currently
supported neither in OIL nor DAML1OIL. However, pro-
posals exist~Baader & Sattler, 1998! to extend description
logics by concepts that allow the modeling of such resource
constructs. The following representation of aggregation func-

tions is based on the formalism presented in Baader and
Sattler~1998!, where a set of predicatesP associated with
binary relations~e.g., #, $, ,, .! over a value domain
dom~D! and a set of aggregation functions agg~D! ~e.g.,
count,min,max,sum! are defined. Letf be the path leading
from the nearest common root to the concept whose fea-
tures are aggregated. Then the definitions of Baader and
Sattler~1998! require that all but the last one of the roles in
f must be features, that is, functional relations~see Sec-
tion 3!. Note that for our navpath expressions functional
restrictions are also required.

Rule 7 ~resource constraints!. Let p 5 $ p1, p2, . . . ,pn%
be producing component types andc 5 $c1,c2, . . . ,cm% be
consuming component types of resourceres in GREP. Fur-
thermore, let resp be a feature common to all component
types inp, and resc be a feature common to the types inc,
where the values of resp and resc are defined by the tagged
values of the consumes and produces dependencies in GREP.

Using the notation of Baader and Sattler~1998!, a re-
source constraint for DDDL can be expressed as

r: P~r1
1 r2

1 {{{ rn21
1 (~rn

1 + resp!, r1
2 r2

2 {{{ rm21
2 (~rm

2 + resc!!,

wherer represents the nearest common root of the elements
in c andp, P is a binary relation, and, r1

1, r2
1, . . . ,rn

1 . , ,
r1

2, r2
2, . . . ,rm

2 . represent navigation paths fromr to the
elements ofp andc.

A resource constraint for DDLOG can be expressed as

r ~R! ∧ allconsumers~R, Consumer! ∧

allproducers~R, Producer! r

(
s[consumer∧resc~s,V !

V # (
t[producer∧resp~t,W!W

,

whereP is set to# in this case.
The predicatesallconsumersandallproducersdefine sets

of all objects that appear as role fillers at the end of a nav-
igation path and are~respectively! either consumers or pro-
ducers. We use normal set notation~Hella et al., 2001! to
express the grouping.

• allconsumers~R, $Consumer%! R navpath'~R,
Consumer,r,c1! ∨ {{{ ∨ navpath'~R,Consumer,r,cm!.

• allproducers~R, $Producer%! R navpath'~R,Producer,
r, p1! ∨ {{{ ∨ navpath'~R,Producer,r, pn!.

In the context of resources we define the macro navpath'

~X1, Xn,c1,cn! as
c1~X1! ∧ namec1~X2, X1! ∧ namec2~X3, X2! ∧ . . . ∧

namecn21~Xn, Xn21! ∧ cn~Xn!, where nameci represents a
haspart role in the path from the component typec1 to com-
ponent typecn. n

Configuration knowledge representations 43



Example 14a ~capacity needed bySoftware# capacity
provided byHDUnit !.

DTPSoftware: slot-constraintCapacitycardinality 1~equal
50!.

Textedit: slot-constraintCapacitycardinality 1~equal 100!.

SCSIUnit: slot-constraintCapacitycardinality 1 ~equal
20000!.

IDEUnit: slot-constraintCapacity cardinality 1 ~equal
10000!.

Computer : lesseq~sum~sw-of-computer + Capacity!,
sum~hdunit-of-computer+ Capacity!!. n

Example 14b ~needed Software capacity# HDUnit
capacity!.

Computer~R! ∧ allconsumers~R, Consumer! ∧

allproducers~R, Producer! r (
s[Consumer∧Capacity~s,V !

