
GUEST EDITORIAL

Special Issue: Configuration

ALEXANDER FELFERNIG,1 MARKUS STUMPTNER,2 AND JUHA TIIHONEN3

1Institute for Software Technology, Graz University of Technology, Graz, Austria
2Advanced Computing Research Centre, University of South Australia, Adelaide, Australia
3Department of Computer Science and Engineering, Aalto University, Helsinki, Finland

Configuration can be defined as the composition of a complex
product from instances of a set of component types, taking
into account restrictions on the compatibility of those component
types. For supporting product configuration, different artificial
intelligence (AI) approaches are well established as central tech-
nologies in industrial configuration systems. However, the wide
industrial use of configuration technologies and the increasing
size and complexity of configuration problems make the field
more challenging than ever. Today the mass customization para-
digm has been extended from traditional physical products to the
fields of software and service configuration. Configuration sys-
tems have evolved into interactive Web-based applications that
need to support highly sophisticated knowledge representation
and reasoning methods. A wide range of AI techniques are ap-
plied in this context: just to mention a few, constraint satisfaction,
intelligent user interfaces, preference handling, and explanations.

As a successful AI application area, configuration has at-
tracted lasting industrial interest and renewed research, as
demonstrated by a series of workshops on configuration that
have been arranged in conjunction with leading AI confer-
ences such as IJCAI, ECAI, and AAAI.

The goal of this Special Issue on configuration is to demon-
strate novel and innovative configuration research as well as new
industrial applications of configuration technologies. The con-
tributions of this Special Issue on configuration are a continua-
tion of high-quality papers in previous special issues on config-
uration published in such journals as IEEE Intelligent Systems
(1998), AI EDAM (1998 and 2003), and International Journal
of Mass Customization (2010). The seven papers (five full-
length papers and two short papers) were selected from 17 sub-
missions, which corresponds to a full-length paper acceptance
rate of 29%. Each paper underwent two to four double-blind re-
views by experts in the configuration domain. Papers with a
positive reviewer feedback after the first review round were re-
viewed again to assure that all of the reviewer comments of the
first round had been taken into account. The reviews of papers
that included acoeditoras an author were managed in a screened

manner by uninvolved coeditors or members of the Special
Issue program committee.

The major topics of the current Special Issue include per-
sonalization techniques and algorithms in knowledge-based
configuration, different issues of configuration knowledge repre-
sentation, industrial configuration environments and new appli-
cation domains, and business-oriented aspects of the application
of configuration technologies.

“Modeling and Solving Technical Product Configuration
Problems” by Andreas Falkner, Alois Haselboeck, Gottfried
Schenner, and Herwig Schreiner contains an introduction to
the “partner units” problem and provides a discussion of possible
alternative knowledge representation approaches (e.g., Unified
Modeling Language/Object Constraint Language and Alloy).
In addition, the paper contains a discussion of possible ap-
proaches to solve the “partner units” problem (from basic back-
tracking to local search approaches such as “simulated anneal-
ing”). The paper is concluded with an in-depth analysis of the
applied search algorithms.

In their short paper on “Product Configuration as Decision
Support: The Declarative Paradigm in Practice” Albert Haag
and Steffen Riemann discuss knowledge representation is-
sues in the SAP configuration environment. As an application
domain for configuration technologies they introduce the
customization of SAP systems. Besides the discussion of the ad-
vantages and trade-offs of procedural and declarative knowl-
edge representations, the authors provide an in-depth discussion
of the application of assumption-based truth maintenance
approaches in their configuration environment.

“A Declarative Framework for Work Process Configura-
tion,” written by Wolfgang Mayer, Markus Stumptner, Peter
Killisperger, and Georg Grossmann, extends established con-
straint-based configuration approaches with a constraint rep-
resentation language for representing specific properties of
execution paths in work processes. In this context, a frame-
work for semiautomated process customization is introduced.
It integrates the extended constraint approach with a meta-
model of work processes. Valid process configurations are
then semiautomatically built on the basis of heuristic search.

In their short paper on “Reasoning about Conditional Con-
straint Specification Problems and Feature Models” Raphael

Reprint requests to: Alexander Felfernig, Institute for Software Technol-
ogy, Graz University of Technology, Inffeldgasse 16b, Graz A-8010, Austria.
E-mail: alexander.felfernig@ist.tugraz.at

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 113–114.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000569

113

Finkel and Barry O’Sullivan show how techniques from
formal methods and answer set programming can be applied
to represent conditional constraint satisfaction problems. Be-
sides the intuitive handling of variable existence, their knowl-
edge representations allow for “model reflection” in that sev-
eral kinds of model flaws can be automatically detected, for
example, a variable declared as optional is actually required
in all solutions.

“Personalized Diagnoses for Inconsistent User Require-
ments” by Alexander Felfernig and Monika Schubert pro-
vides a discussion of the advantages of applying different
types of personalization techniques (e.g., utility-based and
content-based recommendation) to identify preferred diagno-
ses in interactive configuration settings. A diagnosis denotes
a minimal set of user requirements that has to be adapted or
relaxed to identify a solution. Such functionalities are espe-
cially useful in “open configuration” scenarios where the
user is free to select options and the configurator provides ex-
planations in the case of inconsistencies.

In their paper on “Adaptive Attribute Selection for Config-
urator Design Via Shapley Value” Yue Wang and Mitchell
Tseng introduce concepts that support the personalized rank-
ing of questions posed to users within the scope of interactive
configuration sessions. The overall goal is to keep the number
of needed interaction steps with a configurator as low as pos-
sible, that is, to ask only those questions that are relevant for
the user in a certain configuration context. The method that
they introduce iteratively selects the attributes (questions)
that best contribute in terms of information content from
the pool of remaining unanswered questions.

Finally, “The Impact of Product Configurators on Lead Times
in Engineering Oriented Companies,” by Anders Haug, Lars
Hvam, and Niels Henrik Mortensen, summarizes the results
of a study on the impact of configuration technologies in
commercial environments. Fourteen companies applying
configuration technologies were analyzed regarding the im-
pact of configuration technologies on processes related to
the creation of quotes and product specifications. The study
includes impressive outcomes, for example, the quotation
lead time was reduced on an average by about 85%.

In sum, the papers of this Special Issue exhibit configura-
tion as a continuously active field of research with new and
challenging research questions and application domains at-
tracting lasting industrial interest.

Alexander Felfernig is a Professor of applied software engi-
neering at Graz University of Technology. Alexander is also
Cofounder and Director of ConfigWorks, a company focused
on the development of knowledge-based recommendation
technologies. Prof. Felfernig’s research focuses on intelligent
methods and algorithms supporting the development and
maintenance of complex knowledge bases. Furthermore, he
is interested in the application of AI techniques in the soft-
ware engineering context, for example, the application of de-
cision and recommendation technologies to make software
requirements engineering processes more effective. In 2009,
Dr. Felfernig received the Heinz-Zemanek Award from the
Austrian Computer Society for his research.

Markus Stumptner is a Professor of computer science at the
University of South Australia, where he directs the Advanced
Computing Research Centre. He received MS and PhD degrees
in computer science from the Vienna University of Technol-
ogy. Dr. Stumptner’s research interests include object-oriented
modeling, knowledge representation, and model-based reason-
ing in areas such as configuration and diagnosis.

Juha Tiihonen is a Researcher in the Department of Computer
Science and Engineering at Aalto University School of Science
(previously Helsinki University of Technology). He received
his MS and LicSc degrees in computer science from Helsinki
University of Technology. His main interest is product and ser-
vice configuration in its various forms, including modeling,
configurators, operations management aspects of business pro-
cesses based on product and service configuration, and design
for configuration. Mr. Tiihonen’s most recent research includes
recommendation support for configurable offerings and in-
stalled base management of complex products.

A. Felfernig et al.114

Modeling and solving technical product
configuration problems

ANDREAS FALKNER, ALOIS HASELBÖCK, GOTTFRIED SCHENNER, AND HERWIG SCHREINER
Siemens AG Österreich, Corporate Technology Central and Eastern Europe, Research and Technologies, Wien, Austria

(RECEIVED April 4, 2010; ACCEPTED October 29, 2010)

Abstract

This paper describes and evaluates approaches to model and solve technical product configuration problems using different
artificial intelligence methodologies. By means of a typical example, the benefits and limitations of different artificial in-
telligence methods are discussed and a flexible software architecture for integrating different solvers in a product config-
urator is proposed.

Keywords: Artificial Intelligence; Constraint Logic Programming; Constraint Satisfaction; Product Configuration; SAT

1. INTRODUCTION

Product configurators have a long history in artificial intelli-
gence (AI; Sabin & Weigel, 1998; Felfernig, 2007), the first
and most famous example being the rule-based configurator
R1/XCON system (McDermott, 1982) for DEC-Computer. To-
day there are several established vendors of commercial config-
urators based on AI methods (SAP, Oracle, ILOG, Tacton, Con-
figIt, etc.). Nevertheless, many products especially in technical
domains are configured by engineers using in-house software
without AI technology. A reason for this may be that there is
little literature available on how to use AI methods specifically
for product configuration. Therefore, this paper aims at read-
ers with only limited AI background, who are interested in
how to model and solve product configuration problems using
AI methodologies. For the AI experts it provides insight into
how to map a problem between the different paradigms (logic
programming, object oriented, constraint based) and proposes a
flexible software architecture for product configurators.

Product configurators for technical artifacts pose other chal-
lenges than product configurators for customer products. Cus-
tomer products are typically designed for easy configurability
and can be configured by the average customer. Configuring
technical systems often requires an engineer with high domain
knowledge. Depending on the business domain, various struc-
tural, physical, chemical constraints, and so forth, on the assem-

bly of the system or product may arise. With their dependencies
between several system components, those constraints can get
quite complicated. Although algorithms for general-purpose
solvers have been significantly improved over the last years
(e.g., Cooper et al., 2008), they turn out to be too inefficient
in many cases (Mayer et al., 2009). Then, problem-specific im-
plementations seem necessary. Unfortunately, they also have
drawbacks: their maintenance and adaptations to changing re-
quirements are more difficult; often they require deep insight
into the nature of the problem that an average knowledge engi-
neer does not necessarily have.

Fortunately, over the last years many (often free) solvers
suitable for real-world applications have been developed. In
contrast to the monolithic AI systems of the past there is a trend
to integrate relatively small specialized AI tools within conven-
tional software systems. A typical example is SAT4J, a satisfia-
bility library, which ships with every instance of the Eclipse in-
tegrated development environment (IDE) and is deployed on
millions of computers. Most of the users of the Eclipse IDE
are even unaware of the AI technology inside of Eclipse.

In the rest of this paper we show a typical product config-
uration problem as an example for such kinds of real-world
problems as well as corresponding solution approaches using
different AI methodologies. Section 2 describes a technical
product configuration problem. Although seemingly simple,
it poses hard efficiency demands on the solving process. In
Section 3 an object-oriented model of the problem is derived
and some of its properties are analyzed using Unified Model-
ing Language (UML)/Object Constraint Language (OCL),
Alloy, and generative constraint satisfaction problem CSP.

Reprint requests to: Gottfried Schenner, Siemens AG Österreich, Corpo-
rate Technology Central and Eastern Europe, Research and Technologies,
Siemensstraße 90, A-1210 Wien, Austria. E-mail: gottfried.schenner
@siemens.com

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 115–129.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000570

115

In Section 4 we present and evaluate different approaches for
solving configuration problems. Section 5 gives a summary
of the results and arrives at the conclusion that the challenge
for the knowledge engineer consists not only in choosing the
right solver(s) for the problem, but also in how to integrate the
different solvers into one coherent system. Finally, Section 6
answers that question and proposes an architecture for inte-
grating different solvers into a product configurator frame-
work.

2. PROBLEM DESCRIPTION

The first step for developing a product configurator is the
specification of the customer requirements, that is, the prop-
erties of the configurable product. As an example we use a fic-
titious people-counting system for museums. The structure of
the problem is similar to problems we encountered in differ-
ent real-world domains of our product configurators.

A museum has lots of rooms, and there are doors between
some of them. In order to prevent damage to the objects in exhi-
bition, the number of visitors shall be restricted. This is done by a
people-counting system that consists of the following compo-
nents: door sensors, counting zones, and communication units.

A door sensor detects everybody who moves through its
door (directed movement detection). There can be doors with-
out a sensor.

Any number of rooms may be grouped to a counting zone.
Each zone knows how many persons are in it (counting the
information from the sensors at doors leading outside of the
zone—doors between rooms of the zone are ignored). Correct
function requires that all doors leading outside a zone have a
sensor (the corresponding constraint is not part of this prob-
lem). Zones may overlap or include other zones, that is, a
room may be part of several zones.

A communication unit can control at most two door sen-
sors and at most two zones. If a unit controls a sensor that con-
tributes to a zone on another unit, then the two units need a
direct connection: one is a partner unit of the other and vice
versa. Each unit can have at most N partner units. For the
sake of simplicity, we use N¼ 2 throughout this paper, whereas
higher values for N are more common in real-life problems
of this kind. Of course, the problem diminishes or even van-
ishes when N is chosen sufficiently high or unbounded, but
we assume technical reasons inhibiting high values.

PartnerUnits problem: Given a consistent configuration of
door sensors and zones, find a valid assignment of units
(i.e., a maximum of two partners) striving for a minimal
number of units.

Example 1: Rooms 1 to 8 with doors, eight of the doors
having a door sensor, for example, there is a sensor be-
tween rooms 1 and 2, or 3 and 4, but not between 2 and 3
(Fig. 1).

Given zones: 1 (white), 2378 (light gray), 45 (dark gray), 6
(medium gray), 456, 2367, 2345678. They are consis-

tent to the door sensors because all doors without sen-
sors are only inside zones. The sensor between 7 and
8 is ignored for zones 2378 and 2345678, but necessary
for zone 2367.

The door sensors are named D01, D12, D26, D34, and so
forth for the rooms that they connect (and 0 for the outside,
respectively). The zones get their names from the rooms
that they contain: Z1, Z2345678, Z2367, and so forth.

The relation between zones and door sensors, which is rep-
resented as a bipartite graph, is shown in Figure 2. A minimal
solution using only four units is, for example, solution 1 in
Table 1.

For small examples (i.e., less than six sensors and six
zones), it is easy to find a solution. If the number of sensors
for each zone is less than three and vice versa, a trivial but far
from minimal solution would be to put each zone and each
sensor onto a separate unit.

For bigger configurations, the constraint of maximal two
partner units makes the problem hard. For example, adding
zone Z23 (and new sensor D27) has no solution at all. How-
ever, adding Z18 to the free position on unit 4 is a solution.
Even adding Z4 (and new sensor D45) has a solution with
the minimally achievable number of five units, for example,
solution 2 in Table 2.

Fig. 2. The relation between zones and door sensors in example 1.

Fig. 1. The room layout of example 1.

A. Falkner et al.116

In addition to finding a consistent solution to the Partner-
Units problem, the following questions may be asked:

† What is the minimal number of units needed? Clearly,
the absolute minimum is the smallest integer greater or
equal to the half of the maximum of the number of zones
and the number of door sensors. However, we do not
know whether there is always a solution with such few
units.

† Given a partial assignment (i.e., not all sensors or zones
have a unit yet), is there a valid extension?

† Reconfiguration: what is the minimal set of changes to
already assigned units, so that a valid extension is possi-
ble? For example, given solution 1, add Z4 (and new sen-
sor D45) and find a solution with minimal differences to
solution 1, that is, change as few assignments to units as
possible.

This paper concentrates on finding (preferably minimal) so-
lutions. The other topics are subject to further research.

3. MODELING

After collecting the customer requirements of the product to
be configured, the configurator designer must choose an ap-
propriate language and tool for modeling the problem. A
model consists of the representation of the configuration com-
ponents as well as constraints and rules defining valid solu-
tions. For many technical domains, the models get complex
and large, so that a high-level modeling language is required.
It provides for an easy, natural, and elegant problem descrip-
tion, supporting readability, validation, and maintainability
of the model.

We demonstrate the modeling of the PartnerUnits problem
prototypically by three languages: UML/OCL (http://www.

omg.org/spec/UML/2.3, http://www.omg.org/spec/OCL/2.2),
widely used as analysis and design specification language,
Alloy (Jackson, 2002), a first-order logic language well suited
for associations, and generative CSP (Fleischanderl et al.,
1998; Gottlob et al., 2007), which allows the formulation of
dynamic problems like configuration as CSPs. For brevity rea-
sons, we do not cover description logics in this article. Descrip-
tion logics is prominent for the formal representation and rea-
soning on the concepts of complex knowledge networks and
is a wide research field in AI (see, e.g., Baader et al., 2003;
Felfernig et al., 2003).

3.1. UML/OCL

UML class diagrams (Fig. 3) are a common way to describe
the structure of a system in object-oriented modeling. The pri-
mary use of UML diagrams is to communicate the model vi-
sually inside a software project. In combination with OCL it
is also expressive enough to describe product configuration
(Felfernig et al., 2002).

The UML diagram shows a class diagram derived from the
description. It contains the cardinality constraints, but there is
no way to express the fact that the partner units association is
derived from the path over the zone2sensor relation inside the
class diagram. It must be expressed using an OCL constraint:

context ComUnit inv:
myPartnerUnitsSensor = sensor.zone.unit
-.excluding(self)-.asSet() and

myPartnerUnitsZone = zone.sensor.unit
-.excluding(self)-.asSet() and

myPartnerUnitsSensor-.union
(myPartnerUnitsZone)-.size() ,= 2

Let myPartnerUnitsSensor be the set of units reachable from
a unit by navigating from its sensors to the zones and then

Table 2. A minimal solution of extended example 1

Unit Zone1 Zone2 Sensor1 Sensor2 Partner1 Partner2

U1 Z1 Z2345678 D01 D78 U2 —
U2 Z2367 Z45 D12 D56 U1 U3
U3 Z2378 Z6 D34 D67 U2 U4
U4 Z456 Z4 D26 D36 U3 U5
U5 — — D45 — U4 —

Table 1. A minimal solution of example 1

Unit Zone1 Zone2 Sensor1 Sensor2 Partner1 Partner2

U1 Z1 Z2345678 D01 D56 U3 U4
U2 Z2378 Z456 D34 D67 U3 U4
U3 Z45 Z6 D26 D36 U1 U2
U4 Z2367 — D12 D78 U1 U2

Modeling technical configuration problems 117

their units (sensor.zone.unit), and let myPartnerUnitsZone be
the set of units reachable by navigating from the zones to the
sensors and then to the units (zone.sensor.unit). Then the
cardinality of the union of myPartnerUnitsSensor and
myPartnerUnitsZone (not counting the unit itself) must not
be greater than 2.

Although UML/OCL is widely used in software engineer-
ing projects especially for the model driven architecture ap-
proach, there are few tools available that actually support rea-
soning with UML/OCL.

One example is the UML-based specification environment
USE (Gogolla et al., 2008). It allows the creation of example
configurations (called snapshots in USE terminology) and
checks the validity of the examples in relation to the UML/
OCL specification.

3.2. Alloy

Alloy is a lightweight specification language and tool (Jack-
son, 2002). The language of Alloy, which is a combination of
first-order logic and relational calculus, is relatively easy to
learn and use (compared to other specification languages).
Using the Alloy Analyzer tool, instances satisfying the spec-
ification can be found and assertions about the specification
can be checked within a given scope. An Alloy specification
of the PartnerUnits problem looks like this:

module PartnerUnits
sig Zone {
zone2sensor: set DoorSensor

}
sig DoorSensor {}

fact cardinalities_zone2sensor {
all z:Zone | #z.zone2sensor . 0

// at least 1 sensor for zone
all d:DoorSensor | #d.~zone2sensor . 0

// at least 1 zone for sensor
}
sig ComUnit {
unit2sensor: set DoorSensor,
unit2zone: set Zone,
partnerunits: set ComUnit

}
fact cardinalities_unit2sensor {
all u:ComUnit | #u.unit2sensor ,=2

// at most 2 sensors for a unit
all d:DoorSensor | #d.~unit2sensor = 1

// 1 unit for a sensor
}
fact cardinalities_unit2zone {
all u:ComUnit | #u.unit2zone ,=2

// at most 2 zones for a unit
all z:Zone | #z.~unit2zone = 1

// 1 unit for a zone
}
fact derivedassoc_partnerunits {
partnerunits =

unit2zone.zone2sensor.~unit2sensor +
~(unit2zone.zone2sensor.~unit2sensor)
-iden

}
fact cardinalities_partnerunits {
all u: ComUnit | #u.partnerunits ,= 2

// at most 2 partner units
}

The sig definitions of the Alloy specification correspond to the
UML class definitions. An expression like zone2sensor denotes
the binary relation between Zone and DoorSensor. The symbol
“� ” denotes the inverse of a relation, that is, � zone2sensor is
the relation from DoorSensor to Zone. The dot operator denotes
the relational join: for example, a navigational expression like
unit2zone.zone2sensor evaluates to a binary relation that re-
lates the units to all sensors that belong to a zone of the unit.

Fig. 3. UML diagram of class PartnerUnits.

A. Falkner et al.118

Using Alloy as an instance (model) finder, we can analyze
the specification. Suppose we want to verify whether the
specification allows the existence of partner units at all. By
executing

run {some u:ComUnit | #u.partnerunit = 1 } for 4

Alloy finds all instances of the specification (within the scope,
in this case up to four instances for every class) that contain at
least a unit with exactly one partner unit. If no instance is found,
we know that we made an error, for example, by overconstrain-
ing the specification. If unexpected instances are found then
there are still constraints missing. This is very useful to detect
inconsistencies in the knowledge base at an early stage.

Furthermore, we can check assertions about the specifica-
tion that may lead to additional constraints. For instance, it is
easy to conclude that any configuration containing a zone
with more than six door sensors is inconsistent. We can prove
this assumption (within the given scope) by checking the fol-
lowing assertion:

check { all z: Zone | #z.zone2sensor ,= 6 }
for 10 but 5 int

Alloy tries to find a counterexample, but because the asser-
tion is valid, it does not succeed. Because the problem is sym-
metric for zones and sensors, there cannot be more than six
zones for a sensor as well. Therefore, the cardinalities of
both sides of the zone2sensor association can be restricted
to 1..6 (from 1..*). Deriving cardinality restrictions from an
UML model is an area of active research (Falkner et al., in
press). Such restrictions are very valuable for ruling out in-
consistent requirements (such as in the classical pigeon-
hole problem) at an early stage of the configuration process.

3.3. Generative constraint satisfaction

Constraint satisfaction is widely used to represent and solve
configuration problems. A CSP in the classical sense consists
of a fixed set of variables and their domains, as well as con-
straints that restrict the assignment of the variables. A valid so-
lution is an assignment of all variables with values from their
domains where all constraints are satisfied. A formulation of
the PartnerUnits problem as a standard CSP using the open
source constraint library Choco can be found in Section 4.9.

In our problem, zones and door sensors are input values
and therefore fixed, but the number of communication units
is not. Thus, the formulation as a generative CSP instead of
a classical, static CSP is appropriate (Fleischanderl et al.,
1998; Gottlob et al., 2007).

The modeling of our problem in a generative configurator
framework looks like this: zones, door sensors, and commu-
nication units are the component classes.

class Zone
class DoorSensor
class ComUnit

Each class represents a theoretically infinite set of instances
(i.e., components). A class can have attributes, associations,
and constraints. Whenever a new instance of a class is created,
instances of its attributes, associations, and constraints are
created also. This is the object-oriented view of the modeling.

From the constraint-oriented point of view, attributes and
associations represent the variables. The domain of an attri-
bute variable is its type, for example, Boolean, an integer inter-
val, and so on. Associations are bidirectional and induce two
association variables, one for each side. The domain of such
an association variable is the set of all instances of the class
specified on the other side of the association. For example,
the association definition

assoc Zone.unit(1) - ComUnit.zones(0..2)

represents the connection of zones to units. The two associa-
tion variables induced are Zone.unit (the link from a zone to
its unit) and ComUnit.zones (the link from a unit to all its as-
sociated zones). Allowed cardinalities are given in brackets.
Implicit constraints check that all instances associated to an
association variable are of the specified type (e.g., ComUnit
for Zone.unit) and that the given cardinalities are not violated
(e.g., Zone.unit must contain exactly one instance).

The set of all associations in our problem are the following:

assoc Zone.sensors(1..*)
- DoorSensor.zones(1..*)

assoc Zone.unit(1) - ComUnit.zones(0..2)
assoc DoorSensor.unit(1)

- ComUnit.sensors(0..2)
assoc ComUnit.partnerunits(0..2) - self

A constraint in the context of a ComUnit instance specifies
which elements are to be in the partnerunits association of
that unit. These are all units reachable via its zones and its
sensors, where the unit itself is not member of the association.

constraint ComUnit.derivedPartners :
Partnerunits = zones.sensors.unit
+ sensors.zones.unit - self

Typical tasks in a CSP are to decide whether a given problem
has a solution, to find a valid solution (i.e., a consistent as-
signments to the variables Zone.unit and DoorSensor.unit),
and to find a good/optimal solution (i.e., one with few or a
minimal number of units).

Generative CSP is well suited for the modeling of config-
uration problems because of its object-oriented touch (natural
and maintainable formulation of the problem structure), its
constraint-orientedness (declarative formulation of the prob-
lem logics), and its dynamicity. Suitable solvers (e.g., back-
tracking, heuristic repair, SAT) can easily be integrated.

4. SOLVING

In this section we investigate different solving strategies for the
PartnerUnits problem. As there is a huge number of solving and

Modeling technical configuration problems 119

search algorithms available as tools and in the literature, we se-
lected a variety of typical proponents, trying to cover a wide
spectrum of distinct approaches. Of course, this selection cannot
claim to be exhaustive. Our aim was to apply existing tech-
niques/tools and analyze their practicability to our problem.

The main questions are the following:

† How easy is it to apply a particular solver to our problem?
† How easy is the mapping of a high-level problem de-

scription to a particular solver?
† How powerful and efficient is the solver on our problem?

We used the techniques/tools in a straightforward way with-
out trying to invent new or improved solving algorithms, taking
over the role of an average knowledge engineer who wants to
use existing AI technology and adjust it to her/his needs.

4.1. Backtracking search

Backtracking is a well-established technique for generating
one or all solutions of a CSP by incrementally finding assign-
ments to the variables, ruling out branches where constraints
are violated. In case of a dead end, the chronologically last
choice is retracted and another option is investigated.

There are two spots to control which branches are visited in
which order: choose the variable that is to be assigned next;
choose the value for the current variable from its domain.
For good performance, it is important to find a statical or dy-
namic order that recognizes and prunes inconsistent branches
as soon as possible. There are several established heuristics
that are known to perform quite well, for example, for vari-
able ordering: dynamic search rearrangement, preferring vari-
ables with a minimum number of consistent values; for exam-
ple, maximum cardinality ordering for values (see Dechter &
Meiri, 1989).

Domain-specific heuristics are promising as well. For in-
stance, sort the variables so that zones and door sensors that
belong together are handled consecutively, increasing the
chance that zones and their sensors are placed on the same
communication unit.

Beside the simplicity of the backtracking algorithm, the
main advantage is its completeness: if there is a solution to
a problem, backtracking will find it. It can also find all solu-
tions, if necessary. However, the price is high computational
costs. Big problems with complex dependencies usually can-
not be solved with backtracking.

There are improved backtracking algorithms (such as back-
jumping or backmarking), but they are not as easy to imple-
ment as basic backtracking, and they normally do not improve
the applicability of backtracking by orders of magnitude.

Symmetry breaking is another way of improving the per-
formance. It tries to avoid choices that are symmetrical to al-
ready made choices that have been proven to be invalid (see,
e.g., Gent et al., 2006). To find and represent all symmetries
in a configuration problem is usually a complex task. How-
ever, often the main symmetries are easy to find and avoid.

In our problem, the following symmetries are already ex-
cluded by the choice of representing the problem: it does
not matter if a zone is connected to the first or second
zone-port of a communication unit. We do no represent com-
munication ports, but only the connection of the zone to the
unit. The same is valid for the connection of a door sensor
to the communication unit.

However, another symmetry can easily be identified. If a
zone or door sensor is to be connected to a unit, all units that
are not yet connected to another zone/door sensor, are symmet-
rical. If we can prove that one of them does not lead to a solu-
tion, we know it for all the others. We exploit this symmetry by
removing all units from the domain of the current variable that
are not used yet, keeping just one of them. This is a consider-
able improvement and allows for tackling larger problems.

4.2. Generative backtracking search

The classical form of backtracking is able to solve static prob-
lems, where all variables and domains are known beforehand.
For solving the dynamic PartnerUnits problem with back-
tracking, an iterative widening approach can be used.

Create a minimal number of communication units and try
to solve this now static problem with classical backtracking.
If backtracking does not find a solution, add a new unit and
try again to search with backtracking. Do this until a solution
is found or the maximum number of units is reached.

The minimum amount of units is obviously

min ¼ max zonesj j, sensorsj jð Þ
2

because each communication unit can take up to two zones/
door sensors. A generous upper bound is

min ¼ zonesj j þ sensorsj j:

This simple iterative widening backtracking approach guaran-
tees to find a solution, if one exists, and furthermore, it finds
the solution with the minimum number of units. However,
keeping in mind that backtracking often performs quite badly
on problems with no solution (because the whole search tree
is traversed), we cannot expect high efficiency on hard prob-
lems, where the minimum number of units is not sufficient.

We could use a lower value for max (e.g., minþ 2) in order
to iterate less, but would lose completeness of search (unless
there is a proof that whenever a solution exists, there is also a
solution for that lower value, e.g., min in the optimal case).

A variant of this approach is to create the maximum num-
ber of communication units and guide backtracking search so
that the assignment of a so far empty unit to the current vari-
able is delayed until all other domain values of that variable
lead to a conflict. When a solution is found, remove all un-
used units. This algorithm is easy to implement and complete,
but it does not guarantee that the first solution found is a mini-
mal one. Another disadvantage is that the implementation of

A. Falkner et al.120

sophisticated domain-ordering heuristics is difficult because
of the fact that unused units are to be delayed.

Another approach is generating components during search.
It modifies the static backtrack search so that in certain situa-
tions new components are generated. In our problem, we add
a special wildcard domain value new-unit to all domains of
our unit variables of the zone and door sensor components.
If this value is selected, a new unit is generated and used.
This new-unit value is added at the end of each domain, which
means that new units are generated only if the current set of
units is not sufficient. If a new unit is generated but a dead
end is reached, the new unit is destroyed.

The usage of wildcard components is very similar to the
semifinite sets described in Albert et al. (2008), where possibly
infinite domains are made quasifinite inventing such wildcards.

This generative backtrack search with wildcard compo-
nents needs no initial units generated, because the units are
created during search. It is complete, but it is not guaranteed
that the first solution found is a minimal one. It depends on
which branches are investigated first. It could be that the
only way out of a dead end situation is the generation of an
additional unit, which would not be necessary, if a better con-
stellation has been chosen in previous steps.

The performance of generative backtracking is comparable
with the classical version of backtracking, but with superior
suitability and elegance in solving dynamic problems. All
these three methods can easily be advanced by symmetry
breaking as described above.

4.3. Heuristic search methods

In heuristic search methods, a heuristic function is used to locally
guide the variable assignment during search. These methods are
normally fast but not complete, which means that it is not guar-
anteed that a solution is found even if one exists.

The crucial part of these methods is the definition of the
heuristic function. For the PartnerUnits problem, we use the
following terms as part of a multiobjective heuristic function:

† vc(sol): The number of violated constraints in the (par-
tial) solution sol. This value is to be minimized. A solu-
tion is valid, if vc(sol) ¼ 0.

† mp(sol): The sum of all partnerunits connections in the
(partial) solution sol. Minimizing this value results in
compact solutions, where zones and door sensors that
belong together are preferably situated on the same com-
munication unit. Although, this does not contribute di-
rectly to the goal of a minimal number of units, it directs
search earlier to better results.

† mu(sol): The number of units that have at least one zone
or door sensor assigned. Minimizing this value results in
minimizing the number of units used in the solution.

It is interesting that we heuristically guide search not only to
find a good solution but also, and of more importance, to find a
valid solution: by the term vc(sol). Therefore, when combining

the three terms to a single value, the vc(sol) has the highest
weight, favoring a valid solution over a smaller invalid solution.

The general metaheuristic of heuristic algorithms is to first
make an initial assignment of the problem variables, and then
iteratively improve that assignment using problem-specific
heuristic functions (like fitness functions) until a valid and ac-
ceptable solution is found.

Sections 4.4 to 4.8 contain different heuristic algorithms.

4.4. Domain-specific heuristics

For comparison to the general algorithms, we implemented a
simple problem-specific heuristic: place zones having sensors
in common on to the same units, starting with those having
higher cardinality. If it does not find a solution, try simple re-
pair steps that swap unit allocations one-by-one, striving to
reduce the number of violated constraints.

Of course, this algorithm will not always find a valid solu-
tion, but is expected to perform well on weakly connected
configurations.

4.5. Iterative repair

For making an initial assignment, a greedy technique shows
potential: for each variable, the locally best choice is made,
hoping that this leads to a good solution candidate with no
or only few violated constraints. Because our PartnerUnits
problem does not have an optimal substructure (optimal sub-
structure means that it is guaranteed that each best local
choice leads to a solution), greedy assignment will normally
return an invalid solution candidate.

To correct this initial assignment to a valid solution, itera-
tive repair can be used. Iterative repair continually tries to im-
prove the constellation, hoping to end up at a valid solution.
To avoid a local optimum, choices during search have a prob-
abilistic aspect, possibly leading to temporary solution candi-
dates that are worse than the best one already found. A max-
imum number of cycles or a timeout avoid endless loops,
especially in cases where no solution exists.

// iterative repair pseudo-code
// sol = (initial) assignment of all variables
// h(sol) = heuristic function as combination

of vc and mp

iterative_repair(sol)
if (sol is consistent)
return sol // solution found

if (timeout)
return sol // timeout,

no valid solution found
A := {}
vars := all variables which are involved

in violated constraints
for each var in vars

for each val in domain(vars)
A = A + ,var, val.

,var, val. = choose(A, h, p)

Modeling technical configuration problems 121

new-sol = sol/var:=val // exchange

varassignment in sol (repair)

iterative-repair(new-sol)

The goal in each cycle of the algorithm is to change the value
of a variable so that as much conflicts as possible are repaired.
The function choose selects a repair assignment from all pos-
sible repair assignments. Using the probabilistic function p,
which is not always the best candidate with regard to the heur-
istic function h, is chosen, but of course, preferring those with
lowh values. This may lead out from a local optimum. Another
way to break out from a local optimum is to restart search with a
different initial constellation.

Dynamic configuration problems can only be tackled with
iterative repair by providing a fixed set of components and try
to solve this problem that is a static one now. The method of
iteratively increasing the components (see iterative widening
in Section 2.2) can be applied. Creating components during
search is not possible because search does not investigate
the search space in a determined manner. It would be hard
to decide if the creation of a new component or the deletion
of an existing one leads to a solution.

Although iterative repair is not complete, for several prob-
lem classes it performs very well and has a high probability to
converge fast at a solution if one exists.

4.6. Simulated annealing

A slight change in the iterative repair algorithm leads to an al-
gorithm in the style of simulated annealing (Kirkpatrick et al.,
1983). The basic idea of simulated annealing is to change the
probabilistic function p, which chooses the next repair assign-
ment, during search. In analogy to metallurgy, the probabilis-
tic function reflects the temperature of the system. High tem-
perature means that variables and values to be repaired are
chosen almost randomly, ignoring the scheme of preferring
repair steps that improve the current constellation best. Over
time, the temperature is gradually cooled down, that is, the
probability of choosing the best candidate increases.

The idea behind this approach is to move the system out of
local optima in the start phase of search, and with the proceeding
of time, to improve the system by taking more and more atten-
tion to the heuristic function leading, hopefully, to a valid and
good solution.

4.7. Genetic algorithm (GA)

A quite different approach to solve the PartnerUnits problem
is to use an evolutionary technique like a GA (see Goldberg,
1989). GAs (Fig. 4) are built on the metaphor of Darwin’s
evolution theory. In a population the fittest individuals sur-
vive and evolve to the next generation. Variations are induced
by mutation and recombination.

To use a GA for solving our configuration problem, we
have to define a mapping from the configuration world to
the GA world, and we have to provide a fitness function.

As fitness function we use a heuristic function as described
in Section 4.3. It is a multiobjective function combining the
sum of violated constraints and the sum of partnerunits. We
just have to multiply this heuristic function by 21 to inverse
its meaning: low values reflect bad fitness, high values (with
maximum 0) good fitness.

In addition, the mapping from CSP to GA is straightforward.
CSP variables represent the connections of zones and door sen-
sors to communication units. Each such variable is mapped to a
gene in the GA chromosome. These genes are not binary, but are
a number representing the index of the unit in the list of all units.

In the simple example in Figure 5 we have two zones z1
and z2, four door sensors d1 to d4. Zone z1 is associated
with d1, d2, and d3. Zone z2 is associated with d3 and d4.
Of course, to use GA for our dynamic problem, we have to
provide a set of units using the iterative widening method de-
scribed in Section 2.2. Thus, we provide two units u1 and u2.

Now we map our variables z1.unit, z2.unit, d1.unit, . . . ,
d4.unit to six genes, each is having the possible values 1 or
2, representing units u1 and u2. Each chromosome configura-
tion (Fig. 6) uniquely represents a variable assignment.

The recombination operator (Fig. 7) performs a crossover
of two chromosomes. Normally, a crossover point is chosen
randomly, and the new chromosome is built from the head
of the first chromosome and the tail of the second one.

The mutation operator (Fig. 8) changes the value of one or
more genes: which genes to change and which new values are
completely random choices.

During GA search, each new individual chromosome is
mapped back to our CSP model, which provides the follow-

Fig. 4. The genetic algorithm schema.

Fig. 5. A simple example with two zones and four door sensors.

A. Falkner et al.122

ing information: is this individual a valid solution? What is
the fitness of this individual?

For implementation we use the JGAP package. Following
the idea of clearly separating the model from the solver (see
Section 4), we let the model provide the fitness function
and kept domain-specific heuristics out of the GA solver. In-
tegrating domain-specific heuristics in the gene combination
steps certainly would improve GA performance, but with the
loss of simple and straightforward integration into a complex
configuration environment.

4.8. Ant colony optimization (ACO)

ACO is a probabilistic technique based on how a colony of
ants finds paths to food sources. Each individual ant is laying
down a pheromone trail. Other ants follow such trails. The
more pheromone is on the trail, the more likely other ants fol-
low that trail. In that way, high-pheromone trails develop over
time on short paths.

ACO is typically used for graph search problems, like the
traveling salesman problem. However, ACO can also be ap-
plied to other problem fields, like solving CSPs (Schoofs &
Naudts, 2000; Khichane et al., 2008) and configuration prob-
lems (Albert et al., 2008).

We apply ACO to the PartnerUnits problem in a straight-
forward way. Each ant of a colony assigns a value to each
variable iteratively, preferring choices with high pheromone
values. Pheromones are stored for each variable-value pair
in a pheromone map. The first iterations are fully random
choices. However, preferred paths emerge over time.

// ACO pseudo-code
aco()
do until solution found or timeout
for each ant in the colony
create solution, preferring choices

with high pheromone
update pheromone map with best solution

in this iteration

The best solution candidate in an iteration, which is the one
with best fitness function, is rewarded in the pheromone
map by the following formula:

tij (1� r) tij þ Dij,

where tij is the pheromone value of variable assignment vari

¼ valj; r is the evaporation rate, and pheromones evaporate
over time to forget bad choices; and Dij is the amount of pher-
omone. It is zero, if variable assignment vari ¼ valj is not in
the best solution candidate of the colony. Otherwise it is (total
number of constraints/number of violated constraints þ 1);
that is, the better the solution, the higher the pheromone drop.

Like GAs, ACO is very general in the sense that it requires
only a minimum amount of problem-specific knowledge:
only a fitness function for rating an individual solution is
needed. Unfortunately, ACO in its plain version does not per-
form very well on the PartnerUnits problem because of its
complicated and highly connected inner structure. The usage
of higher sophisticated variants of ACO along with domain-
specific heuristics and local search could possibly be more
successful in dealing with the PartnerUnits problem. How-
ever, the goal of this study was to plainly use ACO without
highly specialized expertise and without packing any domain
knowledge into the solver.

Fig. 6. The chromosome configuration.

Fig. 7. The recombination operator.

Fig. 8. The mutation operator.

Modeling technical configuration problems 123

4.9. Choco

Choco is an open source constraint library written in Java. To
encode the assignment of sensors and zones to the units, we
use the two-dimensional IntegerVariable arrays sensor2unit
and zone2unit. Each array represents one of the relations of
our problem, that is, sensor i is associated with unit j, if and
only if sensor2unit[i][j] ¼ 1. To ensure that a sensor/zone
i is only assigned to one unit, a constraint is added that the
sum of integer variables in each row must be 1.

Choco.eq(Choco.sum(sensor2unit[i]), 1))
Choco.eq(Choco.sum(zone2unit[i]), 1))

In addition, there must not be more than two sensors or
zones for every unit. This is ensured by the constraint

Choco.leq(Choco.sum(column), 2);

for every column of the arrays zone2unit and sensor2unit.
To restrict the number of connections between units an-

other two-dimensional array partnerunits is needed. partner-
units[i][j]¼ 1, if there is a connection between unit i and unit
j. The following constraints are posted:

Choco.leq(Choco.sum(partnerunits[i]),2)
// There must not be more than

2 Partners for every unit
Choco.eq(partnerunits[i][j],

partnerunits[j][i]) for i != j
// The relation is symmetric

Whenever there is a zone assigned to unit i and one of its sen-
sors assigned to a different unit j, there must be a connection
between the units:

Choco.implies(Choco.and(
Choco.eq(zone2unit[zoneindex][i],1),
Choco.eq(sensor2unit[sensorindex][j],1)),
Choco.eq(partnerunits [i][j],1))

Given this encoding Choco can solve the basic example
without the need of additional heuristics. If the solver finds
a solution, mapping the result back to an object-oriented
model is straightforward. For every IntegerVariable vij ¼ 1
of the arrays zone2unit and sensor2unit, associate zone/sen-
sor i with unit j.

4.10. KodKod

KodKod is a SAT-based constraint solver for relational logic
(Torlak, 2009). Alloy 4, which is based on KodKod, can con-
vert Alloy specifications to KodKod-Java source files. We
used this option to translate our Alloy specification from
Section 1.1 to KodKod.

The KodKod Solver works by translating the problem to a
SAT-problem. The SAT-problem is then solved by an exter-
nal SAT-Solver (such as SAT4J). Therefore, the use of Kod-
Kod (like all SAT-based approaches) is limited by the number

of the created clauses for encoding the problem as a SAT-
problem. Although KodKod may not be suitable for solving
problems with many instances (.30), its ability to enumerate
models is for instance convenient for generating test cases.

Mapping the results of the solving process back to the source
model is particular easy because KodKod allows using the Java
objects of the source model directly as atoms in the relations.
Thus, for instance, translating the relation between units and
sensors back to our object-oriented model looks like this:

unit2sensor = Relation.nary
("this/ComUnit.unit2sensor", 2);

Iterator,Tuple. unit2sensorItor =
solution.instance().
tuples(unit2sensor).iterator();

while(unit2sensorItor.hasNext()) {
Tuple t = unit2sensorItor.next();
ComUnit u = (Unit)t.atom(0);
DoorSensor d = (DoorSensor)t.atom(1);
d.setUnit(u);

}

4.11. DLV (Datalog)

DLV Complex is an Answer Set Programming System ex-
tending DLV, a system for disjunctive datalog with con-
straints, true negation, and queries (Eiter et al., 1997). It offers
a very concise representation of the problem.

The relation between zones and door sensors and the maxi-
mally usable amount of communication units are given as
positive facts. The implicit unique name assumption ensures
that the listed zones (z1, z2) and door sensors (d1, d2, d3, d4)
are considered different, for example, for the example in
Section 4.7:

zd(z1,d1).
zd(z1,d2).
zd(z1,d3).
zd(z2,d3).
zd(z2,d4).
unit(1..2).