V # (
t[Producer∧Capacity~t,W!W

.

allconsumers~R, $Consumer%! RComputer~R! ∧
sw-of-computer~Consumer,R! ∧ Textedit~Consumer! ∨

Computer~R! ∧ sw-of-computer~Consumer,R! ∧
DTPSoftware~Consumer!.

allproducers~R, $Producer%! RComputer~R! ∧
hdunit-of-computer~Producer,R! ∧ SCSIUnit~Producer! ∨

Computer~R! ∧ hdunit-of-computer~Producer,R! ∧
IDEUnit~Producer!.n

5.2. Complex structural properties

Because trivial structural conditions lead to definitional over-
head in DAML1OIL ~e.g., when defining restrictions on
port connections!, additional concepts must be provided
allowing the definition of roles with arity greater than 2. In
effect, this would result in the definition of a separate con-
straint language or a relational language permitting arbi-
trary n-ary relations and disjuncts of positive literals,~e.g.,
to express alternative ports!. Also, the description of more
complex structural properties would be supported by per-
mitting the usage of variables~Immerman, 1982; Cai et al.,
1989; Schröder et al., 1996!.

The utility of knowledge-based configurators in some
domains crucially depends on the ability to configure struc-
tural ~topological! properties such as the connecting of
components by cables~see Fig. 5 for an example!. In fact,
the configuration of the cable connections is one of the
most difficult parts in a configuration process~e.g., when
configuring telecommunication switches; Fleischanderl
et al., 1998!. It is exactly at this stage that successful
knowledge-based configuration has to show its advantage
over traditional procedural configuration systems. In order
to truly gain advantage over conventional approaches in

domains where structural knowledge must be expressed,
knowledge representation must support the formulation of
these properties.

5.3. Decidability

Happily, most of the required means of expression are al-
ready available in the description logic designer’s toolbox;
however, the degree of expressivity required also leads to
problems with respect to decidability of basic properties
such as satisfiability or subsumption~Baader & Sattler,
1998!. State of the art configurators achieve decidability by
putting a predefined limit on the number of individuals and
allowing only finite domains of values for features~con-
straint variables!. Furthermore, only fixed concept hierar-
chies are allowed~as part catalogs are typically considered
unchangeable!, which reduces the importance of subsump-
tion versus that of A-Box~assertion box, i.e., instance level!
reasoning.

From a practical point of view, the systems occurring in
configuration domains~such as telecom systems, railway
safety systems, etc.! are designed to be understood~and,
theoretically, configured! by human experts. The language
these human experts use to describe the configuration con-
straints and to exchange knowledge is far more expressive
than decidability considerations would allow. In the config-
uration process, simple heuristics are used to guide the con-
struction process of a configuration. It is interesting that the
configuration knowledge allows a quick conclusion as to
whether a customer request can be fulfilled. In the rare
cases where it is not easily decidable, organizations tend
toward default decisions~e.g., if we are not sure that a valid
configuration is possible, we just refuse the customer re-
quest!. COCOS~Fleischanderl et al., 1998! and almost any
practical applications of configurators crucially depend on
the application of search heuristics. Relating this to our
concepts, it must be possible to guide the model search

Fig. 5. The cable connections of a Siemens EWSD telecommunication
system.

44 A. Felfernig et al.



process and even to stop this process if certain thresholds
are exceeded. Such heuristics include orderings about the
types of individuals~e.g., which type a newly generated
individual should take! or about assignments of values to
features and filling of roles. These types of heuristics have
proved quite sufficient and highly effective in the configu-
ration of such large-scale systems as the EWSD~a digital
switching system, Siemens!, which can comprise more than
100 racks, 1,000 frames, 30,000 modules, and 10,000 cables.

6. THE CAWICOMS ENVIRONMENT

When selling complex products and services over the web,
the shortcomings of current configuration technology be-
come obvious. Web-based commerce places additional re-
quirements on the interaction with configuration systems:
customers with different needs, skill levels, or organiza-
tional backgrounds interact with the system. Therefore, in-
terfaces must be provided that dynamically adapt to the
needs of the customers~i.e., apersonalizedpresentation of
the configurable product is needed!. Another shortcoming
of current configuration technology concerns the coopera-
tion between separate configurators. There is no central point
of knowledge, and therefore a single-configurator approach
is not appropriate~see the application scenario in Sec-
tion 6.3!. In addition to the distribution of configuration
knowledge,distributed problem solvingprocesses have to
be supported in order to allow the calculation of solu-
tions for distributed configuration tasks. In order to address
the shortcomings of current configuration systems, we have
developed an infrastructure for the creation of web-based,
user-adaptive configuration systems that can perform dis-
tributed configuration of products and services by interact-
ing with remote suppliers. This infrastructure is a result
of the IST research project CAWICOMS. The concepts
presented in this paper are the basis for the CAWICOMS
Knowledge Acquisition Component~see Section 6.2!. OIL
representations can be generated from a UML configura-
tion model and be used for configuration knowledge inter-

change. The knowledge acquisition component has been
successfully tested using the scenario of distributed virtual
private network~VPN! configuration~see Section 6.3!.