We formulate the possible assignment of units to zones and
sensors as a disjunction of positive and negative facts. Con-
straints restrict their cardinalities: not more than two zones
per unit, exactly one unit per zone (analogous for sensors):

zu(Z,U) v -zu(Z,U) :- zd(Z,_), unit(U).
:- unit(U), not #count{Z: zu(Z,U)} ,= 2.
:- zd(Z,_), not #count{U: zu(Z,U)}= 1.
du(D,U) v -du(D,U) :- zd(_,D), unit(U).
:- unit(U), not #count{D: du(D,U)} ,= 2.
:- zd(_,D), not #count{U: du(D,U)}= 1.

Similarly, we calculate and restrict the partner units:

pu(U,P) :- zu(Z,U), zd(Z,D), du(D,P), P!= U.
pu(U,P) :- pu(P,U).
:- unit(U), not #count{P: pu(U,P)} ,= 2.

A. Falkner et al.124

Running the program and filtering the relevant facts zu, du,
and pu results in

zu(z1,1). zu(z2,1).
du(d1,1). du(d2,1). du(d3,2). du(d4,2).
pu(1,2). pu(2,1).

In addition, the complete program has a final step that
pretty-prints the result (omitted for brevity).

It performs well for finding solutions for medium-sized
problems like the example at the beginning of this paper.
However, it takes very long to realize if there is no solution
at all. Furthermore, it will not find minimal solutions if there
are too many units available. One can avoid this by setting the
number of available units to the minimum (e.g., unit(1..2) in
the example above).

The use of weak constraints for optimizing the solution (in
case the number of available units is higher than the number
of necessary ones) increases the runtime considerably so that
it is not recommended:

used(U) :- zu(_,U).
used(U) :- du(_,U).
:� used(U).

4.12. Constraint handling rules (CHR)

CHR is a declarative concurrent committed-choice constraint
logic programming language consisting of guarded rules that
transform constraints (represented as multisets of relations) un-
til no more change occurs (Frühwirth, 2008). With its built-in
reasoning mechanism for simplification and propagation rules
it is well suited for optimizing constraint satisfaction.

We use CHR with host language SWI-Prolog. Therefore, we
can take advantage of Prolog’s inference machine and variable
unification: the relation between zones and door sensors as an in-
put is represented by factszdu/2, which relate variables that la-
ter will be instantiated to the unit for that zone or sensor (explor-
ing an idea of Frühwirth, 2009, personal communication), for
example, for the simple example in Section 4.7:

?- zdu(Z1,D1), zdu(Z1,D2), zdu(Z1,D3),
zdu(Z2,D3), zdu(Z2,D4),
label([z1-Z1,z2-Z2], [Z1,Z2],

[d1-D1,d2-D2,d3-D3,d4-D4],
[D1,D2,D3,D4],[1,2]).

They are simplified to relations for the partner units
(pu/2): when both arguments are bound (i.e., zone and sen-
sor are placed on a unit), then the two units are related as
partners.

zdu(ZU,DU) ,=. nonvar(ZU), nonvar(DU)
| pu(ZU,DU), pu(DU,ZU).

Partner units are optimized and restricted (to two): remove
reflexive and duplicate relation instances with simplification
rules that have a “true” body. Raise a failure when there are

too many partner units for a given unit (all anonymous vari-
ables “_” in the third rule are considered different).

% same unit is never a partner
pu(U,U) ,=. true.
% remove duplicates
pu(U,PU) \ pu(U,PU) ,=. true.
% not more than 2 partner units
pu(U,_), pu(U,_) \ pu(U,_) ,=. fail.

The placement of doors and sensors to units is done by a
naı̈ve labeling of zones and sensors with a unit, which at first
tries to place two zones and two sensors onto one unit, and
only if it fails, places fewer ones. By using variable binding
for that, it realizes a natural way of symmetry breaking. If a
variable is bound then it triggers generation of the partner
unit in the simplification rule of zdu/2.

label(Zs,ZVs,Ds,DVs, [U|Us]) ,=.

% symmetry breaking
(ZVs= [U|ZVs1]; ZVs= [],ZVs=ZVs1),
(select(U,ZVs1,ZVs2); ZVs1=ZVs2),
(select(U,DVs,DVs1); DVs=DVs1),
(select(U,DVs1,DVs2); DVs1=DVs2),
label(Zs,ZVs2,Ds,DVs2,Us).

label(_,_,_, [_|_], []) ,=. fail.
label(_, [_|_],_,_, []) ,=. fail.
label(Zs, [],Ds, [],_) ,=. label(Zs,Ds).

The results are the facts for the partner units and the final
labeling, for example,

label([z1-1,z2-1], [d1-1,d2-1,d3-2,d4-2]),
pu(1,2), pu(2,1).

The complete program has in addition a preparation step
that creates the initial query and a final step that pretty-prints
the result (omitted for brevity).

The program performs similar as the backtracking ap-
proach. It prunes dead ends early and finds good solutions
for smaller problems quite fast. However, sometimes it does
not find a solution within a reasonable time period, and it al-
ways takes a long time to detect that there is no solution at all.

5. EVALUATION OF THE RESULTS

In the preceding section we presented several approaches to
solve the PartnerUnits problem: various general-purpose solv-
ers parameterized to the problem (Choco, KodKod, DLV),
different AI methods adapted to the problem (generative
backtracking, iterative repair, simulated annealing, GA, ant
colonies), and problem-specific algorithms (domain-specific
heuristic and repair, CHR).

The problem could be mapped to all of them with only little
effort. Some of them are easier to understand (e.g., the object-
oriented approaches and DLV with their close relation to real-
world concepts) than others (e.g., Choco because of the map-
ping of object connections to integer arrays).

Modeling technical configuration problems 125

Clearly, analyzing the properties of the problem (like com-
plexity) and exploiting them in the algorithms would help to
improve their performance. However, it takes time and math-
ematical expertise to get deep insight in the problem, which
may not be available for the average knowledge engineer in
real-world projects. Furthermore, tuning algorithms or imple-
menting special solutions for better performance tends to be
expensive and difficult to adapt when requirements change.
We are sure that experts for the used tools can do better
than us. However, we wanted to evaluate the results for aver-
age knowledge engineers.

We tested all algorithms described in the previous sections
on the following example configurations:

† small: examples from Section 2; the first with seven
zones (example 1), the second with eight (solution 2),
the third (with eight zones) having no solution (small-
no); see Table 3.

† single: a highly packed configuration with 11 zones, 6
sensors, and 22 connections between them; see Table 3.

† double (see Fig. 9): a double row of connected rooms, each
room being a zone (number of zones given as parameter); a
variant (dv in Table 4) has additional zones for each two
connected rooms vertical to the row; to be solved with
maximum of partner units raised to three or four for the
variant, respectively (as no solver found a solution with
smaller bound for partners within the given time frame)

† triple (see Fig. 10): a weakly connected group of rooms,
each room being a zone (their number given as pa-
rameter); in some cases with additional two or four
zones consisting of 2 to 3 rooms; in Table 5 we used
one to four blocks of “width” 10 (i.e., of 30 rooms); to
be solved with max partners raised to 4

The input data for the evaluation as well as some of the used
algorithms are available by e-mail from the authors.

Tables 3–5 summarize the results as the time for finding a
valid solution on a 2-GHz PC; or in the case of small-no, for
finding a proof that the problem has no solution. The time is
given in seconds (i.e., the numbers in the table). A “—” means
time out, that is, no solution was found within 30 min. We in-

troduced this time out because the users expect a result within
a few minutes. For some examples, the domain-specific algo-
rithms got stuck in a local optimum and gave up before time
out, which is represented by an “x.” Furthermore, “m” means
that an algorithm ran out of memory before time out (memory
was limited to 600 MB).

It is interesting that the general heuristic methods (like simu-
lated annealing or GA) do not perform very well on large Part-
nerUnits problems, because of the complicated inner structure
of the resulting configurations. These methods are better be
used for problems where the focus lies on optimization, and
not on consistency. The main advantage of these heuristic
methods is the possibility to give a time limit. Although the
most complete methods, like backtracking, have no solution
at all if stopped after a time out, heuristic methods most often
return a solution candidate that is close to a consistent solution.

As expected, the domain-specific algorithms perform very
well for most of the large but simple (i.e., weakly connected)
examples. Unfortunately, they do not find solutions to harder
problems even when they are quite small (e.g., see Table 3).

We conclude that depending on the problem and even on the
problem instance, different solving strategies are necessary to
arrive at a valid solution. Therefore, a configuration system
needs an architecture that allows selecting suitable solvers, de-
pendent on properties, structure, and size of the problem.

6. A FLEXIBLE CONFIGURATION
ARCHITECTURE

A configurator roughly consists of three main components: the
modeling framework, a solving engine, and interfaces to the
user, file data, a database, Web services, and so forth. A clean
separation of these components allows for using best-fitting tech-
nologies and frameworks for each part. Especially the separation
of and relationship between modeling and reasoning is crucial.
The surrounding interfaces are not in the focus of this paper.

For complex engineering domains, it is not appropriate to
model the configuration problem using a general-purpose solv-
ing framework, like a standard CSP or a GA framework. To
achieve efficient, natural, and easy to maintain knowledge mod-
eling,an object-oriented type hierarchy, augmented by powerful
constraint and rule concepts is state of the art. Such a knowledge
base supports design and implementation of the surrounding in-
terface components in a straightforward way.

In contrast, specialized reasoning capabilities are required,
ranging from domain filtering, satisfiability checks, finding a

Fig. 9. Example configuration “double.”

Table 3. Evaluation results

Examples Small-7 Small-8 Small-no Single-11

4.2 Generative BT 1 1 12 6
4.4 Domainspec. heuristics x x x x
4.4 Domainspec. repair x x x x
4.5 Iterative repair 1 — — —
4.6 Simulated annealing 1 1490 — —
4.7 Genetic algorithm 6 — — 499
4.8 Ants 1002 — — —
4.9 Choco (classical CSP) 1 251 — 155
4.10 KodKod (SAT) 1 1 79 1
4.11 DLV 3 8 — 2
4.12 CHR 1 349 — 123

A. Falkner et al.126

validsolution, to finding thenbestsolutions.Unfortunately, there
is no silver bullet capable of handling all these tasks. Thus, the
architecture should be open to plug in different solvers for the
different purposes. Figure 11 sketches such an architecture.

The problem is modeled in a high-level language. Special-
ized mappers transform the problem or parts of the problem
to appropriate solvers. In turn, the solver results are mapped
back to the high-level model, ready to be presented to the user
or exported to other processes. Typically, the solver needs infor-

mation from the model about the model state during search (e.g.,
the state of the constraints or the value of a fitness function).

For example, the PartnerUnits problem is modeled in a high-
level language and solved using a GA solver (see Section 4.7).
First, the problem is mapped to genes in the GA language. In
addition, solving parameters are provided, like the maximum
number of generations, a time out, or the population size.

Table 4. Evaluation results

Double Examples d-20 dv-30 d-40 dv-60 d-60 d-80 d-100

4.2 Generative BT 1 — 1 — 2 4 6
4.4 Domainspec. heuristics x x x x x x x
4.4 Domainspec. repair 3 15 37 16 135 x x
4.5 Iterative repair 1 55 2 — 6 153 134
4.6 Simulated annealing 35 — 149 — 138 84 350
4.7 Genetic algorithm — — — — — — —
4.8 Ants — — — — — — —
4.9 Choco (classical CSP) 1 — 9 — m m m
4.10 KodKod (SAT) 25 130 m m — — m
4.11 DLV — — — — — — —
4.12 CHR — — — — — — —

Fig. 10. Example configuration “triple.”

Fig. 11. A flexible configuration architecture.

Table 5. Evaluation results

Triple Examples t-30 t-32 t-34 t-60 t-64 t-90 t-120

4.2 Generative BT 3 3 — 11 — 29 65
4.4 Domainspec. heuristics 1 x x 1 x x x
4.4 Domainspec. repair 1 5 1 1 1 1 x
4.5 Iterative repair 5 6 76 35 — 93 1473
4.6 Simulated annealing 5 5 150 113 — 1209 —
4.7 Genetic algorithm — — — — — — —
4.8 Ants — — — — — — —
4.9 Choco (classical CSP) 3 — — 150 — m m
4.10 KodKod (SAT) 602 m m — — — m
4.11 DLV — — — — — — —
4.12 CHR — — — — — — —

Modeling technical configuration problems 127

Then the GA algorithm generates an initial solution or, in the
following steps, an offspring of an existing individual solution.
To rate the quality of a solution, a fitness function value is re-
quired. We want to keep the solvers, in this case the GA, as in-
dependent of the domain as possible, avoiding duplicated repre-
sentations of a large part of the model at the solver. Therefore,
the fitness function is provided by the high-level model, because
the object network and constraints are available there, with the
possibility of complex, problem-specific computations.

When the GA solver has finished, eventually the best GA so-
lution candidate is mapped back to the high-level model (Fig. 12).

The benefits of this architecture are a clean separation of
modeling and reasoning and, hence, the possibility of using
best-suited techniques and tools for those tasks. Complex sys-
tems may have different corners with different needs for rea-
soning. Although usually one high-level modeling system is
used, which all other components are based upon, it is some-
times useful to work with more than one reasoning tool. This
architecture is open for this.

The trade-off is the mapping functions from and to modeling
and solver. Design and implementation of these mapping func-
tions must be added to the modeling costs, the runtime over-
head must be added to the solving time and should not be
underestimated.

7. CONCLUSION

When we started writing this paper, we did not anticipate how
hard solving the PartnerUnits problem would turn out to be.
This is a typical scenario for a knowledge engineer when
faced with building a configurator for a new product. There-
fore, we advocate the use of formal tools (such as Alloy) at an
early stage of knowledge engineering to analyze the complex-

ity of the problem before choosing a suitable solving technol-
ogy. Still, it is undeniable that most approaches to product
configuration have a problem with large-scale configurations
(i.e., containing a lot of instances).

Often the knowledge engineer must be able to find a spe-
cial heuristic for the problem at hand or map the problem to
algorithms from other fields (graph theory, OR, etc.). As
stressed in Michalewicz and Fogel (2004), we cannot expect
one general method to solve all the problems of all domains.
Knowledge engineering especially for product configurators
is an interdisciplinary approach.

What makes the PartnerUnits problem hard to solve is the
restriction to N partnerunit connections (e.g., N ¼ 2). Aside
from the intellectual fun to tackle such a problem, it is worth
asking the design engineers of the product whether this re-
striction is really necessary or whether there is another techni-
cal solution without this restriction. Experiences have shown
that many hard configuration problems could be avoided
just by an early integration of configuration architects into
the product design process to make the product easier to
configure (see Falkner & Haselböck, 2009).

At present, there is no well-established modeling language
for product configuration. All the transformations from the
modeling language to the solving language (e.g., UML/
OCL!CSP) had to be implemented especially for this prob-
lem. Automatic translation between the different formalisms
would be a great benefit.

7.1. Tools

To make it easier for the reader to evaluate our results and ex-
periment with the described problem, we have chosen only
freely available tools in this paper.

Fig. 12. The flow of control between the model and solver.

A. Falkner et al.128

Alloy: http://alloy.mit.edu/alloy4/

Choco: http://www.emn.fr/z-info/choco-solver/index.html

DLV: http://www.dlvsystem.com/

DLV-Complex: http://www.mat.unical.it/dlv-complex

Eclipse IDE: http://www.eclipse.org

JGAP: http://jgap.sourceforge.net/

KodKod: http://alloy.mit.edu/kodkod/

SAT4J: http://www.sat4j.org/

SWI-Prolog (incl. CHR): http://www.swi-prolog.org/

USE: http://www.db.informatik.uni-bremen.de/projects/
USE/

REFERENCES

Albert, P., Henocque, L., & Kleiner, M. (2008). Ant colony optimization for
configuration. Proc. 20th IEEE Int. Conf. Tools With Artificial Intelli-
gence, pp. 247–254.

Baader, F., McGuinness, D.L., Nardi, D., & Patel-Schneider, P.F. (2003). The
Description Logic Handbook. Cambridge: Cambridge University Press.

Cooper, M., Jeavons, P., & Salamon, A. (2008). Hybrid tractable CSP’s
which generalize tree structure. Proc. ECAI, pp. 530–534.

Dechter, R., & Meiri, I. (1989). Experimental evaluation of preprocessing
techniques in constraint satisfaction problems. Proc. 11th IJCAI, pp.
271–277.

Eiter, T., Gottlob, G., & Mannila, H. (1997). Disjunctive datalog. ACM
Transactions on Database Systems 22/3, 315–363.

Falkner, A., Feinerer, I., Salzer, G., & Schenner, G. (in press). Computing
product configurations via UML and integer linear programming. Inter-
national Journal on Mass Customization.

Falkner, A., & Haselböck, A. (2009). A simple evaluation process for config-
urability. Proc. IJCAI-09 Workshop on Configuration, pp. 17–22.

Felfernig, A. (2007). Standardized configuration knowledge representations
as technological foundation for mass customization. IEEE Transactions
on Engineering Management 54(1), 41–56.

Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., & Zanker, M.
(2003). Configuration knowledge representations for Semantic Web ap-
plications. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 17(1), 31–50.

Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2002). Configuration
knowledge representation using UML/OCL. Proc. 5th Int. Conf. Unified
Modeling Language, pp. 49–62. Berlin: Springer–Verlag.

Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., & Stumptner,
M. (1998). Configuring large-scale systems with generative constraint
satisfaction. IEEE Intelligent Systems 13(4), 59–68.

Frühwirth, T. (2008). Welcome to constraint handling rules. In Constraint
Handling Rules—Current Research Topics (Schrijvers, T., & Frühwirth,
T., Eds.), L Vol. 5388. New York: Springer–Verlag.

Gent, I.P., Petrie, K.E., & Puget, J. (2006). Symmetry in constraint program-
ming. In Handbook of Constraint Programming (Rossi, F., van Beek, D.,
& Walsh, T., Eds.), pp. 329–376. Amsterdam: Elsevier.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Reading, MA: Addison–Wesley Professional.

Gottlob, G., Greco, G., & Mancini, T. (2007). Conditional constraint satisfac-
tion: logical foundations and complexity. Proc. IJCAI 2007, pp. 88–93.

Jackson, D. (2002). Alloy: a lightweight object modeling notation. ACM
Transactions on Software Engineering Methodologies 112, 256–290.

Khichane, M., Albert, P., & Solnon, C. (2008). Integration of ACO in a con-
straint programming language. Proc. ANTS, pp. 84–95.

Kirkpatrick, S., Gelatt, C.D., Jr., & Vecchi, M.P. (1983). Optimization by
simulated annealing. Science 220(4598), 671–680.

Mayer, W., Bettex, M., Stumptner, M., Falkner, A., & Faltings, B. (2009). On
solving complex rack configuration problems using CSP methods. Proc.
IJCAI-09 Workshop on Configuration, pp. 53–60.

McDermott, J. (1982). R1: a rule-based configurer of computer systems.
Artificial Intelligence 19, 39–88.

Michalewicz, Z., & Fogel, D.B. (2004). How to Solve It: Modern Heuristics.
Berlin: Springer.

Sabin, D., & Weigel, R. (1998). Product configuration frameworks—a sur-
vey. IEEE Intelligent Systems 13(4), 42–49.

Schoofs, L., & Naudts, B. (2000). Solving CSPs with ant colonies. Proc.
ANTS, 2000.

Torlak, E. (2009). A constraint solver for software engineering: finding mod-
els and cores of large relational specifications. PhD Thesis. MIT.

Andreas Falkner is Program Manager and Senior Research
Scientist in the global technology field entitled Constraint-
Based Configurators at Siemens’ Corporate Research &
Technologies division. He received MS and PhD degrees in
computer science from the Vienna University of Technology.
Since 1992 he has been working for Siemens AG Austria,
where he develops product configurators for complex tech-
nical systems in various domains, for example, for railway in-
terlocking systems. For that purpose, his team has created a
domain-independent configuration framework based on gen-
erative constraint satisfaction and is continuously enhancing
it for further real-world requirements.

Alois Haselböck is a member of the research and develop-
ment staff at Siemens AG Austria and is a Senior Research
Scientist in the global technology field entitled Constraint-
Based Configurators at Siemens’ Corporate Research &
Technologies division. He received MS and PhD degrees in
computer science from the Vienna University of Technology.
His research interest comprises knowledge representation and
solving techniques for constraint-satisfaction systems where
he has contributed fundamental findings in the field of gen-
erative constraint satisfaction.

Gottfried Schenner is a Senior Research Scientist in the
global technology field entitled Constraint-Based Configura-
tors at Siemens’ Corporate Research & Technologies division.
He joined Siemens AG Austria as a software developer in 1997.
Mr. Schenner received an MS in computer science (main sub-
ject AI) from the Vienna University of Technology. Since 1997
he has been working on projects developing product configura-
tors, including a domain-independent constraint-based config-
urator framework. His research interests comprise constraint-
based technology and software architecture.

Herwig Schreiner heads the global technology field entitled
Constraint-Based Configurators at Siemens’ Corporate Re-
search & Technologies division. He holds a Senior Project
Manager (zSPM) degree from the International Project Man-
agement Association and received his MS in computer sci-
ence from the Vienna University of Technology. His research
interests include semantic technologies and knowledge repre-
sentation for model-based diagnosis and configurators.

Modeling technical configuration problems 129

Product configuration as decision support: The declarative
paradigm in practice

ALBERT HAAG AND STEFFEN RIEMANN
SAP AG, Walldorf, Germany

(RECEIVED May 17, 2010; ACCEPTED October 29, 2010)

Abstract

Product configuration is a key technology, which enables businesses to deliver and deploy individualized products. In many
cases, finding the optimal configuration solution for the user is a creative process that requires them to decide trade-offs
between conflicting goals (multicriteria optimization problem). These problems are best supported by an interactive dialog
that is managed by a dedicated software program (the configurator) that provides decision support. We illustrate this using a
real example (configuration of a business software system). This productively used application makes the user aware of
which choices are available in a given situation, provides assistance in resolving inconsistent choices and defaults, and gen-
erates explanations if desired. One of the key configurator components used to manage this is a truth maintenance system.
We describe how this component is used and two novel extensions to it: methods for declarative handling of defaults (of
varying strength) and the declarative handling of incompleteness. Finally, we summarize our experiences made during the
implementation of this application and the pros and cons of declarative versus procedural approaches.

Keywords: Business Configuration; Constraints; Decision Support; Interactive Configuration; Truth Maintenance
Systems

1. INTRODUCTION

1.1. SAPw Business ByDesignTM Scope Selection:
Our case study

Configuring a large and powerful software system is typically
a complex task that often requires highly trained experts and
involves considerable effort. A major aspect of this task is to
ensure a consistent configuration that reflects the given con-
straints on the system functions and avoids conflicting user
choices.

Our case study, which is the Scope Selection application in
the SAP Business ByDesign solution (a product of SAP AG,
Walldorf, Germany), offers substantial support for configur-
ing a ByDesign system. It is based on the Business Adapta-
tion Catalog (BAC) that represents the available functions of
the solution. Customers select the desired functions to define
an individual solution scope and answer questions to deter-
mine the desired behavior of the selected functions. The
result is a “business blueprint” that is the basis for loading
a set of predefined configuration settings into the system.

To simplify the process of scope definition, it starts with a
number of typically required choices that are recommended
by SAP based on existing scenarios dependent on high-level
decisions such as countries of operation and type of business
(e.g., service provider in the United States). These recom-
mended defaults are loaded as so-called preselections. This
helps to minimize the necessary user interaction and custom-
ers can focus on their individual requirements.

The system ensures that customer choices are consistent
and complete and informs why a given choice is in conflict
with other choices. After all choices have been made and
their consistency and completeness have been verified by the
system, the defined solution scope is deployed and the custo-
mizing settings of the solution are changed appropriately.

The BAC (see Fig. 1) is a hierarchical arrangement of scop-
ing elements. The first level of the hierarchy is defined by
“Business Areas” that are purely structural elements. On the
second level, “Business Packages” define the set of business
functions. On the third level, “Business Topics” are used to
model the key functions of business packages.

The behavior of the business functions depends on which
business options are selected. The selection of business pack-
ages and business topics corresponds to the question “what
functions should be used,” but business options are used to

Reprint requests to: Albert Haag, SAP AG, Dietmar-Hopp-Allee 16, Wall-
dorf 69190, Germany. E-mail: albert.haag@sap.com

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 131–142.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000582

131

determine “how should the selected functions behave.” For
example, the customer can choose “Sales Orders” by select-
ing the appropriate business topic. Within Sales Orders, the
customer can select the applicable business option to define
whether or not an availability check is to be used.

Business packages, business topics, and business options
can have one attached constraint rule that states the conditions
when the item is automatically selected or deselected. These
rules are termed self-centric. This format was originally chosen
in the belief that it makes rule maintenance more manageable
in that the relevant dependencies of an item are expressed in a
single rule. In addition to the self-centric rule it is possible to
add one default rule per element. This rule states a condition
that will cause the element to be selected as a default. (The
user can later choose to override defaults.)

Figure 2 shows an example of the Scope Selection user inter-
face (UI). In this example, the user selected the business pack-
age “Selling Products & Services,” which caused a selection of
further items. In particular, this user choice led to a selection of
the business package “Product and Service Portfolio” by con-
straint and a default selection of the business topic “Sell Pro-
ducts.” The user choice and the default selection both deduce
a selection of the business topic “Material.” The explanation
is based on the label of fact BT_MAT in Table 1. The meaning
and calculation of labels is explained in Section 3.3.

2. SCOPE SELECTION AS A SPECIAL CASE
OF PRODUCT CONFIGURATION

SAP provides product configuration built in to its standard
enterprise resource planning and customer relationship man-
agement offerings. The current SAP product configuration
engines are the SAP variant configurator and SAP Internet

Pricing and Configuration (the IPC). These tools enable cus-
tomers with configurable products to define product models
and to manage these products in the context of their business,
for example, sales, invoicing, and fulfillment. In particular,
they provide interactive high-level configuration capability. A
monograph on SAP Variant Configuration can be found in
Blumöhr et al. (2010), which also references the IPC.

Scope Selection serves a different business process and is
an SAP in-house application with a predetermined model (the
BAC with its self-centric rules). Configuration results (the
“Business Blueprints”) are stored in a dedicated repository
(called workspaces). Nevertheless, Scope Selection can be
implemented using standard SAP product configuration by
transforming both the BAC and the workspaces into the cor-
responding standard representations. This was proven in an
earlier feasibility study using the IPC.

However, the required transformations are a source of ad-
ditional complexity, and some unwanted and unneeded de-
pendency on other software components is incurred. This cre-
ates additional cost and risk for the application. To avoid
these drawbacks, an implementation of Scope Selection using
a custom business rule approach (production rules) was first
done without the IPC.

To facilitate reusing the IPC functionality the SAP Core
Constraint Engine (CCE) is now provided, which encapsu-
lates the constraint-based configuration logic of the IPC and
is independent from other software components. When Scope
Selection needed to adopt new standards for a following re-
lease, the CCE was available, met the new requirements,
and it was decided to replace the custom rule engine with
the CCE. The resulting current architecture (our case study)
will be provided later in the article. This implementation is
not a prototype, but it is used productively in Scope Selection.

Fig. 1. The Business Adaptation Catalog (BAC) with business rules.

A. Haag and S. Riemann132

The switch to using the CCE was also a shift from a proce-
dural paradigm to a declarative paradigm. Roughly speaking,
we call an approach procedural if attention must be paid to the
order in which the product model (e.g., the catalog items, the
rules and/or constraints) and the user selections are processed.
The production rules used in the initial implementation of Scope
Selection are procedural because they perform side effects like

overwriting defaults (and sometimes user selections) and act on
unspecified information. Catalog items the user has not explic-
itly selected or deselected may be treated as deselected by de-
fault and acted on accordingly. A classical account of a produc-
tion rule application with its advantages and drawbacks is given
in McDermott (1982). We present experiences with this para-
digm shift in Scope Selection in Section 4.4.

Fig. 2. The Scope Selection user experience. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Table 1. Example facts corresponding to the BAC excerpt in Figure 1

Fact ID
BAC Item

(Problem Variable) Value
(A)TMS
Status

(A)TMS
Label

false s_unfounded
BP_PP Product portfolio Selected s_in BP_PP _ BP_SPS
BT_SP Sell products Selected s_in BT_SP
BT_SS Sell services Selected s_in
:BT_SP Sell products Deselected s_unfounded/ s_nil
:BT_SS Sell services Deselected s_unfounded/ s_nil
BP_SPS Selling products & services Selected s_in BP_SPS
BT_SO Sales order Selected s_in BP_SPS
BT_ES E-selling Selected s_unfounded
BT_CR Customer returns Selected s_in BT_CR
BP_PROD Products Selected s_in BT_SP
BT_MAT Material Selected s_in BT_SP
BT_SER Services Selected s_unfounded

Note: BAC, Business Adaptation Catalog; (A)TMS, SAP Core Constraint Engine component that facilitates decision support.

Product configuration as decision support 133

In contrast, we call an approach declarative if it is based on
logical evaluations that do not depend on any specific order.
Scope Selection can be seen as a classical constraint satisfac-
tion problem (CSP). This is a declarative problem formulation
that allows declarative processing. Whereas many product con-
figuration problems are not formally CSPs, a constraint-based
paradigm is the accepted approach to product configuration,
mainly because it is declarative (Desisto, 2004). A treatment
of constraint programming can be found in Rossi et al.
(2006). Junker (2006) deals specifically with the topic of con-
straints and configuration. The SAP product configurators
support both declarative and procedural elements. The feasi-
bility study performed with the IPC was declarative and based
on the SAP dependency type constraint (for SAP dependency
types, see Blumöhr et al., 2010).

We illustrate the kind of behavior we expect in an interac-
tive configuration with an example dialog based on Figure 1.
The user performs the following six steps in order:

1. The user selects the BAC business topic “Customer
Returns.” The BAC rules will then select a slew of de-
pendent items: business package “Selling Products &
Services,” which in turn will select business package
“Product Portfolio,” business topic “Sell Products” as
a default, and subsequently business topic “Material”
and its parent business package “Products.”

2. The user takes back the above selection. All these items
should disappear from the configuration.

3. The user directly selects “Selling Products & Services.”
All of the above items are again selected (“Customer
Returns” this time as a default).

4. The user overrules (retracts) the default “Customer Re-
turns.” Only this item should disappear. All other items
are still supported by the user choice for “Selling Prod-
ucts & Services.”

5. The user selects “Customer Returns” again.
6. The user retracts their selection of “Selling Products &

Services.” Nothing disappears as everything is still sup-
ported by the choice of “Customer Returns.”

As a general principle, the user could always expect the
same result independent of the order in which the selec-
tions/retractions are voiced. The procedural rule-based ap-
proach was not able to consistently ensure this. This was
not seen as a problem, because the UI did not allow the
user to make selections in arbitrary order. Nevertheless, it
was not possible to completely rule out situations in which
items remained selected, although they were not really sup-
ported by user selections anymore.

3. THE (A)TMS: THE TRUTH MAINTENANCE
SYSTEM (TMS) IN SAP CCE

The CCE component that facilitates decision support is its
TMS that we call the (A)TMS. This is actually the only

CCE component used in Scope Selection. The role of the
(A)TMS is fivefold:

1. Record all dependencies between properties of the con-
figuration. This is the basis for all of the other functions.

2. Distinguish the influence of logical constraints, user se-
lections, and defaults. Defaults are used to suggest a
property the user might want.

3. Determine whether a configuration state is consistent
(and complete). In particular, identify properties that
cannot be consistently added to the current configura-
tion (and might be grayed-out in the UI).

4. Support consistent retraction and assertion of properties
by the user as illustrated in the example in Section 2.
This includes identifying user input and defaults the user
may want to forego.

5. Provide explanations of a property. This includes identi-
fying which choices must be retracted in order to resolve
an inconsistency or otherwise remove an unwanted prop-
erty from the configuration. It also includes identifying
the actual business rules (constraints) used to establish
the presence or exclusion of a property (or inconsistency)
in the configuration. The role of a TMS in explanation is
also dealt with in (Haag et al., 2007).

We describe the (A)TMS in more detail below. However,
we limit ourselves to functionality used in Scope Selection.
In particular, the concept of specialization relations (Haag,
1991, 1998) used in the TMS of the variant configurator and
the IPC to handle dynamic domain restrictions is not dealt
with here.

At heart the (A)TMS is a monotonic justification-based
TMS (JTMS; Doyle, 1979); there are no “out-lists.” The fol-
lowing extensions used in Scope Selection are new and are
not yet available in the IPC:

† the concept of “choices” (see Section 3.2),
† a declarative mechanism for automatically dropping in-

consistent defaults (see Section 3.5), and
† a mechanism for recording logical completeness directly

in the (A)TMS (see Section 3.6).

3.1. Facts and justifications

The (A)TMS treats each property in the current configuration
state as an atomic proposition that we call a “fact.” Table 1
lists some facts that occur in Scope Selection. For example,
the property that “Selling Products & Services” is selected
is represented by the fact BP_SPS. A fact is only a valid
part of the configuration if it is justified. To this end the
(A)TMS maintains a set of “justifications.” Each justification
encodes a logical implication: ?justificand ! ?fact where
?justificand is a conjunction of other facts that allows infer-
ring ?fact. If ?justificand is the empty conjunction then
?fact will hold unconditionally and the justification is termed
an “independent justification.” Figure 3 depicts some justifi-

A. Haag and S. Riemann134

cations used in Scope Selection. For example, it contains an
independent justification for BT_SPS.

Justifications are annotated with additional information
about their source (the so-called “owner” of the justification).
For example, the justification BT_SPS! BP_PP is linked to
the BAC rule that spawned it. This is a feature used in expla-
nations but we do not elaborate on it further here. More
important, justifications are categorized by an attribute,
“strength.” The strength of a justification s is a positive num-
ber that is used to categorize the justification based on the two
defined constants c_strong and c_user (where c_strong .

c_user). There are three categories as follows:

1. Strong justifications (s � c_strong): These are due to
constraints.

2. User justifications (c_strong . s � c_user): These are
stated on behalf the user.

3. Default justifications (c_user . s . 0): These encode
defaults.

There is a unique special fact false that encodes inconsis-
tency. A constraint violation (inconsistency or “conflict”) is
recorded as a strong justification for false. BT_SP ^ :BT_SP
! false is an example of a conflict depicted in Figure 3.

In Scope Selection all facts and strong justifications are en-
tered into the (A)TMS at the time of initialization of the con-
figuration. In order to keep things simple we limit our expo-
sition to this scenario in the sequel, although facts and
justifications can be introduced to and removed from the
(A)TMS at any time.

The (A)TMS determines which facts are parts of the cur-
rent configuration state. These facts are assigned a logical sta-
tus s_in. Facts with independent justifications have status
s_in. In addition, a fact has status s_in if it has at least one jus-
tification with overall status s_in, that is, where all facts in the
justificand have status s_in. All facts that are not assigned sta-

tus s_in are considered to be “unfounded” (have status s_un-
founded). We revise this slightly in the next section in con-
nection with the concept of “dropping a choice.”

The configuration state is inconsistent if false has status
s_in. Table 1 also gives the logical status of the facts that re-
sults from the given set of justifications depicted in Figure 3.

3.2. Choices

The user can directly express that they support a particular
property (fact) by means of a user justification. They can later
change their mind about previous decisions or choose to
forego defaults and user selections in the process of juggling
alternatives in search for an acceptable consistent overall con-
figuration solution. The (A)TMS must both support the user
in juggling alternatives and provide a means for a consistent
“undo” functionality, that is, allow the user to revert back
to previous steps without any visible side effects.

We call facts the user can directly influence (including the
defaults) “choices.” More formally, we define the term “soft
justification” to cover both user justifications and default jus-
tifications. A fact justified by at least one soft justification is
termed a “choice.” A choice with an independent soft justifi-
cation is an “independent choice.”

Note that a fact with an independent strong justification is a
“premise.” A premise cannot be a choice because the user has
no influence on its validity. In addition, a choice without a
soft justification whose justificand has overall status s_in is
considered to be inactive as a choice.

The (A)TMS supports the following operations:

† The user or an agent on their behalf can communicate a
new user justification. This may turn a fact into a choice,
or it may add a soft (user) justification to an already ex-
isting choice. Such user justifications are usually (but
must not be) independent justifications.

Fig. 3. Example justifications corresponding to the Business Adaptation Catalog (BAC) rules in Figure 1.

Product configuration as decision support 135

† If a user justification from the (A)TMS has been asserted
“in error” it may be retracted. This would happen in the
context of an “undo” operation. It may remove a choice
if the fact has no other soft justifications.

† Normally, if the user is willing to forego a choice they
will “drop” it as a whole. Formally, this results in disabling
all soft justifications of the choice. (In particular, the
user can drop a choice that is only due to default justifi-
cations, thus overruling the default.) The disabled justi-
fications are not physically removed from the (A)TMS
but they are ignored when determining the facts to be
assigned status s_in. A dependent choice can only be
dropped if it is active as a choice.

† The user can “pick” a dropped choice. This is the inverse
function to dropping a choice. It means reenabling all soft
justifications. A dependent choice can only be picked if it
is active as a choice. [The application may decide to en-
sure that a choice picked by the user has/gets a user jus-
tification, but this is a decision outside the (A)TMS.]

In conjunction with choices we introduce the additional
logical status s_out. A fact has status s_out if it does not have
status s_in, but could be switched to status s_in merely by pick-
ing choices (i.e., without adding new justifications). A fact that
has neither status s_in nor s_out has status s_unfounded.

When deciding which choice to automatically drop in case
of a conflict it is important to take the strength of its soft
justifications into account. We define the strength of a choice
to be the highest strength of its founded soft justifications
(enabled or not). (A founded justification is one whose justi-
ficand contains no unfounded facts). Note that dropping or
picking a choice will not affect the strength of any choices.

3.3. Assumption-based TMS (ATMS)-like
label calculation

In order to automatically decide which choices to drop in case
of a conflict, to provide guidance to the user in resolving con-
flicts and removing unwanted facts, and to facilitate exploring
alternatives in general, the (A)TMS can calculate the minimal

logical support in terms of choices for selected facts. This cal-
culation is performed on demand for selected facts only and
then incrementally maintained for these facts. The idea of cal-
culating minimal logical supports on demand is not new: an
approach is presented by Petrie (1992, 1993) in which the
minimal set of “decisions” that support a constraint violation
is produced upon request. Retraction of such decisions, sim-
ilar at least in intent to our “choices,” removes the violations.
This is done with a model above the TMS, which in this im-
plementation is a JTMS. However, the dependency-directed
backtracking of the underlying JTMS in Petrie (1992) versus
the (A)TMS labeling in this paper is a fundamental utility for
determining this minimal set.

Our calculation of minimal supports derives from the
ATMS labeling defined by De Kleer (1986a) for the ATMS,
and we refer to the minimal support of a fact as its “label.” Be-
cause this is based on the concept of “choices” rather than “as-
sumptions” we might call our component a choice-based TMS,
but we chose to stick with established terms. We place the “A”
in parentheses to indicate that there are some deviations from
the original definitions of De Kleer (1986a).

We first introduce the terminology. An “environment” is a
logical conjunction of choices (implemented as a set). An envi-
ronment is “active” if all of its choices are active and picked.
Otherwise it is “inactive.” A “label” is a disjunction of environ-
ments (implemented as a set). A fact that has status s_in will
have at least one active environment in its label (when calcu-
lated). An environment in the label of a fact means that the
fact can be derived from the set of choices in the environment
but not from any proper subset of these choices. Table 1 also
shows the labels for selected facts. An environment that allows
deriving false is called a “nogood.”

Labels can be characterized as follows [Fig. 4 summarizes
the two basic operations on labels: addition (�) and multipli-
cation (�)]:

† Labels are kept minimal: logically redundant environ-
ments (supersets) are removed. A nogood can be removed
from any label other than that of false. Hence, the nogoods
are always computed as a prerequisite to computing other

Fig. 4. The addition and multiplication of labels.

A. Haag and S. Riemann136

labels if and only if the configuration state is inconsistent
as determined by the JTMS functionality.

† The singleton environment of a choice c is in the label of
c regardless of whether c is an independent choice or not
(this differs from de Kleer, 1986a).

† The label of a conjunction of facts is the product (�)
of the labels of all of the facts in the conjunction. The
label of the empty conjunction (left-hand side of an
independent justification) is the empty environment,
designating unconditional truth.

† The labels of the justificands of all strong justifications
for a fact are added (�) to its label.

† If a choice is conditional (i.e., it is not independent), a
conditional label is maintained separately. This is the
sum (�) of the labels of the justificands of all its soft
justifications. The conditional label plays a role in de-
termining the activation status of a choice and can
be used for more detailed explanations. In Table 1 the
choices BT_SP and BT_CR are conditional choices
with conditional labels BP_PP _ BP_SPS and BP_SPS
(not shown in Table 1), respectively.

We give an example of why it is opportune to have the sin-
gleton environment of a dependent choice in its label (as
opposed to the � product of its conditional label with the
singleton environment). In Figure 3 we see that BT_MAT is se-
lected when BT_SP has status s_in because of a strong justifi-
cation. In the setting of Table 1 BT_SP is a dependent choice
(a default that only holds if BP_PP holds as well). Now the
label of BT_MAT gives its minimal support. The “immediate”
support is the default justification. Of course, BT_MAT will
also be switched to s_out if BT_PP is removed from the
configuration by dropping both (user) choices in its label,
but there is no need to consider this if the user simply wants
to remove BT_MAT. Hence, the total information can be re-
constructed using the conditional label if needed, but only
the immediate support is expressed in the label (and propa-
gated).

Because rapid dropping and repicking is to be supported,
it is not opportune to remove inactive environments from la-
bels. If a choice is dropped, all environments that contain the
choice are simply deactivated. If the choice is repicked, the
corresponding environments must be checked to see if they
should be reactivated. In addition, any environments in a label
that had not been propagated in the label calculation must be
propagated on reactivation.

If a label cannot be calculated within allocated time or
space resources then the union of all environments in the label
is calculated as a fallback. This is a much easier calculation,
but still useful. Assume we have an inconsistency and the
union of all nogoods. Then it is clear that at least one of the
choices in this union must be dropped. After a decision to
drop one is made, the nogoods (or their union) must be recal-
culated and the process continues until the inconsistency is re-
solved. Thus far, this fallback calculation has not been in-
voked in conjunction with Scope Selection.

3.4. Retracting justifications

If strong justifications are retracted, many internal computa-
tions must be redone, particularly if the set of nogoods is po-
tentially affected. Retracting a soft justification is easier. The
effect retracting a soft justification can have is similar to that
of dropping a choice. It differs in that it can affect the strength
of a choice or remove a choice entirely. If only the strength is
affected this may cause a revision of automatically dropped
choices (see Section 3.5). If the choice is removed this will
cause removal of environments as well.

Although a configuration session ideally consists of just
adding justifications and dropping and picking choices, re-
traction of soft justifications is also needed to be able to pro-
vide an “undo” function without any side effects.

3.5. Declarative handling of defaults

To deactivate a nogood it suffices to drop one choice in the
nogood. This can be done automatically in a declarative fash-
ion if the decision to do so is unambiguous and independent
of any processing order. This is done in the (A)TMS based on
the strength of choices.

Given a set of founded justifications J and a set of (manually)
dropped choices there is a unique set of choices that is dropped
automatically by the (A)TMS. This set can be constructed itera-
tively as follows: let D be the overall set of dropped choices (ini-
tially only the manually dropped choices). Let N be the set of
active nogoods that have a unique minimal (strength) choice
given J and D. Order N by descending strength of minimal
choices. Drop the minimal choice in the first nogood in N. Re-
move any now inactive nogoods from N (at least the first ele-
ment). N is still ordered by descending strength of the least
preferred choices. Repeat the above process until N is empty.
Note, that when dropping a minimal choice for some nogood
in N this choice cannot be stronger than any minimal choice
of a previous element and will thus not make it necessary to re-
vise dropping previously dropped choices.