6.1. Architecture

The overall architecture of the CAWICOMS~Ardissono
et al., 2001! environment is shown in Figure 6. The central
component of this architecture is the CAWICOMS Config-
uration Server, which is responsible for the integration of
remote configuration systems~also product catalogs!, the
coordination of a distributed configuration process, and the
personalized presentation of the configuration results to the
customer. In this context the CAWICOMS Frontend pro-
vides personalization functionality and the CAWICOMS
Backend provides distributed problem solving functional-
ity. The configuration server has an interface to underlying
B2B0ERP Platforms, which allows it to forward the result
of a configuration session to subsequent processes~e.g.,
procurement transactions!.

6.2. Knowledge acquisition

The concepts presented in this paper are implemented in
the CAWICOMS Knowledge Acquisition Component. This
workbench enables distributed configuration processes by
supporting standardized configuration knowledge base de-
velopment and interchange between different configuration
environments; knowledge interchange is supported in UML0
Extensible Markup Language~UML 0XML; OMG, 1999!
and OIL ~Fensel et al., 2001b! using the OilEd ontology
editor presented in Bechhofer et al.~2001!. Constraints
on the product structure can be modeled by directly anno-
tating the UML configuration model; this functionality is
provided by a Configuration Add-in for the CASE tool
Rational Rose.14 Based on the interchange of functional

14See www.rational.com.

Fig. 6. The overall CAWICOMS architecture.
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architectures~Mittal & Frayman, 1989! of configurable
products, a distributed configuration process can be started
where distributed problem solving is based on standard
distributed constraint satisfaction algorithms~e.g., Yokoo
et al., 1998; Silaghi et al., 2000!. The core reasoning mech-
anism is implemented by extending a commercial domain-
independent configuration engine~ILOG JConfigurator15!.
These extensions were done without changing the core
mechanisms of the configurator engine but only by using
the built-in extensibility features. Note that the architec-
ture of the knowledge acquisition component allows con-
figuration knowledge base design for different configuration
environments. The precondition for this is the provision of
the corresponding translation routines.

6.3. Application scenario

One of the guiding application scenarios for the CAWI-
COMS project is the distributed configuration of VPNs. A
VPN is an extension of an enterprise’s private network that
provides network services based on a public network infra-
structure such as the Internet. A secure communication en-
vironment can be provided for defined communities of
interest. The major advantage of such networks is that no
expensive maintenance for company-wide area networks is
necessary. The infrastructure for VPNs is provided by spe-
cialized solution providers who offer different subcompo-
nents~services! for the VPN~e.g., telephony services, leased
lines, firewalls, or computers!. These subcomponents are
integrated by resellers~integrated solution providers!, who
subsequently offer complete VPN solutions to their custom-
ers. In many cases the subcomponents from specialized so-
lutions providers are configurable~i.e., the integration of
such a set of components into a complete VPN solution can
be interpreted as a distributed configuration task!. Using
the CAWICOMS Knowledge Acquisition Component, re-
sellers can integrate functional product descriptions~func-
tional architectures, Mittal & Frayman, 1989! into an
integrated configuration model. This integrated model is
the basis for the CAWICOMS Configuration Server, which
starts a distributed configuration process and tries to calcu-
late a solution for the given distributed configuration task.

7. RELATED WORK

7.1. Description logic based approaches

In the past, a number of authors have suggested general
description logic based frameworks for configuration. First
among these was the work by Owsnicki–Klewe~1988!,
which used a KL-ONE like language for automatically de-
termining the most specific concept for each entity in a
~fixed! configuration structure. The result of a configura-

tion corresponds to a deductive closure starting from object
instances and reaching a fix point. These deductions com-
pute facts about objects such as concept membership or
role fillers. The configuration result does not describe a
complete configuration in case of disjunctions or existen-
tial quantification. As pointed out by Schröder et al.~1996!,
unlike other description logic approaches, this required
defining concepts in terms of both necessary and suffi-
cient terms. No new objects could be created. Compared
to our definitions the approach of Owsnicki–Klewe~1988!
computes consistent configurations, but~depending on
the formulation of the knowledge base! it is not guaranteed
that these configurations are valid because they may be
incomplete.

The best known description logic based configuration
system is the PROSE system used by AT&T~McGuinness
& Wright, 1998!. PROSE used a knowledge management
and reasoning system based on the tractable description
logic CLASSIC for checking the consistency of configura-
tion solutions and to perform deductions. Configurations
were computed~expanded! using a forward chaining pro-
duction rule interpreter as also described by Weida~1996!.
From the view of our definitional framework, PROSE
searches for consistent solutions where a completeness check
can be achieved by closing roles. Note that CLASSIC does
not apply the closed world assumption.

When configuring, many deductions are drawn which
are not relevant for describing configurations. This was
solved in PROSE by filters which restrict the output of the
configuration process to the relevant deductions. This filter
mechanism is achieved in our approach by defining the
relevant concepts and roles needed to describe solutions to
a configuration problem. An approach similar to PROSE
was followed in the system developed by Weida~1996!,
which directly incorporated the so-calledclosed terminol-
ogy assumption~CTA!. As in PROSE, the description logic
reasoner was used for consistency checking, with problem
specific reasoning components producing the actual config-
uration. The CTA means that, as in CPS~see below! or most
non-description logic configuration systems, the set of con-
cepts and the subsumption hierarchy were assumed to be
fixed; the parts in a final solution have to belong to the
leaves in the concept hierarchy, which represent concrete
types. The CTA limits the concepts an individual can in-
stantiate. Roughly speaking, an individual~e.g., a particu-
lar component of a configuration! is only accepted to be
part of a configuration if it can be monotonically extended
to match an explicitly defined~concrete! concept. For ex-
ample, if we learn from a component that its color is red but
our domain knowledge base is ignorant about colors, then
this component cannot be part of any configuration. The
closed terminology assumption adds implicit additional con-
straints to a knowledge base. In order to achieve the same
effect, we need additional constraints in our framework to
exclude such components from valid configurations. We
argue that both approaches~open vs. closed terminologies!15See www.ilog.com.
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have their advantages, depending on the application do-
main. Note that this is closely related to the distinction
made in the diagnosis community between the consistency-
based and the abductive-based approaches; that is, one has
to decide whether diagnoses that do not explain all obser-
vations should be ruled out or not. A further aspect of such
assumptions concerns the exchange of knowledge bases.
The content of the knowledge base depends on the seman-
tics and assumptions of the underlying reasoning system.
Consequently, the exchange of knowledge bases eventually
needs a transformation, if we submit a knowledge base writ-
ten under the closed terminology assumption to a reasoning
system employing open terminologies.

Generally, the most formally refined of the description
logic approaches was the CPS approach that used a sorted
feature logic to provide a formal model for configuration
tasks~Klein et al., 1994; Buchheit et al., 1995!. Configura-
tion is defined as an abductive task using a domain-specific
implication operator that provides a modelDC based onC 65D

'.S,C 65D I, whereD is the definitional knowledge;C is
the configuration,'.S is the existential closure of the spec-
ification S; I is a set of integrity constraints; andS and I
hold in the extension DC of C, which is defined byD. As
most logic-based configuration approaches~e.g., systems
based on constraint satisfaction formalisms! and all config-
uration solvers in industrial use known to the authors use a
consistency-based approach, we have taken that route
instead.