Although the set of automatically dropped choices is defined
as above, the (A)TMS provides an incremental mechanism to
determine which choices must be automatically dropped or re-
picked when changes to either justifications J or the manually
dropped choices occur.

As a matter of principle, choices because of user input
should never be dropped automatically. This is the origin of
the basic distinction between user and default justifications.
Hence, in practice, we restrict N to nogoods with minimal de-
fault choices. If user choices are also dropped automatically,
then more elaborate explanations or messages are required.

3.6. Declarative handling of incompleteness
in the ATMS

The configuration must be not only consistent but also com-
plete. In Scope Selection there are requirements that at least
one of a set of BAC items is selected. The added difficulty in

Product configuration as decision support 137

an interactive setting is that the case that some items in such a
set have not yet been specified (incompleteness) must be distin-
guished from the case that they are all intentionally deselected
(constraint violation).

The BAC items correspond to CSP variables with possible
values selected or deselected. However, the (A)TMS as a
propositional system has no notion of a problem variable. Con-
sequently, in the IPC completeness is handled procedurally
outside the CCE (mainly by checking if a required variable
assignment is indeed present). There is, however, a special
representation used there to represent an intentionally unspe-
cified variable and to allow constraints to act on this. This is a
fact stating that a variable is “nil” (unassigned). We call such
a fact a “nil facet fact” and represent it as nil(v), where v de-
notes a problem variable [known outside the (A)TMS]. Thus,
the justification nil(v1) ^ . . . ^ nil(vn) !strong false can be
used to express that leaving all variables v1, . . . , vn (intention-
ally) unspecified is inconsistent (a constraint violation).

If none of these nil facet facts can be disproved and some of
them are unfounded this is an incompleteness that cannot be
detected by the (A)TMS without some further mechanism.
The seemingly easy way to handle this is to initialize the
nil(v) fact of each variable v with a default justification (of suit-
ably weak strength). In Scope Selection there was a require-
ment to have the fact v ¼ deselected represent nil(v) as well
for a problem variable v variable representing a BAC item.

However, initially deselecting all BAC items as a default is
not a good idea as it clutters up the labels (and explanations)
in the (A)TMS and causes much irrelevant calculation. For
this reason we provide a separate mechanism as follows:
The (A)TMS can be told that a particular fact represents
nil(v) for a problem variable v. If any other fact pertaining
to the variable v implies :nil(v) this must be communicated
to the (A)TMS as an opposing fact to nil(v). This will be
any value assignment to v [except one that happens to coin-
cides with the fact representing nil(v)]. In the case of a vari-
able v representing a BAC item in Scope Selection v ¼ se-
lected is the only opposing fact. In case the variable v
represents the observable color, nil(v) would not relate to
any value assignment. All value assignments for color would
be opposing facts. In case the variable v is numeric the fact v
¼ 0 might be considered as representing nil(v) or not (as the
case may be for the particular product model).

The basic idea is that the (A)TMS treats an unfounded fact
nil(v) in a special way. The status of such a fact is set to s_out
if any opposing fact has status s_in. Otherwise, it is set to sta-
tus s_nil (instead of s_unfounded). The status s_nil is thus a
flavor of the status s_unfounded used for nil facet facts. A
conjunction of facts has an overall status s_nil if it contains
at least one fact with status s_nil and no fact with status
s_out or s_unfounded (as distinct from status s_nil).

The (A)TMS uses the status s_nil solely to detect incom-
pleteness. This means that a justification for false will signal
incompleteness if its justificand has status s_nil. If the justifi-
cand has status s_in it will signal inconsistency. For all other
purposes status s_nil is treated as s_unfounded. Any justifica-

tion for false that contains nil facet facts is thus “a potential
source of incompleteness.” Figure 3 contains one example,

BP PP ^ :BT SP ^ :BT SS!strong false;

where the last two facts in the justificand are nil facet facts.
Often the purpose of a default is to prevent incompleteness

from occurring in the first place. A justification for such a de-
fault may be entered into the (A)TMS by normal means, but it
will be present regardless of whether incompleteness is sig-
naled or not. For this reason the (A)TMS provides an inter-
face function tms_choose that allows defining a potential
source of incompleteness and associating it with a default
to handle it in such a way that the default is only activated
in case this source signals incompleteness. tms_choose has
the following four arguments and causes justifications (1)
and (2) to be entered into the (A)TMS with some special
handling for (2):

1. ?condition: A set (conjunction) of nonnil facet facts that
must hold as a precondition (BP_PP in the above exam-
ple from Fig. 3)

2. ?nil_ facet_ facts: A set (conjunction) of nil facet facts
defining the incompleteness (:BT_SP and :BT_SS in
the above example from Fig. 3)

3. ?default: An opposing fact to one of the given nil facet
facts that is to be set as default (as discussed in Section
4.3 this will be the fact BT_SP)

4. ?default_strength: A (fitting) strength for the ensuing
default justification (the normal default strength is used
here in Scope Selection)

?condition ^ ?nil facet facts!strong false (1)

?condition!?default strength ?default (2)

Justification (2) is automatically disabled in circumstances
when it would generate an additional unneeded conflict, for
example, when (1) signals a conflict or when the nil facet
fact that ?default opposes attains logical status s_in. It is reen-
abled when these circumstances no longer apply.

We consider this approach to be simpler and more practical
to compute than logically more complete approaches such as
the extended ATMS (de Kleer, 1986b).

4. THE DECLARATIVE APPROACH IN SCOPE
SELECTION

4.1. Architecture

An overview of the architecture of the Scope Selection appli-
cation (our case study) is given in Figure 5. It makes use of the
declarative configuration logic of the (A)TMS component of
the CCE. The other components of the CCE, in particular its
variable management, are not used. The application imple-
ments its own variable management in the scoping adaptor.
The scoping adaptor also manages the access to the scoping

A. Haag and S. Riemann138

model (the BAC) and the workspaces. One workspace con-
tains all the configuration decisions of one customer.

The services of the scoping adaptor are designed to meet
specific requirements of the application. For example, the
Scoping Adapter performs the following:

† Manages a problem variable for each item of the BAC.
† Translates the business rules in the BAC into (A)TMS jus-

tifications. We look at this in more detail in Section 4.3.
† Splits the Scope Selection process into several substeps:

high-level scope definition, detailed Scope Selection,
and the definition of business options. The (A)TMS is
initialized with the relevant variables and business rules
for each individual step.

† Includes a change history to enable the user to track
changes made to the configuration.

Use was made of the new features of the (A)TMS: the de-
clarative handling of defaults and incompleteness. Defaults
occur with two different strengths: normal defaults formu-
lated in the business rules and stronger “preselection” de-
faults formulated in conjunction with predefined scenarios
the user can select.

4.2. Structure of scoping elements

For each problem variable v (item in the BAC) we create two
facts in the (A)TMS:

† One fact represents “v ¼ selected.”
† The second fact represents “v ¼ deselected.”

If exactly one of the two facts is active (i.e., have status s_in),
the assignment (selection status) of the variable is well defined
and consistent. However, if both facts are active this is regarded
as a conflict (inconsistency). To this end a strong justification is
entered into the (A)TMS for each variable v as follows:

v ¼ selected ^ v ¼ deselected !strong false

Furthermore, if neither fact is active, then this variable is
“unspecified.” In the Scope Selection application, any vari-
able that remains unspecified at the end of the Scope Selec-
tion process is considered as “out of scope” and the corre-
sponding item is then treated as deselected.

All facts of the form v¼ deselected are declared as nil facet
facts in the (A)TMS; v ¼ selected is the opposing fact to v ¼
deselected (see Section 3.6).

Fig. 5. The architecture of scope selection application (case study). [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

Product configuration as decision support 139

4.3. Transition to the declarative approach

The existing product model was reused without any adapta-
tion of the preexisting rules. This was actually a precondition
for the successful transition from the previous implementa-
tion and increased the acceptance of the new Scope Selection
application by the responsible managers. The existing rules,
however, had originally been defined in the context of a pro-
cedural approach. With the transition to the declarative ap-
proach, these rules are now interpreted as logical inferences
(constraints).

The rules of the product model are defined in form of “self-
centric” IF–THEN–ELSE rules of the following form:

IF «condition» THEN «status 1» ½ELSE «status 2»� (3)

where «condition» refers to an expression comprising one or
more variable assignments connected with logical operators
AND and OR and «status 1» defines a selection status of
the BAC item that the rule is attached to. The rule specifies
that this will be set if «condition» is fulfilled. Here, «status
2» is the opposite of «status 1». It will be set if «condition»
is not fulfilled and ELSE is specified.

In the following we describe how these IF–THEN–ELSE
rules are translated into logical inferences.

First, «condition» is transformed into disjunctive normal
form (DNF), and references to the variable assignments are
replaced by corresponding references to facts. An element of
this DNF will be a conjunction of facts (e.g., f1 ^ . . . ^ fn).
The system derives an implication (4) for each such element
of the DNF:

f1 ^ � � � ^ fn) f0 (4)

where f0 is the fact that assigns «status 1» to the variable that
the rule is assigned to. In the event of an optional ELSE state-
ment, «status 2» is handled similarly based on the DNF of
NOT «condition». We do not elaborate on this explicitly in
the sequel.

Each implication (4) can be treated as a logical clause (5)
(recall that p) q is equivalent to :p _ q).

:f1 _ � � � _ :fn _ f0 (5)

where:fi represents the opposing assignment to fi, that is, that
:(v ¼ deselected) is v ¼ selected and vice versa.

For logical completeness it would seem advisable to gen-
erate a complete set of n þ 1 justifications, one for each fi
(e.g., :f0 ^ f2 . . . ^ fn !strong :f1 for f1). However, logical
completeness is not necessarily considered a boon by all. In
Scope Selection the business experts that formulated an im-
plication p) q through a rule did not believe that :q)
:p made sense in an explanation (e.g., because it violates per-
ceived causality) and considered the latter inference to be
“unwanted.” (Managers required that even if :q is chosen,
p is not to be excluded in the UI.)

Therefore, the system creates only two justifications based
on clause (5). One justification directly implements the impli-
cation (4) [which is closely linked to the business intent of the
rule (3)]:

f1 ^ � � � ^ fn !strong f0

A second justification is needed to check the consistency and
completeness of the configuration in the absence of a com-
plete set of justifications:

f1 ^ � � � ^ fn ^ :f0 !strong false

An inconsistency is detected if all involved facts in the justi-
ficand are founded. In the case that at least one such fact is a
nil facet fact (representing :v for some problem variable v)
which is in s_nil status (logically unfounded), incompleteness
is detected (refer to Section 3.6).

Some rules that are formulated to act on the deselection of
an item require special attention. The simplest form of such a
rule is

IF A ¼ deselected THEN B ¼ selected

where A and B are items in the BAC. Let :a be the fact A ¼
deselected and b be the fact B¼ selected. If the rule were sim-
ply translated into the justifications

:a!strong b and:a ^ :b!strong false

this will not infer b if :a is unfounded (or nil). As discussed in
Section 3.6, stating an initializing default justification for the
deselection of each variable does not work well. A different
translation is instead applied to these rules based on the actual
business intent of the rule that states a (directed) fulfillment of
a completeness requirement in a procedural form (b is needed
in the absence of a). Here we use the tms_choose function to
generate the following two justifications (see Section 3.6):

† :a ^ :b!strong false [as above, this corresponds to (1)]
† empty justificand (true) !default_strength b [this corre-

sponds to (2) and is only active in case of an incomple-
teness]

The justification :a!strong b is generated in addition against
the event that :a attains status s_in (is deselected on purpose).

We close with an example using two rules from the BAC.
We abbreviate by using fact substitutions directly in the for-
mulation of the rules (the example refers to facts and variables
given in Table 1):

IF BP SPS THEN BP PP (6)

IF BP PP AND:BT SS THEN BT SP (7)

Rule (6) states, the function “Sell Product & Services” re-
quires “Product Portfolio.” The second rule (7) will ensure

A. Haag and S. Riemann140

that “Product Portfolio” cannot be used without the functions
“Sell Services” and “Sell Products.” In fact, this rule is formu-
lated in a procedural manner to select the item “Sell Products”
in the case that “Product Portfolio” is selected but “Sell Ser-
vices” is not selected. The business intent is to associate a
completeness requirement with a default to handle it.

Rule (6) is transformed into the clause :BP_SPS _ BP_PP
and leads to the following justifications:

BP SPS!strong BP PP

BP SPS ^ :BP PP!strong false

Rule (7) includes the pattern to infer the selection of BT_SP
based on the deselection of BT_SS given the fact that BP_PP
is selected. It corresponds to the clause :BP_PP _ BT_SS _

BT_SP. That this formulates a completeness requirement
can be seen directly in that the clause contains a disjunction
of selections (i.e., is not a Horn clause). The original rule gives
information that this incompleteness is to be handled by select-
ing BT_SP as a default if required. Consequently, tms_choose
is used with the following arguments: ?condition¼{BP_PP},
?nil_ facet_ facts ¼ {:BT_SS, :BT_SP}, ?default ¼ BT_SP,
and ?default_strength ¼ default.

Altogether the following justifications are generated:

BP PP ^ :BT SS!strong BT SP (direct transformation of rule)

BP PP ^:BT SS ^:BT SP!strong false (generated by tms choose)

BP PP!default strength BT SP (generated by tms choose)

4.4. Benefits and practical compromises

The new Scope Selection application based on the (A)TMS in
the CCE proved to be successful in fulfilling the functional re-
quirements and also met the required SAP product standards
for runtime performance. In one scoping step the system deals
with up to 4000 problem variables that are connected via
14.000 logical inferences (justifications).

The existing product model could be reused without adap-
tation, but the rules are now interpreted in a declarative manner
(as logical clauses), which provides some concrete benefits:

† There is no need for any rule execution logic on top of
the (A)TMS. This simplified the implementation of
the new Scope Selection application significantly.

† The development process of new constraint rules will
become easier, because the developer does not have to
worry about the rules defined by other developers and
the order in which rules are applied.

† Unwanted behavior caused by the procedural execution
of business rules was eliminated. (An example of such
unwanted behavior is that sometimes default selections
were triggered that were meant to be set in a different sit-
uation. In addition, sometimes properties set by rules
were not completely retracted when the user retracted

the choices that triggered these rules. Previously, retract-
ing a user choice did not always consistently remove all
dependent items selected by rules along with it. The user
was alerted to the need to verify the scope after removing
an item and perhaps manually removing further items as
well even if the user never directly selected these.)

† More consistent explanations can be constructed based
on the (A)TMS labels. Table 1 lists the labels for some
facts used in our examples. In particular, Figure 2 shows
the explanation of one fact as it is presented in the UI.
Previously the production rules generated explanations
by constructing chains of applied rules. There were, how-
ever, cases when this led to explanations more complex
than needed that were confusing for the user.

† The ability to retract user choices consistently was the
basis for multistep undo/redo functionality in Scope
Selection.

These benefits proved to be instrumental in convincing the
managers to gradually accept a more purely declarative pro-
cessing. However, the new Scope Selection application has
also kept some of the previous procedural control flow. This
has been done as a practical compromise to preserve the
look and feel of the existing UI as much as possible and to
avoid a major change in the user interaction of the Scope Se-
lection process. There are two main points here:

1. The UI provides strict guidance concerning the order in
which some selections may be made. Mainly, the user
has to follow the hierarchy of the BAC and first select
a business package before they are able to select one
of its business topics. To ensure this it is also unwanted
that a business topic is inferred from a without inferring
the parent business package by the same rule. For this
reason the generic logical inference to deduce the selec-
tion of an item given the selection of a child item is not
present in the current implementation (although it is
logically correct).

2. Although the (A)TMS provides support for declarative
resolution of conflicts (declarative default handling),
the managers requested that the system in addition re-
solve conflicts because of some heuristics, even when
this is not justified declaratively. These heuristics are
implemented by procedural means in the adapter layer
(not in the CCE). In some cases, the system even retracts
user decisions. However, the user is informed if this
happens and can use the undo feature to revert to a pre-
vious state.

5. CONCLUSION AND SUMMARY

In the new Scope Selection implementation the declarative
approach had definite advantages over the previous proce-
dural one. This is substantiated by the fact that over the course
of the reimplementation the managers became more con-
vinced of the approach and its potential for future benefits re-

Product configuration as decision support 141

garding easier maintenance of rules. Interpreting a rule as a
set of logical clauses opens the future possibility of letting
it affect the selection of other items besides the one it is at-
tached to. Whereas this circumvents the self-centric principle,
it actually allows a more modular approach to modeling, be-
cause the self-centric rule of an item does not need to be mod-
ified anytime an additional criterion for the selection of an
item is formulated.

Some open issues remain. One main reason managers ad-
here to a procedural specification of parts of the application is
because they believe they can achieve a simpler handling for
the user, who may not understand the logic behind the de-
clarative approach. Whereas it is our feeling that, on the con-
trary, people do better with an approach that exhibits consis-
tent logical behavior than with the unavoidable occasional
idiosyncrasies inherent to a procedural approach, this percep-
tion remains to be substantiated. At the same time, further
work must be done to simplify the user experience as much
as possible without abandoning the declarative paradigm.
Creating explanations that are not only correct but focus on
the actual business reasoning behind the rules and hide un-
wanted complexity is probably instrumental here. The current
state of explanations, although being a definite step up from
the previous state, is not yet ideal in this respect. This is
one area for future improvements.

REFERENCES

Blumöhr, U., Münch, M., & Ukalovic, M. (2009). Variant Configuration
with SAPw. Dedham, MA: SAP Press.

De Kleer, J. (1986a). An assumption–based truth maintenance system. Arti-
ficial Intelligence 28(1), 127–162.

De Kleer, J. (1986b). Extending the ATMS. Artificial Intelligence 28(1),
163–196.

Desisto, R.P. (2004). Constraints Still Key for Product Configurator Deploy-
ments. Gartner Report T-22-9419, June 1, 2004. Stamford, CT: Gartner.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence 12(3),
231–272.

Haag, A. (1991). Konzepte zur praktischen Handhabbarkeit einer ATMS ba-
sierten Problemlösung. In Das Plakon Buch (Cunis, R., Günter, A., &
Strecker, H., Eds.), pp. 212–237. Heidelberg: Springer–Verlag.

Haag, A. (1998). Sales configuration in business processes. IEEE Intelligent
Systems 13(4), 78–85.

Haag, A., Junker, U., & O’Sullivan, B. (2007). Explanation in product con-
figuration. IEEE Intelligent Systems 22(1), 78–90.

Junker, U. (2006). Configuration. In Handbook of Constraint Programming
(Rossi, F., van Beek, P., & Walsh, T., Eds.), pp. 837–874. Amsterdam:
Elsevier.

McDermott, J. (1982). R1: a rule-based configurer of computer systems. Ar-
tificial Intelligence Journal 19, 39–88.

Petrie, C.J. (1992). Constrained decision revision. Proc. AAAI 1992, pp. 393–
400.

Petrie, C.J. (1993). The redux server. Proc. CoopIS 1993, pp. 134–143.
Rossi, F., van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of Constraint

Programming. Amsterdam: Elsevier.

Albert Haag is a Development Architect at SAP AG. He has
been involved in designing and implementing the SAP
product configurators since 1992 in various roles including
project lead and group manager. He received a PhD in com-
puter science from the University of Kaiserslautern and a
Dipl. in mathematics from the University of Hamburg. Dr.
Haag’s research interests include product configuration appli-
cations and truth maintenance systems.

Steffen Riemann is a Development Architect at SAP AG. He
designs and develops tools to aid customers in configuring
their SAP solutions. He graduated from the University of
Mannheim with a degree in business and computer science.
Mr. Riemann was recently involved in the development of
the Scope Selection application, a customizing tool that is
based on a new implementation methodology and utilizes a
product configuration engine.

A. Haag and S. Riemann142

A declarative framework for work process configuration

WOLFGANG MAYER, MARKUS STUMPTNER, PETER KILLISPERGER, AND GEORG GROSSMANN
University of South Australia, Adelaide, Australia

(RECEIVED May 24, 2010; ACCEPTED October 29, 2010)

Abstract

This article describes the technical principles and representation of a constraint-based configuration method for work pro-
cesses. Methods developed for the configuration of modular systems comprising components have traditionally adopted a
representation where the properties and compatibility requirements are expressed as constraints associated with individual
components. However, this representation does not accurately capture constraints on paths and subprocesses and is therefore
unsuitable for process configuration. This article extends established constraint-based configuration methods with a con-
straint language for specifying properties of execution paths in work processes. A framework for semiautomated process
customization is presented. It integrates the extended constraint language with a metamodel of the work processes in an
organization and allows to adapt generic work processes to fit the requirements of specific development projects. Heuristic
search methods are applied to build valid process configurations by incrementally resolving constraint violations. The de-
clarative framework facilitates the adaptation of abstract work processes as well as the validation and repair of existing pro-
cesses. The approach was developed in the context of a real-world system of complex design and development processes
where it was shown that significant process improvements and reduction in effort required to edit process models can be
achieved.

Keywords: Configuration; Constraints; Process Design; Workflow Modeling

1. INTRODUCTION

Work processes in large organizations often constitute generic
frameworks that encompass all possible development activities
rather than specific development processes that are well suited
to the needs of a project. Organization-wide guidelines are often
specified as comprehensive work processes describing the se-
quence of activities to be followed in development. In order
to provide commonality, accountability, and to communicate
acknowledged good practice across the enterprise, such pro-
cesses are often established as reference processes that cover a
wide range of development projects. As a result, these processes
exhibit large size, high complexity, and require a high degree of
individualization for specific projects. Companies such as Mo-
torola (Fitzgerald et al., 2003) and Siemens AG (Schmelzer &
Sesselmann, 2004) are committed to process-driven systems
development and have developed formalized work processes
that each development project must comply with.

The nature of products and environments among business
units exerts significant pressure toward diversity and create

the desire to engage in adaptation of generic reference processes
to suit specific development projects and business units, while
retaining as much commonality as possible with the reference
process. The size of the processes and discrepancies between
the reference processes and the needs of particular projects ren-
der this task difficult. In addition to the structure of the reference
process, organization-specific constraints associated with par-
ticular tasks must be respected when altering the reference tem-
plate (Bajec et al., 2007). Current practice for this adaptation is
to manually apply changes to the reference process template,
which is a time-consuming and error-prone approach.

Commercial process modeling tools often only provide
support for basic editing tasks. The inability to express and
validate organization-specific requirements has led to poor
process management, where errors in processes are often rec-
tified once compliance violations with respect to the reference
process have been detected. Automated support for process
design, adaptation, and validation has the potential to yield
significant improvements in the quality of customized pro-
cesses and a reduction in the effort required to perform adap-
tation. Although considerable results have been achieved by
formal modeling and analysis of processes (van der Aalst,
2000), analysis techniques predominantly focus on verifying
that undesirable states, such as deadlocks, cannot be reached

Reprint requests to: Wolfgang Mayer, University of South Australia,
School of Computer and Information Science Mawson Lakes Boulevard,
Mawson Lakes, SA 5095, Adelaide, Australia. E-mail: wolfgang.mayer@
cs.unisa.edu.au

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 143–162.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000594

143

in any execution. Organization-specific requirements and con-
straints have largely been disregarded.

In contrast, methods developed for automated configura-
tion and customization of complex systems have traditionally
incorporated vast quantities of domain-specific knowledge. In
this context, configuration means assembling a larger system
from a set of available components. Modeling principles to
guide the formulation of large domain-specific knowledge
bases have been established (Soininen et al., 1998; Stumptner
et al., 1998; Felfernig et al., 2001; Asikainen & Mannistö,
2009) in conjunction with efficient inference procedures (Mail-
harro, 1998; Stumptner et al., 1998; Magro, 2010). Declarative
modeling principles advocate maintainability and scalability of
the approach. However, most approaches have been designed
for the configuration of physical systems and product lines,
whereas work processes have received comparatively little at-
tention. Albert et al. (2005) present a workflow composition
methodology that relies on domain specific and generic mod-
els, but requires a library of given workflow templates. Concep-
tual (Heiskala et al., 2005) and constraint-based models (Mayer
et al., 2009) have been developed for the synthesis of executa-
ble software processes from individual components. Customi-
zation methods for service agreements have also been devel-
oped (Dausch & Hsu, 2006).

However, existing configuration methods cannot directly
be applied to work process adaptation: the absence of detailed
specifications of the predominantly manual activities in devel-
opment processes precludes the application of process synthe-
sis from individual work steps, while the need to adapt the
process structure based on specific project requirements prohib-
its the creation of a comprehensive library of specialized process
templates. Instead, generic reference processes in conjunction
with lightweight domain-specific models can be exploited to
guide the configuration process in a semiautomatic manner.

This article presents extensions of established configura-
tion mechanisms to support process adaptation and validation
in the presence of domain-specific entities and constraints. A
process manipulation framework is presented that allows the
semiautomatic adaptation of generic processes to specific re-
quirements of a given project. The framework extends con-
straint-based configuration techniques to processes by intro-
ducing a process-oriented constraint language and solving
strategies. This article shows that existing constraint-based
formalisms lack the ability to adequately represent path con-
straints, such as precedence and dominance, in generic work
process models. It contributes a constraint language suited to
formalize path constraints within a generic process meta-
model for work processes and demonstrates how this formal-
ism can be integrated into a generative constraint satisfaction
framework for reference process configuration. A version of
the approach was used to provide support in instantiating
real-world processes in the software development process
framework employed by Siemens AG.

First, process models and related adaptation tasks are dis-
cussed. Second, a model-based framework for process custom-
ization is introduced and a constraint language for process

configuration is presented. Third, the results obtained from
using a version of the framework for providing process edit-
ing support at Siemens AG are discussed.

2. WORK PROCESS MODELS

A variety of models for documenting work processes in large
organizations have been developed. Process models describe
the type of activities and the order in which they are performed.
Some models include explicit time constraints and resources
consumed and produced by activities. Process models gener-
ally differ in the level of detail, the representation language,
and the degree to which the meaning of each model element
is captured in a formal language. Aalst and Hee (2004) provide
a summary of the major business process and workflow mod-
eling approaches.

In this article, we use the notation of the event-driven pro-
cess chain (EPC) modeling framework (Keller et al., 1992)
for illustration purposes. The EPC framework has been
widely adopted to describe business processes related to sys-
tem development and software project management, and its
use by Siemens AG meant that EPC processes were available
for testing and project outcomes could be directly applied.
However, the presented approach is largely independent of
any concrete process modeling language and can be applied
to any framework where activities, control flow, and con-
straints are captured explicitly. In particular, it must be noted
that EPCs are a semiformal notation, and our framework is
consistent with the use of the notation in the ARIS toolkit
that Siemens uses for working with EPCs.

The EPC approach relies on a flow-chart-like graphical lan-
guage for presentation, where individual activities are linked
together to form process “chains” describing the possible se-
quences of executions (the “control flow” in process modeling
terminology). Figure 1 shows an example of an EPC process
model. A process is represented as a graph consisting of nodes
and edges (flow connectors). Nodes of different shapes de-
note functions and flow connectors specify the possible paths
through the process. Nodes represent “regular” functions (ac-
tivities), control functions, or events. Regular functions are rep-
resented as rectangular shapes and represent activities that are
performed. The label of a function informally describes the ac-
tivity it represents. Control functions are drawn as circles and
govern the execution and synchronization of different branches
in the process. The EPC language provides control functions to
select one of several successor branches (_ split function) and
to execute several branches in parallel (^ split function). The
same notation is used to merge alternative branches (_ join
function) and to synchronize the execution in different branches
(^ join function). Events are represented by hexagons and
indicate that a certain state in the process has been reached.

The semantics of the EPC language (Keller et al., 1992; Kind-
ler, 2006) are inspired by the operational semantics of Petri-
nets (Aalst & Hee, 2004) and specify the possible sequences
of functions that can be executed using a simple activation
model based on the transfer of activation tokens along the

W. Mayer et al.144

control flow connectors. Informally, a function is ready to be
executed if all incoming control flow connectors provide a con-
trol token. Once activated, a function consumes one or more
control tokens from its incoming flows, and generates one or
more control tokens on its outgoing flows once the function
has finished executing. The tokens traveling along outgoing
flows subsequently activate their successor function(s).

The example process in Figure 1 specifies that the test spec-
ification can be developed in parallel with the design speci-
fication and the implementation, but both must be completed
before testing can be performed. Similarly, the intellectual
property declaration can be created while the implementation
and testing activities are in progress, provided that all are
completed before the software component is integrated with
other components.

Although the EPC framework prescribes the structural rules
and activation rules for activities every model must adhere to,
the meaning of the user-defined activities is described by text-
ual labels and is not otherwise captured formally. The EPC
model can be complemented with function allocation diagrams
(FAD; Scheer, 2000) that model the artifacts, data, and re-
sources that are used and produced by a function. Figure 1
shows an example of an FAD. The diagram shows the docu-
ments that are required and produced by the activity (polygons
with zig-zag bottom line), resources allocated to the activity
(rectangular nodes with double border), and files related to its
execution.

The EPC and the FAD diagrams provide orthogonal views
of the same process. Although the EPC notation facilitates vis-
ualization and manipulation of the control flow of the process,

Fig. 1. The event-driven process chain and corresponding function allocation diagram.

Framework for work process configuration 145

the FAD’s main concern is resource allocation and artifact
tracking.

To effectively manipulate a process, both views must be
considered in unison. However, the size of typical develop-
ment processes prohibits detailed visualization of an entire pro-
cess and its dependencies. Because changes made in a model of
a subprocess or FAD easily propagate to other parts in the pro-
cess, it is difficult to assess implications of local changes on the
entire process. As a result, manual process adaptation may re-
sult in processes that no longer conform to the prescribed refer-
ence processes, and may contain activities that are unnecessary
in the context of a specific project. Similar problems can arise
with resource allocation, where resources are allocated that may
be unavailable at the required time.

2.1. Process adaptation

Process adaptation approaches can be distinguished by the
adaptation principles that are applied. We distinguish reduc-
tive adaptation and generative adaptation.

Reductive adaptation is predominantly concerned with
making minor modifications to a given reference process. Re-
ductive adaptation deals with minor changes to subprocesses
and the implied effects that propagate throughout the entire
development process. Typically, some subprocesses would
be deleted, alternative subprocesses for an abstract activity
would be selected from a given library, and resources would
be defined and allocated to individual activities.

Generative adaptation strives to synthesize entire processes
and subprocesses in order to satisfy a given goal. Different from
reductive adaptation, no reference process is given, and the goal
and properties of individual activities must be specified in a
formal language. This approach has gained prominence par-
ticularly in the context of service oriented software architecture,
where complex software systems are synthesized using models
of the individual software components. The main focus of this
article is on reductive adaptation that will support the special-
ization of generic work processes to suit a specific project con-
text. Reductive adaptation fits more naturally in this context,
because the activities in the generic process are not usually
specified in a formal language. However, the formal framework
presented in this article can be extended to process synthesis
(Mayer et al., 2009).

Typical adaptation operations include adding and remov-
ing process elements, such as activities, milestones, artifacts
and resources, duplicating a subprocess, and associating ac-
tivities with specific artifacts and resources.

Although reference processes are often created with dedi-
cated process modeling tools, such as ARIS (IDS Scheer,
2006), and executed with the help of project management
tools and workflow engines, little support is available for
semiautomated tailoring and compliance checking of resulting
processes with the reference processes. Niknafs and Ramsin
(2008) investigated available tools and came to the conclusion
that only limited prototypes exist that support a few steps of
the method engineering process but do not provide a complete

solution. For example, the authors identified only a single tool
that is process oriented. However, it does not provide a seman-
tic data model that is required for automated verification. Kill-
isperger (2010) also concluded that the same limitations apply
in the areas of information system development, human-cen-
tered processes, and system-centered processes.

Recognizing and managing the implications of local changes
on distant activities and finding suitable repairs for violations
that occur during adaptation all remain predominantly man-
ual tasks. Consequently, it has been observed that adaptation
frequently results in invalid or inefficient processes, where
activities are performed in a way that violates the reference
process, or where activities are carried out that are not actually
required to achieve the goal of the development project.

Project-specific adaptation of development processes has
attracted significant attention, such as Brinkkemper’s method
engineering proposal (Brinkkemper, 1996) for the creation of
situational methods, and the extension of the “product lines”
concept to software processes (Armbrust et al., 2008) in order
to manage variation. Simple forms of process adaptation have
also been introduced in business process and workflow mod-
eling frameworks, such as configurable EPCs (Rosemann &
van der Aalst, 2007). However, their focus is usually on struc-
tural properties of the process and methods are restricted to
simple adaptations, such as enabling and disabling individual
activities and pattern-based rewriting of local subprocesses.
Validation of the resulting process focuses on the structural in-
tegrity of the process and its operational behavior, such as ver-
ifying the absence of deadlocks. Domain-specific constraints
and constraints governing the assignment of resources through-
out the process are usually not respected in the generic adapta-
tion and validation procedures.

Transforming a generic reference process into a project-
specific development process generally involves three tasks:
tailoring, resource allocation, and instantiation of artifacts
(Killisperger, 2010).

2.1.1. Tailoring

Tailoring is “the act of adjusting the definitions and/or of
particularizing the terms of a reference process description
to derive a new process applicable to an alternative (and prob-
ably lessgeneral) environment” (Ginsberg& Quinn,1995).Tai-
loring is not restricted to cutting away unneeded parts but also
includes the addition, change, and duplication of parts of the
process. Reference processes describe the development of
components in an exemplary way for all components of a sys-
tem to be developed. This general description must be instan-
tiated for each component. Tailoring may include particular
sections or constructs in the process as well as specific ele-
ments such as activities, artifacts, milestones, and resources.

2.1.2. Resource Allocation

The assignment of resources to activities is called resource
allocation (Aalst & Hee, 2004). In software development, this
predominantly involves the assignment of human resources to
activities. However, reference processes are defined in terms

W. Mayer et al.146

of abstract roles rather than functions, which must be trans-
lated into specific project resources. This translation may be
complicated by availability and scheduling constraints, some
roles may be filled by multiple resources, and project partici-
pants may act in several roles. For example, the role Developer
in a reference process would normally be filled by multiple
engineers.

2.1.3. Instantiation of artifacts

Because a reference process is independent of any particu-
lar project, artifacts are described by generic templates and
placeholders. Similar to processes, such generic artifacts
must be individualized for a specific project, and an appropri-
ate number of copies must be associated with relevant activ-
ities in the tailored process.

2.2. Process adaptation requirements

Large-scale processes are notoriously difficult to tailor, as it
can be difficult to keep track of the structure of the overall pro-
cess hierarchy, interdependencies between tasks in different
subprocesses, and the allocation of resources to tasks at dif-
ferent times. Tools like the ARIS process modeling system
(IDS Scheer, 2006) have been used in many organizations
to document their work processes. The availability of conve-
nient graphical user interface tools to create and visualize
complex processes make these tools an attractive choice for
process modelers. However, complex adaptation and restruc-
turing of large processes remains difficult, as little support is
provided to ensure that the result adheres to the structural and
domain-specific constraints that user may have imposed on
the processes.

Several aspects must be considered simultaneously in or-
der to provide effective support for creating and editing pro-
cess models.

2.2.1. Custom Metamodel

Activity types, their properties, and relations to other pro-
cess elements shall reflect organization-specific processes. A
flexible approach is desired, where the individual classes of
activities, relations, and other process entities can be changed
without altering the software implementation. For example,
most existing frameworks provide either a fixed model that
is usually accompanied with rigid mathematical analysis tools
(van der Aalst, 2000) or flexible process editors with few
analysis capabilities. The approach presented in this article
aims to cover the middle ground between the two extremes,
providing a flexible metamodel that is enriched with con-
straints that govern structural and organization-specific re-
quirements on process models.

2.2.2. Syntactic correctness

The syntax of a modeling language is generally defined by
rules governing the structural composition of process ele-
ments and their connections. These rules are typically defined
in a metamodel that specifies the valid process models that

will be accepted in a modeling language. Figure 2 depicts a
metamodel for the EPC language introduced earlier in this ar-
ticle. For example, the EPC metamodel requires that control
flow connectors link only functions and events. Two subse-
quent flow connectors without an intermediate function or
event violate the metamodel and should be rejected by any
decent modeling environment. Furthermore, it is required
that each flow connector originates and ends in a function
or event; no “dangling” connectors are allowed.

Although syntactic correctness is an essential requirement
for any process model, this criterion is insufficient to guaran-
tee that a model with well-defined operational behavior is ob-
tained in general.

2.2.3. Semantic correctness

The execution of a process model is governed by rules out-
lining the operational behavior of the model elements. For
EPC models, the execution of activities is defined by firing
rules derived from Petri nets as outlined in van der Aalst
(1999). Each node in an EPC model with its connectors is
mapped to a Petri net fragment. The simple and precise ex-
ecution semantics of Petri nets specify the execution se-
quence of the activities in the EPC model. The behavior ex-
hibited by a process model is defined by applying the firing
rules to each activity in the process model.

Although the propagation of tokens by a single activity can
be understood easily, the global behavior of complex processes
may be difficult to assess. In particular, syntactic correctness
does not imply that the overall process model functions cor-
rectly, that is, each possible execution admitted by the model
will eventually reach a final activity and complete the process.
For example, a connector that flows into the same activity it
originates from will prohibit this activity from ever being acti-
vated. Consequently, the execution will halt at this point and
prohibit the process from completing successfully. This condi-
tion is generally known as “deadlock” (van der Aalst, 2000).

Although some undesirable patterns can be detected lo-
cally, in general, the entire process must be analyzed in order
to validate its behavior. Simulators and other process analysis
tools have been developed to aid in this task (van der Aalst,

Fig. 2. The partial event-driven process chain metamodel in Unified Modeling
Language notation (List & Korherr, 2005).

Framework for work process configuration 147

2000); however, most process editing tools provide only lim-
ited support for such validation. As a result, the implications
of local changes in large processes may be difficult to assess.

Assessing semantic correctness for EPC models is further
complicated by the fact that the meaning and effects of individ-
ual user-defined activities is only captured informally. Al-
though the flow of tokens can be simulated, the EPC model
lacks the information that is necessary to verify that domain-
specific assumptions and constraints have not been violated.
Typically, this verification must be performed manually once
the model has been created (Killisperger et al., 2008). Because
this task is time consuming and may require detailed knowl-
edge of the entire process, modified processes often do not un-
dergo appropriate validation when changes are applied. Serious
errors in several large business processes have been identified
through systematic analysis (Mendling, 2009), and previously
unknown errors in the customized Siemens processes were un-
covered by our analysis described in Section 4 in this article.

2.2.4. Data flow and resource usage

In addition to correct control flow, work processes must also
adhere to the correct use of artifacts and resources generated
and consumed by the process. For software development pro-
cesses, typical examples include artifacts, such as documents
and source code that is produced, and resources such as man-
power, software licenses, and computing systems. Pure process
models generally focus on the control flow aspects of processes
and leave the implications for resource allocation and availabil-
ity hidden.

If resource allocation is done separately, critical resources
may be unavailable at the time an activity would require
them. In addition, the shared use of artifacts may induce depen-
dencies between tasks that may not be explicit in the process
model. If processes are restructured without consideration of
hidden dependencies, seemingly correct process models may
exhibit deadlocks because of unavailable input artifacts and re-
sources. Furthermore, resource-induced dependencies may link
seemingly unrelated subprocesses, making it difficult to assess
the impact of local changes on the overall process.

Consider the example process in Figure 1. Both activities
Implement Component and Create Intellectual Property Rights
File require input from the software developer. The shared re-
source induces a potential dependency between the activities.
If resources are tight, activities may have to be scheduled se-
quentially rather than in parallel (as would be permitted by
the process model). Furthermore, the execution of the entire
subprocess Implement Component also depends on the remote
IP Department’s schedule. This dependency is not evident
from the control flow and the activity labels alone, but it may
severely constrain the possible process schedules, something
that must be taken into consideration when altering the Imple-
ment Component subprocess.

Large work process models are typically defined as a (hi-
erarchical) process where the possible sequences of (abstract)
activities are specified, but the precise meaning of the individ-
ual activities is not usually formally expressed. It follows that

any attempt to provide automated support to the process de-
signer will have to rely on semi-interactive mechanisms and
seek the designer’s input to resolve ambiguities and choose
between different alternative adaptations.

3. PROCESS CONFIGURATION FRAMEWORK

Adapting a common reference development process to the
needs of a particular project can be seen as a configuration
task, where the general reference process must be tailored
to suit the requirements of a given project. The configuration
goal in this scenario is a process that is consistent with the ref-
erence process template, has appropriate resources allocated,
and no extraneous activities. Although project managers will
usually be able to decide which changes must be made to the
reference process, applying these changes consistently re-
mains challenging for the reasons outlined in the previous
sections. It is here where semiautomated support to check
the validity of the customized process and suggest alternative
changes is most valuable.

Approaching this problem as a configuration task, the ref-
erence process constitutes the initial configuration, and the
configuration goal is a valid process that conforms to both
the generic organizational and the project-specific require-
ments. However, different from traditional applications of
automated configuration tools, where systems are predomi-
nantly built up from an empty initial state, configuration of
processes works on an initial process that is subsequently
modified to suit a goal that may not have been completely for-
malized. Rather, configuration in this context is largely a task
that follows the propose-and-revise principle (Marcus &
McDermott, 1989), where manual changes applied by the pro-
ject managers are validated, and remedies for problems are pro-
posed. The ability of configuration frameworks to incorporate
both the concrete initial process state and the generic require-
ments of the reference process makes this approach particularly
attractive. The search for repairs of inconsistencies between the
given modified process and the reference process replaces the
synthesis of complete configurations from a sparsely instanti-
ated initial configuration.

Although the overall knowledge-based configuration prin-
ciple is suitable for process adaptation, the underlying knowl-
edge base describing the valid process variants is quite differ-
ent to that of classical configuration. In the process adaptation
scenario, the exact properties of activities are rarely formal-
ized in detail, and constraints on processes will usually in-
volve a number of activities along a path.

The following sections introduce the conceptual framework
that supports the representation of processes and the con-
straints required in the system development process domain.

The framework addresses the major expectations set out for
a semi-interactive process configuration tool: organization-
specific metamodels are incorporated in an extensible process
metamodel, which also forms the basis for constraints that en-
force syntactic and semantic correctness. Artifact and resource
usage are also governed by constraints. Process entities that

W. Mayer et al.148

should not be altered (because they correspond to activities
that have already executed or that have been introduced manu-
ally) are excluded by constraints that prohibit the application
of certain modifications to these process entities. Temporary
inconsistencies are tolerated while manual changes are made,
as explanations for constraint violations are provided by high-
lighting the process entities involved in a violated constraint.
Remaining inconsistencies are resolved later through heuristic
search. Heuristics attempt to confine changes to local subpro-
cesses and derive processes with no unnecessary entities.

3.1. Conceptual metamodel for process configuration

Knowledge-based configuration requires a specification of the
potential constituent components and constraints that specify
the set of possible configurations. For work processes, the
available component types, their properties and associated
value domains, and possible relationships between compo-
nents must be given. Constraints attached to each entity restrict
the valid values and relationships between entities comprising
a configuration.

Our process configuration framework relies on a generic
process metamodel that captures process entities such as ele-
ments, relations between elements, and process scopes. Fig-
ure 3 shows the major components of the conceptual process
metamodel that has been developed for the Siemens AG ap-
plication. The model consists of a generic framework that re-
mains the same for all processes, and organization-specific
entities that represent the concepts and properties relevant
for a particular organization or application domain. Although

some model parts are specific to the Siemens Reference Pro-
cess, the modeling approach is generic and can be applied to a
variety of different process models, languages, and domains.
The metamodel is also consistent with the EPC metamodel in
Figure 2. The embedding can be extended to the full EPC
metamodel described in (List & Korherr, 2005) by intro-
ducing additional subclasses and constraints. Some classes
have been renamed to reflect the organization-specific terms
that are used in the definition of the Siemens reference pro-
cess. For example, the FlowConnector in the EPC metamodel
is named Flow in our framework. Intermediate subclasses
such as ExecutableElement have also been introduced to cap-
ture constraints common to all subclasses that exist in the ref-
erence process but not in the generic EPC metamodel.