Finally, Schröder et al.~1996! used a description logic
based approach for a theoretical analysis of the the well-
known PLAKON0KONWERK configurator~Cunis et al.,
1989; Günther & Cunis, 1992; Günther, 1995! and its ex-
pressive means. The language defined for this study was
designed to possess as many properties as possible of the
original heterogeneous PLAKON0KONWERK representa-
tion ~including explicit cover axioms that fixed the concept
hierarchy and guaranteed disjunction between concepts!.
We found that a large amount of the expressiveness could
be captured, although not all~PLAKON0KONWERK did,
for example, support arbitraryn-ary constraints!. Our view
of the configuration problem and its solution is compatible
with this approach.

7.2. Other approaches

In parallel to the description logic based work, a number of
other approaches were recently developed to provide broad
coverage of configuration domains with different properties.

The approach of Simons et al.~2002! is based on stable
model semantics. As a consequence, unjustified compo-
nents in a configuration solution are excluded. More for-
mally speaking, some of the logical models of a set of
sentences are not accepted if the stable model property is
not fulfilled. Compared to our approach, such an approach
of restricting the set of allowed models~one can also think
of minimal model semantics! rejects configurations that

would be valid in our case. The reason why we are more
liberal is based on practical observations. For example, in
the telecommunications domain it is common practice to
add components to a configuration that are not necessary in
the current situation but might be necessary in a next ex-
pansion step. Such configurations would not be accepted
under stable model semantics because of the unjustified
components, and explicit justifications would have to be
entered into the knowledge base.

One of the most prominent methods to solve configura-
tion problems is to apply constraint-based reasoning and its
variants, such as dynamic and generative constraint satis-
faction ~e.g., Mittal & Frayman, 1989; Mittal & Falken-
hainer, 1990; Heinrich & Jüngst, 1991; Fleischanderl et al.,
1998; Mailharro, 1998! just to name some examples of the
vast number of applications. In constraint satisfaction we
are searching for an assignment to all variables in order to
satisfy all constraints. This corresponds to our consistency-
based definition of a configuration problem, where the con-
figuration result is described by the set of variables and
their assignments. Completeness of the configuration is au-
tomatically achieved in the case where the set of all vari-
ables is known to be static because all variables receive a
value assignment. Note that dynamic CSPs can be trans-
formed to static ones. Generative constraint satisfaction is
different insofar that the number of variables is not known
initially. However, the solution described in Stumptner et al.
~1998! assures that the configuration is valid by checking
that all attributes are assigned and no additional compo-
nents and connections exist. Likewise, the resource-based
~Heinrich & Jüngst, 1991! approach fits our definitions nicely
because in this paradigm we are searching for a set of re-
sources such that all resource constraints are satisfied.

The goal of Aldanondo et al.~2000! is to propose a set of
modeling concepts enabling a noncomputer specialist to
describe generic configuration models. Based on a set of
requirements stemming from different classes of configu-
ration problems a set of modeling concepts is presented
which is based on the dynamic CSP approach~Mittal &
Falkenhainer, 1990!. This approach to configuration knowl-
edge representation has its advantages when modeling con-
figuration problems for dynamic CSP solving. Compared to
the approach presented in this paper, the problem of repre-
senting configuration knowledge on a more abstract level is
solved by providing graphical representations for problem
variables. In Ramachandran and Gil~1999! the EXPECT
~Swartout & Gil, 1995! approach for knowledge acquisi-
tion is applied to the configuration domain. The EXPECT
configuration knowledge acquisition approach is based on
a proprietary representation, whereas the approach pre-
sented in this paper supports knowledge acquisition and
knowledge interchange on the basis of a common founda-
tion for configuration knowledge representation; the use of
UML as the configuration knowledge representation lan-
guage permits the integration of configuration technology
into industrial software development processes. Smith et al.
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~1988! present an approach based on the idea of configura-
tion knowledge representation using dependency diagrams.
These diagrams depict the dependencies between different
parameters of the configurable product. The graphical no-
tation is used as the communication basis between the do-
main expert and the knowledge engineer but does not allow
the automated derivation of configuration knowledge bases.