Conceptual class Entity forms the central component of our
metamodel that acts as an abstraction of all elements of a pro-
cess. This concept introduces a unique identifier for each en-
tity instance and establishes the relationship and constraint
between the model entities.

A process is represented as a graph structure, where the
nodes represent executable actions, resources, and artifacts.
Class Element forms the basis of a hierarchy that models spe-
cific types of nodes in each category.

Class ExecutableElement models an executable node.
Most immediate specializations are determined by the EPC
process modeling language. Class Split represents EPC nodes
that introduce multiple branches into the process, and class
Join models nodes where multiple branches rejoin.

The subclasses representing ^- and _-split and join activities
have been omitted for space reasons. Class Event represents

Fig. 3. The main entities of the Siemens Reference Process metamodel in Unified Modeling Language notation. The model part high-
lighted in bold represents the generic process framework, and the remaining parts are specific to the Siemens Reference Process. Most
organization-specific attributes have been omitted for brevity.

Framework for work process configuration 149

signals that trigger subsequent executable elements in the pro-
cess. Class Activity is used to model activities that will be car-
ried out in the process (represented as Functions in the EPC
language). The subclasses AutomaticActivity and HumanAc-
tivity distinguish between manual activities and those that
are carried out automatically by software systems. These
classes are modeled separately, because different constraints
apply to each kind.

Executable elements are complemented with models of re-
sources and artifacts involved in the execution of activities.
Class Resource models the common properties of all re-
sources available in the reference process, and its specializa-
tions HumanResource and NonhumanResource cover per-
sonnel and software and hardware tools.

Class Artifact and its specializations WorkProduct and
Guideline express the data that are associated with activities.
Class WorkProduct covers documents, source code, and other
data that are used and created in the development process.
Class Guideline represents external information that is re-
quired to perform an activity, where the information does
not change throughout the development process. Constraints
specific to each subclass reflect the different usage patterns.

In addition to the element hierarchy, control flow between
executable elements and associations between activities, re-
sources, and artifacts must be captured in the metamodel. Dif-
ferent to many other configuration frameworks, relations are
represented explicitly as conceptual classes. This approach is
preferred over models where connections are represented implic-
itly as properties, because conceptually different relationships
can be distinguished by specialization, and constraints can be
attached to each class. An equivalent model where all con-
straints are attached to Elements can only be obtained at the ex-
pense of duplicated of constraints in multiple classes.

Class Flow represents a relation between elements. Sub-
class ControlFlow models the propagation of activation be-
tween activities in a process. The subtree rooted in class Re-
sourceAssignment models the assignment of resources to
activities. Classes ResponsibleResourceAssignment and Ex-
ecutingResourceAssignment are specific to the Siemens Ref-
erence Process and distinguish the different roles that re-
sources can play. Class InformationFlow links an artifact
with the activities where it is created and used. The informa-
tion flow is partitioned into input and output flows, because
different constraints apply to each class.

Class Scope comprises the entities in a process or subpro-
cess. Its main purpose is to capture constraints that apply to
an entire subprocess rather than a single element or flow entity.
This model element is essential for representing constraints that
express properties of paths limited to certain subprocesses.

To avoid potential confusion, it is important to make the
distinction that this model is a metamodel of the process mod-
els built by process designers. It is not a metamodel of the con-
figuration process. The metamodel is a conceptual description
of the problem domain, and can hence be categorized as a
configuration model of Soininen et al. (1998). The metamodel
does not describe configuration model concepts, which could

be seen as a metamodel of the configuration task. Because the
term metamodel is not actually used by Soininen et al. (1998),
we retain the conventional use of the term in software engi-
neering as “a collection of concepts in a domain.”

The conceptual metamodel provides the basis for specify-
ing the activities and flows comprising the reference process
and its constraints that all variants must satisfy. The next sec-
tion introduces the formal framework that will be used to en-
code the conceptual metamodel as constraints that can be
used to automatically validate process variants.

3.2. Constraint-based configuration

As a problem-solving technique in technical systems, the
term configuration refers to the assembly of systems from
smaller components. To automate this process, the available
components and possible interconnections must be formal-
ized. Typically, a taxonomy of principal component types,
their attributes, their interfaces through which components
can be connected to other components, and constraints that
govern the valid compositions must be specified. It is as-
sumed that the available components types are known, but
the size and structure of a particular solution is not. It has
been shown that this knowledge about a problem domain
can be elegantly expressed as a constraint satisfaction prob-
lem (CSP; Mittal, 1990; Stumptner et al., 1998).

A CSP consists of a finite set of variables V and a finite set of
constraints C in which bold is used to denote set-valued vari-
ables. A constraint is a relation over a set of variables V0 # V
that specifies the valid combinations of value assignments to
these variables. The set of values that may be assigned to a vari-
able is called the domain of that variable. Solving a CSP means
finding an assignment to all the variables such that all con-
straints are satisfied.

The main obstacle in using CSPs for configuration is that
the set of variables and constraints is static and thus cannot
be used to describe problems where the structure or size of
the solution is unknown. Dynamic constraint satisfaction
formalisms have been developed where the set of variables
is extended on demand, and conditional constraint satisfac-
tion techniques have been devised in order to flexibly enable
and disable constraints (Rossi et al., 2006).

Generative constraint satisfaction problems (GCSPs;
Stumptner et al., 1998) provide a combination of both tech-
niques by lifting constraints and variables to a metalevel, where
generative constraints describe the valid CSPs instances. Gen-
erative constraints can be seen as constraint schema that drives
the solving process by introducing fresh CSP variables and
constraints as new components are added to the configuration.
Therefore, GCSPs can adapt the problem size and structure
during the solving process based on the information contained
in the partial solution.

A GCSP is characterized by the set of available component
types, their attributes, and a set of generative constraints: let
T be the set of available component types and let A be the
set of attribute names.

W. Mayer et al.150

DEFINITION 1 (GCSP). A GCSP is a tuple (X, G, C, P),
where X is a set of meta variables, G is a set of generative con-
straints over X; C is an infinite set of constraint variables rep-
resenting component instances, and P¼ fC.ajC [C, a [Ag
is an infinite set of constraint variables representing the com-
ponents’ attributes. Each component variable C [C may be
assigned a value from T, whereas attribute variables P [P
may choose their value from C (if P represents an attribute
connecting to another component), or may take on a numeric
or a string value (if P represents an attribute). B

Each variable in C [C may be active or inactive; it is ac-
tive if C corresponds to a component that is part of the solu-
tion of a configuration problem, and it is inactive otherwise.
Similarly for variables in P.

A generative constraint is a logical implication of the form
F) C over variables in X, where F represents the precon-
dition of the constraint and C specifies the variables and con-
straints that are introduced into the CSP if F holds for some
instantiation of X in C. Typically, F is used to express that
constraint C is applicable only for particular component
types, whereas C enforces the requirements on attribute val-
ues and connections. Free variables in generative constraints
are implicitly universally quantified.

A configuration problem confines a GCSP to those CSPs
that satisfy the configuration goal, which is expressed by an
initial set of components and constraints that must be met.

DEFINITION 2 (configuration problem). A configuration
problem is a CSP kV, Dl where V # C < P represents the ini-
tially active variables, and D contains a set of (generative)
constraints over V that express the initial configuration and
the desired configuration goal. B

A solution to a configuration problem R is given by an as-
signment of values to all CSP variables in R such that all con-
straints in R are satisfied and all instances of generative con-
straints over variables in R are satisfied.

To find a solution, all generative constraints f) c [G are
instantiated with variables in V to check if f is satisfied. If an
instantiation of a generative constraint is created, the CSP is ex-
tended with the variables and constraints in c. This procedure
repeats until no more constraints and variables can be instanti-
ated. A solution to the configuration problem has been found if
all possible instantiations of generative constraints have been
applied and a consistent complete assignment of values to vari-
ables in V has been found. Otherwise, the procedure backtracks
and selects alternative instantiations of generative constraints.

Consider the example where a software component is to be
implemented as part of a work process. Among others, this
activity requires the software design specification, a devel-
oper, and suitable computing resources. Assume that the com-
ponent types are T ¼ fImplementationActivity, SourceCode,
SWDeveloper, DesignSpec, Workstationg, and let A ¼ fC, D,
S, Wg. Here the attributes model connections between com-
ponents: C refers to a source file, D models the software de-
veloper, S the specification, and W the assigned workstation

to be used for development. The GCSP representing this do-
main contains an infinite number of component variables ci,
each of which may be assigned a component type from T.
Similarly, the set of property variables is given by P ¼
fc1.C, c1.D, . . . , c2.C, . . . g, each with domain fc1, c2, . . .g.

Generative constraints describe the relationships and restric-
tions between component and attribute variables. For example,
to assert that each ImplementationActivity component must be
connected with a design specification (a component of type
DesignSpec) via its S attribute, a generative constraint

X ¼ ImplementationActivity ^ X:S ¼ Y) Y ¼ DesignSpec (1)

is asserted inG. Here, X and Y denote metavariables that will be
instantiated with variables in C. Note that the domain of X.S is
the set of component variables; therefore, the generative con-
straint establishes the structure of the instance-level CSP dy-
namically. Once instantiated, the generative constraint will
manifest as an ordinary CSP constraint. The constraints will as-
sert that, for some CSP variable ci, the property variable ci.S
must refer to another component variable cj whose value is De-
signSpec. Assuming that similar generative constraints are de-
fined for DesignSpec and the remaining component types,
further constraints will be created that restrict the values of
cj’s property variables and neighbors. A complete configuration
is then given by a set of component variables together with
instantiated generative constraints such that all instantiations
of generative constraints have been formed and are consistent.

3.3. Constraints for process configuration

In an attempt to extend the configuration approach from phys-
ical systems to processes, constraints associated with the en-
tities in the process metamodel must be identified. The con-
straints will be used by the configuration engine to assess
the validity of a (possibly incomplete) candidate process
and to guide the search for admissible process variants.

In order to obtain a formal model suitable for automated
configuration, the process metamodel and its associated con-
straints must be rephrased in terms of components and connec-
tions. The process entities in Figure 3 form the component
types, and their attributes translate into attributes of the corre-
sponding component type. Associations in the metamodel are
also represented as attributes. We adopt the model introduced
by Mailharro (1998) to represent set-valued attributes and re-
lations: associations with cardinality greater than 1 appear as
multiple instances of the same attribute. For example, a Scope
entity may be associated with multiple subentities via its enti-
ties association. An instance of the Scope entity may have mul-
tiple entities attribute instances, each referring to a different
Entity instance. Cardinality constraints restricting the number
of associations are also an integral part of process modeling.
In the following sections, Mailharro’s work on direct associa-
tions between components is extended to generative con-
straints formalizing the reachability of components within a
process.

Framework for work process configuration 151

Table 1 lists the predicates and operators permitted in genera-
tive constraints. Although other connectives may be introduced,
this set was found to be sufficient to express all constraints used
when applying the approach to the large-scale company-wide
Siemens reference process described in this article. Following
an established constraint notation (Stumptner et al., 1998), the
term T (C) expresses that metavariable C must refer to an entity
of type T, or a subtype thereof. Expression C.A refers to an
attribute A of a component represented by variable C.

The configuration of processes poses additional challenges
related to expressing properties of paths and subprocesses that
may not be known precisely at the time the constraint is writ-
ten. Different types of constraints can be distinguished based
on the locality of affected process entities.

3.3.1. Entity and attribute constraints

Entity constraints are concerned with constraints that affect
only a single entity or local scope in the entire process. Such a
constraint affects only the values of attributes of entities that
can be reached from a single entity by navigating a fixed path
comprising the relations between entities in the process
model. This type of constraint is most often used to specify
value range restrictions of attributes.

In the simplest case, only the attributes of a single process
entity are affected by a constraint. For example, assume that
entity ExecutableElement has an attribute duration that holds
the length of the time span during which the element will
be executed, and that the duration must always be a nonnega-
tive number. This constraint can be expressed as generative
constraint:

ExecutableElement(E)) E:duration � 0 (2)

Similar to the constraints in the work process configuration
example given earlier, ExecutableElement(E) acts as a type
test that determines when the consequent of the constraint
will apply. In this example, the constraint applies to all con-

straint variables that model an instance of entity Executable-
Element. Type hierarchies and inheritance relationships in the
metamodel are taken into account implicitly; thus, the con-
straint also applies to all instances of subtypes.

Constraints reflecting project-specific restrictions on the
entity types that may appear in a process also belong to this
category. Certain activities and flows can be excluded from
a process by type constraints and constraints on attribute val-
ues. For example, the following constraint prohibits all activ-
ities with a label containing the word “Mechanical.”

Activity(C)) C:label = ‘‘	Mechanical	” (3)

A comprehensive domain model for reasoning about the prop-
erties of activities and artifacts can be incorporated in the same
way if available. Although the given example constraint may
seem overly simplistic and error prone, the controlled lan-
guage used in the definition of the reference process resulted
in sufficient precision when applying the approach solve the
process adaptation problem in the Siemens Process Frame-
work (SPF) as described later in this article.

3.3.2. Association constraints

Constraints that govern the valid connections between en-
tities belong in this category. Different from the previous ex-
ample, the constraint may refer to the properties of neighbor-
ing components by navigating via relations to connecting
entities. For example, the requirement that only a HumanRe-
source element can be responsible for the execution of an ac-
tivity can be expressed as follows:

Activity(A) ^ ResponsibleRA(RA) ^ RA:source

¼ A ^ RA:target ¼ R) HumanResource(R) (4)

Here, the dot notation is first used to navigate from the Re-
sponsibleRA to the connected Activity entity, and is used
again to constrain the possible values of the target attribute

Table 1. Predicates and operators for generative constraints

Predicate Meaning Connective Meaning

T(C) Entity C is of type T C.A Attribute A of entity C
{C1, . . .}N C2 {C1, . . .} s-dominates C2 :E Logic negation
C1 M {C2, . . .} {C2, . . .} s-postdominates C1 E1 ^ E2 Logic conjunction
¼,= Equality and disequality E1 ^ E2 Logic disjunction
,, ≤, . . . Numeric inequalities E1 ⇒ E2 Logic implication
,, # Subset relation ∃V : E Existential quantification

∀V : E Univarsal quantification
©V : E Set reification
‖V‖ Set cardinality
N1 ⊕ N2 Numeric expression ⊕ can be

one of +, 2,×, 4, max, min

Note: C, C1, and C2 denote metavariables in generative constraints; E, E1, and E2 represent logic expressions; N1 and N2

represent numeric expressions; T is an entity type name; and V and A denote a variable and an attribute identifier,
respectively.

W. Mayer et al.152

of the connecting entity. In this case, the target is restricted to
be of type HumanResource (or a subtype thereof).

3.3.3. Cardinality constraints

The same mechanism can be used to enforce cardinality
constraints for relations between entities. For example, the
following generative constraints express that every Executa-
bleElement must be related to a resource via exactly one in-
stance of the ResponsibleRA relation:

ExecutableElement(E))9R : ResponsibleRA(R) ^ R:source¼ E
(5)

ExecutableElement(E) ^ ResponsibleRA(R1) ^ ResponsibleRA(R2)

^ R1:source¼ E ^ R2:source¼ E) R1¼ R2 (6)

However, cardinality constraints can be expressed more suc-
cinctly by using set reification, denoted as
V : E, in con-
junction with the set cardinality operator k � k. Set reification
collects all values bound to variable V in a model of a given
logic expression E into a multiset. Variable V must appear
free in E and is implicitly universally quantified. This opera-
tion is commonly known as collect in other object-oriented
constraint languages (Object Management Group, 2006).
This connective is convenient for the application of predicates
to sets of selected entities. Using the reified notation, the con-
straint can be expressed more naturally:

ExecutableElement(E)

)k
R : (ResponsibleRA(R) ^ R:source¼ E)k ¼ 1 (7)

3.3.4. Path constraints

Restrictions that relate to the properties of the entities in a
path of a process require a different modeling approach. Path
constraints arise when relationships between entities that are
distant from each other must be enforced. For example, a ref-
erence process constraint that every software component must
have undergone testing before it can be integrated into larger
units can be informally expressed as a path constraint:

In every feasible process execution from an Implement
Component activity to an Integrate Component activity,
there must be a Perform Test Component activity. (CONS)

Although it is easy to see that this constraint is satisfied in the
example process shown in Figure 1, the constraint may affect
different entities in other processes. For example, if there were
additional entities between “Implement Component” and
“Perform Test Component,” the constraint would have to prop-
agate over those components. Such scenarios arise easily in
process adaptation as processes are merged and restructured
to accommodate resource constraints and scheduling con-
flicts. In general, the entities involved in a path constraint
may not be known at the metamodel level, and the exact path
connecting affected entities may not be known at the time

the constraint is formulated. Instead, a (partial) process in-
stance is required to determine the concrete set of entity in-
stances that form the connecting paths. In the configuration
of physical systems, one can introduce an additional attribute
to express aggregate properties, such as total voltage with a bat-
tery compartment instead of dealing with individual batteries.
However, the same principle cannot easily applied in the pro-
cess domain, where activities of unrelated subprocesses may
be interleaved freely. Many attributes and propagation con-
straints would be required, which would yield a difficult to
maintain knowledge base. Therefore, this type of constraint
cannot be expressed in a GCSP that relies on fixed paths be-
tween components. The constraint language must be extended
to incorporate path constraints with dynamic scope that is deter-
mined on a concrete process instance. Once a concrete process
is available, the execution paths and their components can be
determined easily, and path constraints can be instantiated
and evaluated.

In order to evaluate a path constraint the affected entities
must be determined. This computation is essentially a reach-
ability problem defined on the process graph, where con-
straints specify properties that must be true in some execution
state in the future (or past) relative to another state. This prob-
lem has been studied thoroughly in the field of modal logic
and its application to automated verification of software and
hardware systems (Clarke et al., 2003).

Computing all reachable states induced by a given process
model is computationally difficult (Jensen, 1997). It is of
more importance that this can only be done once a concrete
process model is available for analysis, which is not usually
the case when the configuration knowledge base is built, be-
cause generative constraints should be written to be indepen-
dent of any particular example configuration. The differences
between the structural process model and its reachable state
space may make it difficult for users who are familiar with
EPCs but may not be experts in formal logic to write appro-
priate constraints. Process algebras (Milner, 1990) may align
more closely with parallel processes but may be difficult to
use for nonexperts, as algebraic specification languages, the
EPC framework and constraint-based techniques all follow
different modeling paradigms.

The discrepancy between representations of structure and
transitions between reachable states has profound implica-
tions for writing path constraints. Writing temporal logic for-
mulas to verify particular reachability properties requires us to
know the branching behavior of the concrete process, where
the execution is split into multiple parallel branches, and
where the branches rejoin. For example, in an attempt to for-
malize constraint (CONS) the formula

Activity(I) ^ I:label¼ ‘‘Integrate Component ”)

EO
Activity(T) ^ T: label ¼ ‘‘Perform Test Component ”^

EO Activity(M) ^ M:label¼ ‘‘Implement Component ”½ �

� �
(8)

could be devised. Here, the modal operator EO (Latvala et al.,
2005) is used to denote that a control-flow path exists where,

Framework for work process configuration 153

in the past, its argument proposition is true at least once. Note
that the constraint is adequate for the process example in
Figure 1, but may not be strong enough for other processes
with different structure and other instances of the same activ-
ity types. The fundamental problem is that the transition rela-
tion underlying the modal operators can only be determined
once the branching nodes in the process are known. A for-
mula specific to that structure can then be devised. Unfortu-
nately, this constraint may also apply in different process var-
iants but may have unintended effects. For example, if the
parallel split and join nodes in Figure 1 were replaced with de-
cision and merge nodes (this alternative may arise because of
erroneous manual change), the constraint would still apply
but would no longer enforce that Integrate Component is al-
ways preceded by implementation and testing.

We circumvent this problem by adopting a restricted lan-
guage to express path constraints that is based directly on
the process structure and not on its corresponding state repre-
sentation. Our language is based on the observation that many
interesting path properties can be formalized based on the
concept of dominance (Cytron et al., 1991).

The binary dominance relation describes the relation be-
tween process entities with respect to the set of all possible
process executions. It is usually defined based on the Control
Flow Graph (Muchnick, 1997), a representation of the possi-
ble sequential execution behaviors of a program. Informally,
an entity A dominates an entity B if and only if, in all process
executions from the start element to the end element, an ex-
ecution of A precedes every execution of B. For example, ac-
tivity Develop Design Spec Component dominates activity
Implement Component in Figure 1. The dominance relation
defined on the inverse control flow graph is called postdomi-
nance. An entity A postdominates entity B if and only if all
process executions from B to the end of the process subse-
quently pass through A.

Dominance and postdominance can be generalized to a set
of elements:

DEFINITION 3 (domination by a set). Let A ¼ fA1, . . . ,
Ang be a set of entities, and let B be an entity in a sequential
process P. Set A dominates B if and only if in all executions
from the start element to the end element, an execution of an
entity in A precedes every execution of B. B

Postdominance can be generalized analogously. For nota-
tional convenience, the set braces will be omitted for single-
ton sets in the remainder of this article.

The classic definitions of control flow graph, dominance,
postdominance, and their extensions to sets assume a sequen-
tial process. We extended the definition to concurrent pro-
cesses as follows:

DEFINITION 4 (sequentially implied dominance). Let P
be a process model and let P 0 be the projection of P onto sub-
types of entities Executable Element and Control Flow. That
is, P 0 is the subprocess of P where all other elements have
been removed. Let further A be a set of entities and B be an

entity in P 0. Set A s-dominates B if and only if A dominates
B in all sequential executions admitted by P 0. B

The projection of P onto its executable elements is the
smallest process that admits the same set of executions as
the original process. The s-postdominance relation can be de-
fined analogously.