The definition of a common representation language to
support knowledge interchange between and integration of
different knowledge-based systems is an important issue in
the configuration domain. In Soininen et al.~1998! one
approach to collect relevant concepts for modeling config-
uration knowledge bases is presented. The defined ontol-
ogy is based on Ontolingua~Gruber, 1992! and represents a
synthesis of resource-based, function-based, connection-
based, and structure-based configuration approaches. This
ontology is a kind of metaontology that is similar to the
UML profile for configuration models presented in this pa-
per. Conforming to the definition of Chandrasekaran et al.
~1999!, a UML configuration model is an ontology, that is,
it restricts the sort of objects relevant for the domain and
defines the possible properties of objects and the relation-
ships between objects. Felfernig et al.~2000a! present an
approach to automatically translate UML configuration mod-
els into a corresponding consistency-based definition of a
configuration problem. The work presented in this paper is
an extension of the work of Felfernig et al.~2000a! in the
sense that a joint foundation for the representation of con-
figuration problems is established by giving a description
logic based definition of a configuration problem and show-
ing the equivalence to existing consistency-based defini-
tions ~Felfernig et al., 2000b!.

The work of Cranefield~2001! shows some similarities
to the work presented in this paper. Starting with a UML
ontology ~which is basically represented as a class dia-
gram! corresponding Java classes and RDF documents are
generated. The work presented in this paper goes one step
further by providing a UML profile for the configuration
domain and a set of translation rules allowing the automatic
derivation of executable configuration knowledge bases. We
show the correspondence between Semantic Web ontology
languages and UML on the object level, as well as on the
constraint level, where a set of domain-specific constraints
~e.g., requires! are introduced as stereotypes in the config-
uration profile. For these constraints we present the corre-
sponding representation in OIL.

Most of the required means for expressing configuration
knowledge are already provided by current versions of se-
mantic web knowledge representation languages. However,
in order to provide full-fledged configuration knowledge
representation, certain additional means of expression must
be provided in terms of new operators or relaxed restric-
tions on the language, as discussed in Section 5. Finally,
we assumed the unique name assumption from the start, as
this is a necessity in each problem domain that exhibits
repetitive subcomponents~i.e., tasks where the same type

of component can occur repeatedly but the topology of the
connections plays a role!.

Within the Semantic Web community there are ongoing
efforts to increase the expressiveness of web ontology lan-
guages. DAML-L~McIlraith et al., 2001! is a language that
builds on the basic concepts of DAML. XML Rules~Grosof,
2001! and CIF~i.e., Constraint Interchange Format; Gray
et al., 2001! are similar approaches with the goal to provide
rule languages for the Semantic Web.

Solutions already exist for the integration of product
catalogs within marketplace environments~Fensel et al.,
2001a!. The basic approach is to provide a standard repre-
sentation language and to provide a set of transformation
concepts for integrating proprietary product representa-
tions. However, standard representation languages for sim-
ple products do not consider the basic properties of
configurable products; exactly these properties were dis-
cussed in this paper and corresponding solutions for the
integration of configurable products and services have been
developed in the CAWICOMS project~Ardissono et al.,
2001!.

8. CONCLUSION

In this paper we have shown how to apply Semantic Web
ontology languages for configuration knowledge represen-
tation. We have given a description logic based definition
of a configuration problem and shown its equivalence
with corresponding consistency-based definitions. A con-
sequence of this equivalence is that configuration prob-
lems represented in standard description logics~OIL or
DAML 1OILor Borgida, 1996! can be transformed into con-
figuration problems represented in predicate logic~dyadic
predicate logic with counting quantifiers and at most three
free variables in each subformula! and vice versa. Conse-
quently, we provide a common foundation that enables joint
research activities and exploration of results. With respect to
ongoing efforts to extend DAML1OIL, our paper contrib-
utes a set of criteria that must be fulfilled in order to use such
a language for full-fledged configuration knowledge repre-
sentation. It follows that DAML1OIL and OIL must be ex-
tended in order to cover requirements imposed byde facto
standard configuration ontologies. By using UML for con-
figuration knowledge representation, we support effective
sharing and integration of configuration knowledge on a
graphical level, which has become one of the major issues
in the context of distributed configuration problem solving.
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