For example, the process definition in Figure 1 admits 11
possible sequential executions (split and join nodes are ig-
nored for simplicity). In all executions, activity Implement
Component is executed before Perform Test, hence the former
s-dominates the latter. Activity Create IP Rights File does not
s-dominate Perform Test, as there is a possible execution se-
quence where testing is performed before any intellectual
property is documented. In fact, there are 3 such sequences.

The use of s-dominance for specifying process constraints
allows the process modelers to specify constraints in terms of
the process structure, whereas the evaluation engine will be
responsible for checking that the relation is satisfied in all
possible sequential executions. Although this operation is po-
tentially more expensive than evaluating simple component
constraints, dominance can be inferred from the process struc-
ture (Cytron et al., 1991). No exhaustive simulation of the
possible executions is necessary.

The constraint language for specifying generative con-
straints has been extended to include s-dominance and s-post-
dominance relations and set reification. s-dominance is de-
noted by ANB, s-postdominance by AMB, and set reification
by
V : E. Table 1 lists the predicates and operators permit-
ted in generative constraints. Other connectives may be intro-
duced; however. these operations were sufficient to express
all constraints used in our case study.

The constraint that implementation activities must precede
testing, which must precede integration, can now be ex-
pressed in the extended constraint language:

Activity(M) ^ M:label ¼ “Implement Component” ^ Activity(T)

^ T :label ¼ “Test Component” ^ Activity(I) ^ I:label

¼ “Integrate Component”) M N T ^ T N I (9)

The use of the s-dominance relation simplifies the constraint
such that no modal operator and nesting of temporal expres-
sions is necessary.

3.3.5. Scope constraints

Dominance constraints can also be used to restrict the scope
of generative constraints to subprocesses. For example, certain
quality assurance activities and milestones related to compo-
nent development must not be bypassed by any path through-
out the development process. By using dominance constraints,
the scope of a generative constraint can be reduced to the sub-
region or the subprocess that is relevant to such a path con-
straint. A conjunction of s-dominance and s-postdominance
can be used to isolate a region that is delimited by unique entry
and exit elements. For example, to express that in each subpro-

W. Mayer et al.154

cess delimited by entities Implement Component Decided and
Component Implemented, activity Create IP Rights File must
be executed, can be formalized as follows:

The dominance constraints S N P ^ P M E confine P to match
only elements that are inside a region that can only be entered
via S and only be exited via E. The third constraint P N E
states that in all executions where E is executed, P must be
executed before E. Hence, P cannot be bypassed.

In the previous discussion we have implicitly assumed that
there is only one instance of each activity type in a process. If
multiple instances may be present, additional constraints must
be introduced to ensure that the entry and exit elements of each
subprocess match. We resort to constraints relating the entities
of a subprocess to its unique Scope entity. The same principle
can also be used to enforce that all activities in a subprocess
share a common property. For example, all development activ-
ities in a subprocess should relate to the same work product:

3.3.6. Data flow constraints

Dominance and postdominance provide natural means to re-
late the data flow between entities that create certain artifacts
with those entities that use the artifacts. Constraints are associ-
ated directly with the artifacts and flows rather than with the ac-
tivities that create or use an artifact. Generative constraints asso-
ciated with an artifact entity can navigate its associated flow
entities to reach the activities that create and use the artifact.
For example, the invariant that an artifact must be created before
it can be used as input to an activity is modeled as follows:

Artifact(A) ^ InputIF(IF) ^ IF:source ¼ A ^ IF:target

¼ U ^ Activity(U)) 9C :9OF : (Activity(C) ^ OutputIF(OF)

^ OF:source ¼ C ^ OF:target ¼ A ^ C NU) (12)

The constraint expresses that for each activity that requires an
artifact, there must be an activity that creates the artifact and
dominates the activity using the artifact. If an artifact can be cre-
ated byone of multiple activities, the constraint can be revised to

Artifact(A)^ InputIF (IF)^ IF:source¼A^ IF:target

¼U ^Activity(U))9Cs : (Cs #
C : (Activity(C)^OutputIF(IF 0)

^ IF 0:source¼C ^ IF 0:target¼A)^Cs N U) (13)

The constraint states that for any activity U using an artifact A

there must be a set of activities Cs that supply the artifact and
that together dominate its use. Therefore, no execution mayexist
where U is reached without A being created first. However, it
may not be known precisely which activity will create A when
the process is executed.

3.4. Solution search

Configuration systems in some domains can operate largely
without human intervention; however, fully automatic process
configuration is difficult to achieve. Although constraints on
process structure and some domain-specific aspects can be
exploited, many possible configurations remain for large pro-
cesses. Albeit additional formalization of process entities
would eliminate some candidates, the effort required to build
the detailed specifications of activities precludes this approach
in practice. For example, EPC models specify possible control
and data flow between process elements, but do not usually in-
clude specifications about detailed behavior of functions or
structure and meaning of artifacts. Although more formal mod-
els may exclude invalid process candidates that would be ad-
mitted by a simpler model, formalizing the missing knowledge
is time consuming and often requires considerable expertise in
formal languages. For these reasons, process configuration as
presented in this article abandons the goal of obtaining all op-
timal configurations and adopts semi-interactive heuristic
search procedures to compute solutions.

The overall search for processes proceeds as outlined in
Figure 4: starting with a copy of the reference process as in-
itial configuration, the requirements and constraints are speci-
fied by the user. In addition, manual changes to the initial pro-
cess can be made in an ad hoc manner (e.g., through a
graphical editor). When changes are made, the configurator
evaluates the generative constraints on the candidate process
and highlights violated constraints and their associated process
entities. Subsequently, heuristic search is applied to resolve
constraint violations. The resulting candidate process is pre-
sented to the user for validation, who may request further
changes and recommence the search. This process repeats until
a valid process that is consistent with all constraints is obtained.

For clarify of presentation we omit much of the specific
technical implementation details and optimizations and focus
on the overall conceptual mechanism. For example, change
operations can be applied incrementally by maintaining the
differences to a base model rather than copying the entire
model each time the configuration is modified.

The initial candidate process is obtained from a copy of the
generic reference process and its constraints, amended with the
constraints describing project-specific requirements. For exam-
ple, the process fragment in Figure 5 can be obtained from the
reference process. Assuming the process will be tailored to a
pure software development project, a generative constraint
can be added that excludes all development activities not re-
lated to software. Resource and scheduling constraints can be
added to direct the assignment of resources to activities. Fur-
thermore, facts specifying the available personnel and their

Activity (S) ^ S.label¼ “Implement Component Decided”
^ Activity (E) ^ E.label ¼ “Component Implemented”

) 9P :
S N P ^ P M E ^ P N E^

Activity(P) ^ P:label ¼ “Create IP Rights File”

� �
ð10Þ

Scope(S) ^ Activity (A1) ^ A1.parent ¼ S ^ OutputIF (F1)
^ F1.source ¼ A1 ^ Activity (A2) ^ A2.parent
¼ S ^ OutputIF (F2) ^ F2.source¼ A2)9W : WorkProduct (W)

^ F1.target ¼ W ^ F2.target ¼ W (11)

Framework for work process configuration 155

roles can be added to the process. Manual operations can be ap-
plied to create, modify, and delete process entities. Changes are
recorded and constraints may be added to ensure that the sub-
sequent heuristic search respects the manual modifications.

Once the initial configuration and constraints have been es-
tablished, automated search procedures are applied to resolve
constraint violations. Because exhaustive search is prohibi-
tively expensive, heuristics are applied to find good solutions.
When applying the framework to the Siemens reference pro-
cess, the quality of a configuration is indicated by the inverse
of the number of constraint violations and the number of pro-
cess entities. Other organization-specific measures, such as
makespan or robustness with respect to delays or resource
availability, can also be applied to guide the search. In our
case study, minimizing the number of constraint violations
while minimizing the process size as a secondary measure
was sufficient to obtain “satisfying” configurations that im-
proved upon the best processes that had been created manually.
Optimizing makespan and other process measures was not a
primary concern in our study.

Change operators are applied to the process in order to re-
solve constraint violations. Our framework incorporated the
basic operations to add and remove process elements in a
path, add and remove flows between elements, duplicate sub-
processes, and assign resources and artifacts to elements. These
operations closely align with the operations that had been car-
ried out manually by project managers. The selection of opera-
tors is guided by heuristics and restricted by constraints reflect-
ing the modifications made by project managers. Numeric and
other constraints are solved by standard CSP techniques.

For semi-interactive configuration, heuristics that apply only
minimal alterations to the existing configuration are preferred to
extensive but “optimal” changes, because large modifications
tend to be difficult to trace by users. Currently, the framework
adopts the following generic principles to direct search; organi-
zation-specific heuristics can be implemented if desired. Heur-
istics are listed in order of preference.

1. Promoted pruning: The predominant operation in pro-
cess tailoring is the removal of unnecessary entities
from the generic reference process. The removal of one

entity may propagate throughout the process and yield
smaller processes with fewer (violated) constraints. For
this reason, deletion of entities is considered the preferred
resolution for constraint violations, unless the entity was
introduced manually by the user.

2. Minimum change: Dually, the creation of entities is
only considered if no other resolution yields a valid
configuration. This strategy, in conjunction with con-
straints on the number of created entities, favors small
processes and prohibits infinite regress of the search
procedure in subprocesses where no consistent solution
exists (Mayer et al., 2009).

3. Minimal violation: If multiple repair candidates apply,
select one with the least number of remaining violated
constraints.

4. Locality of changes: A large number of possible alter-
natives may exist for routing data and control flow in
a partially specified process. Although most alternatives
may be admissible given the generative constraints,
flows between distant entities make it hard to compre-
hend processes. Furthermore, artifacts tend to be ma-
nipulated in closely related activities. To account for
this observation, flows between entities with small dis-
tance are preferred. Distance is measured as the mini-
mum number of control flow steps between two entities.

5. Deferred synchronization: Frequent use of synchroni-
zation elements yields processes with little concurrent
execution. Because the absence of parallel activities
may impact on future resource assignment, the intro-
duction of synchronization elements is delayed as
long as possible (but not beyond the scope of the current
subprocess). This heuristics favors parallel branches but
respects locality of control flow.

Using these heuristics, the neighborhood of the candidate con-
figuration is explored in order to find a revised, valid process.
Because the heuristics may not be able to resolve all constraint
violations, further user interaction may be necessary.

If the candidate configuration obtained from the heuristic
configuration step satisfies all constraints, the adaptation pro-
cess terminates. Otherwise, the user is given the option to re-

Fig. 4. The interactive process configuration workflow. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

W. Mayer et al.156

solve some of the remaining inconsistencies manually and re-
peat the heuristic search.

From an organizational point of view, custom adaptation of
reference processes may also induce a maintenance problem
when changes in the reference process must be applied to a
large number of variants. Although reference process mainte-
nance is beyond the scope of this article, techniques from ver-
sion control systems and configuration can also be applied to
resolve this problem. Graph-based differencing algorithms,
such as the approach used by Zeller (2002), can be applied
to compare different versions of the reference process and
merge differences into the modified processes. Once changes
have been applied, constraints can be verified and configura-
tion recommenced if necessary. In this approach, the search
for valid configuration that repair violated constraints corre-
sponds the conflict resolution step in manual version manage-
ment. Once tailored processes have been revised, running in-
stances of previous process versions may need to be adapted
to conform to the new model (Weber et al., 2008).

Figure 5 shows a generic reference process fragment that in-
cludes activities related to both software and hardware develop-
ment. For a software project, the hardware development-related
aspects are irrelevant and should be removed. Although de-
leting the relevant entities is trivial in this example, it can be
a tedious task in a large process. The constraint-based approach
allows the project manager to exclude all hardware-related de-
velopment activities by asserting a constraint like Eq. (3). The
adaptation can then proceed largely automatically, which will
result in the removal of the shaded entities in Figure 5. Control
flow connectors will be rerouted accordingly. Data flow con-
straints ensure that artifacts related to the development of me-
chanical parts will be removed even if they are only indirectly
related to the deleted activities. For example, the use of the Me-
chanic RE Specification document in activity Prove Feasibility
of RE will be automatically removed. Constraints prohibiting
unnecessary process entities, such as the empty parallel control
flows arising after deletion, trigger the removal of the redun-
dant split and join functions.

Fig. 5. An example process fragment. Activities and resource assignments highlighted in gray are deleted when the process is tailored to a
pure software development project.

Framework for work process configuration 157

3.4. Discussion

Constraint formalisms on top of object-oriented models are
not new. The Object Constraint Language (OCL; Object
Management Group, 2006), an extension of the Unified Mod-
eling Language (UML), also follows this approach. Although
arbitrary constraints over object graphs can be expressed in
OCL, the constraint language cannot easily capture path con-
straints where the structure of the specific process configuration
is not known. For example, expressing a dominance constraint
requires quantification over all paths using the forall operator.
However, the knowledge engineer would have to anticipate
the expressions to reach the set of relevant branching points
in the process for all possible process configurations. Alterna-
tive implementations where dominance is simulated using re-
cursion, custom properties and OCL iterators are too restrictive
or require complex expressions (Beckert & Trentelman, 2005).
Related languages like XPath (Berglund et al., 2007) can ex-
press reachability and quantification but suffer from the same
problems as the approach using OCL’s forall operator.

Temporal constraint satisfaction problems have also been
applied to reason about the order of execution of activities.
Allen’s (1983) temporal operators, for example, are sufficient
to express partial orderings of tasks along a path, but quanti-
fication over execution paths is difficult in the standard con-
straint formalism if the process structure is not known at the
time the constraints are written. Therefore, precedence rela-
tionships between artifacts on alternative branches, such as
constraint [Eq. (13)], cannot easily be enforced in a genera-
tive way on the process metamodel.

Thomas and Fellmann (2007) combined EPCs with do-
main-specific models such that activities and related metadata
in a process can be formalized. In this approach the entities
in an EPC process model are annotated with concepts defined
in an EPC metamodel similar to the one presented in this
article. Entities in the EPC metamodel are linked with con-
cepts and instances described in a domain-specific ontology.
From the annotations the domain- or organization-specific
meaning of each process element can be inferred in terms
of the underlying ontologies, and ambiguities in the textual
labels in the plain EPC model can be resolved. This approach
is orthogonal to the configuration and repair aspects ad-
dressed in this article, but could be used to introduce addi-
tional problem-specific metadata and constraints in the pro-
cess model.

Egyed et al. (2008) used language-specific constraints to
highlight errors in software design models. Software design dia-
grams in the UML are converted into a CSP where constraints
verify the consistency of multiple diagrams representing differ-
ent aspects of the same software component. From violated
constraints the conflicting diagram elements and potential re-
pairs are inferred and ranked using heuristics. The approach
shares the semi-interactive repair principle and constraints ex-
pressed in OCL, but relies on a metamodel specific to the UML.

Ly et al. (2008) validated concrete workflow executions
using workflow models annotated with semantic constraints.

In this work workflow models are enriched with dependency
and exclusion constraints between activities. The constraints
are used to verify workflows after ad hoc changes have been
made and if running instances of the old workflow can be mi-
grated without conflict to the modified model. This work fo-
cuses mainly on verification of manual changes and not on
computing tailored work processes. Although domain-spe-
cific constraints are used to detect errors in executions, their
constraint language lacks expressiveness and configuration
and repair aspects are left aside.

Existing workflow adaptation methods predominantly fo-
cus on the avoidance of deadlocks and on the transition of
running instances after workflows have been changed (Weber
et al., 2008). In particular, workflow patterns and structural
adaptation of process models and their instances in response
to manual changes have been studied widely. However, do-
main-specific models, resources, and constraints are not
usually considered. Methods based on pattern recognition
and rewriting rely on a predetermined catalog of possible pat-
terns and remedies, which is typically unavailable in ad hoc
process configuration scenarios.

Specific executable processes can also be generated by au-
tomated planning approaches (Sirin et al., 2004). Although
planners use powerful reasoning techniques, detailed models
of actions and goals are required which prohibits the direct ap-
plication of planning algorithms to the work process config-
uration problem addressed in this article. If available, our ap-
proach could also benefit from detailed semantic constraints
to improve conflict detection and search heuristics.

4. SIEMENS AG PROCESS INSTANTIATION

Information system engineering and design processes at Sie-
mens AG are nested within a general framework, the SPF
(Fig. 6). Its purpose is to standardize the management and
structure of processes. The main components of the SPF are
the Reference Process House (RPH), the Roles of individuals
and committees in process management, and Process Model-
ing Methods (Schmelzer & Sesselmann, 2004). The RPH
describes the hierarchical structure of Siemens processes. It
includes all business processes that cover the relationship to
customers as well as internal management processes, such
as strategic planning and control, and support processes, for
example, assigning of human resources to roles in a project.

The development processes are nested in several levels of
abstraction. The RPH provides the structure of the top four
levels (levels 0–3) with the RPH as detailed in Figure 6 cor-
responding to level 0. Processes at level 1 typically specify an
abstract sequence of activities, such as Plan, Product man-
agement, Define, Implement, Operate, and Phase out. The
structure and appearance of lower levels is determined by
business units according to their individual needs. Detailed
processes are specified as EPCs and FADs (see Fig. 1).

Overall, the product life cycle management part comprises
nearly 3800 elements. Although a wide variety of tasks are

W. Mayer et al.158

covered, not all activities apply to all projects, and the generic
process framework can usually be reduced significantly.

Adaptation is performed in two steps. First, processes rel-
evant to a project are identified in the reference processes at
levels 0 and 1, and irrelevant activities are removed. Second,
detailed tailoring is performed in order to create extra activ-
ities required by a project, fill roles, and assign resources.
This process is performed iteratively over the duration of
the project, because the complexity of the reference process
and unplanned changes prohibit project managers from form-
ing a comprehensive plan at the start of a project.

To support adaptation, a process editor has been built that in-
tegrates with the overall process management systems at Sie-
mens AG. The architecture of the system is shown in Figure 7.
The editor manipulates the processes stored in the commercial
ARIS system via a custom-built interface. The XML-based
XPDL process definition language (WFMC, 2008) is used as
data exchange format. The interface allows the project manager
to edit and visualize the processes and resources associated
with a project. Figure 8 shows snapshots of the user interface
for manipulating processes and associated resources. This ar-
chitecture ensures that the ARIS system remains the central au-
thority for process information and existing project manage-
ment tools need not be altered, a factor that we considered to
be crucial for the adoption of any advanced process adaptation
tool. Generative constraints were expressed in a language de-
rived from the OCL (Object Management Group, 2006).
This has the benefit that the metamodel and the constraints
can be developed and versioned together in a UML tool.

We constructed the metamodel for the case study to fit the
structure of the reference software development processes at
Siemens AG, where the processes are stored, retrieved, and dis-
played using the EPC modeling language. After testing various
smaller scenarios using the metamodel with interactive users, a
major case study applied to the model to create a tailored variant
of the reference process for a particular business unit for real
world use. Manual adaptation had been tried and abandoned
several times as even in teams with elaborate review processes,
consistency of the adapted process could not be guaranteed.

The metamodel of the reference process was inspired by
the EPC process modeling language, but includes additional
entities and constraints that are specific to the development
practices at Siemens AG. The model was developed in collab-
oration with the project managers and developers at Siemens
AG. The process comprises 33 entity types and phases (com-
posite activities modeled as subprocesses), milestones, and
control flows. Figure 3 shows the structure of the main enti-
ties in the model. In addition, 139 generative constraints
describe the valid composition of entities and flows into pro-
cesses. Restrictions derived from the EPC language and also
rules specific to the business unit’s development process have
been incorporated. The model was developed iteratively, in-
tertwining constraint formulation and evaluation on selected
subprocesses, to ensure that the constraints are specific
enough to rule out invalid processes while tolerating the var-
iation necessary for effective process customization. Overall,
the resulting reference process includes about 3800 process ele-
ments and about 14,000 instantiations of generative constraints.

Fig. 6. The structure of the Siemens Process Framework.

Framework for work process configuration 159

As a significant fraction of Siemens development processes in-
volves embedded software in electronic and mechatronic sys-
tems, the process actually is of much wider scope than pure
software development, which results in significant variation
for different business units. However, the size and complexity
of the process meant that even seemingly trivial adaptions
could result in insurmountable effort. As a result, process man-
agement had so far been restricted to merely using the reference
process as a rough guideline without adapting to business unit
or project specific needs as originally envisioned.

Once the model had been built, the reference process could
be tailored to suit selected development scenarios. For the in-

itial full-scale application of the framework, the adaptation of
the reference process for a software business unit was chosen.
Experts at Siemens AG identified 108 activities and 41 work
products that had to be removed. These changes triggered ad-
ditional adaptations that were applied automatically by our
tool. The resulting process included 1959 elements, down
from 3790 before the adaptation (a reduction of 48%). The
execution of this task completed in 221 s of CPU time on a
standard PC (excluding the time required to import and export
the process from ARIS). Manual creation of this particular
process (using project teams and review meetings) had
been tried several times and abandoned because of the impos-
sibility of tracing dependencies of process elements and ver-
ify conformance with constraints.

Note that because of the declarative modeling approach,
the framework and tool can also be used to validate any given
process. Applied to the overall 3800 element Siemens refer-
ence process, the tool identified 177 previously unknown
constraint violations.

The application to the real world Siemens problem has
demonstrated that automated process configuration has the
potential to achieve tremendous improvements in process
quality while reducing the cost of process maintenance. We
anticipate that automated process configuration will yield sig-
nificant savings that is due to a reduction of the time required
to tailor processes and the absence of activities that do not
contribute to the project’s outcomes.

5. CONCLUSION AND FUTURE DIRECTIONS

The adaptation of large-scale generic processes to the require-
ments of specific projects is a challenging task where auto-
mated tool support has been desired. The process adaptation

Fig. 8. The graphical user interface of the process adaptation tool. The left image shows the process adaptation interface, and the right
image shows the interface to browse and manipulate activities and resources.

Fig. 7. The process management systems architecture at Siemens AG.

W. Mayer et al.160

framework presented in this article extends well-known con-
straint-based configuration principles to the process domain.
The approach generalizes traditional component-oriented
configuration techniques into a uniform formal framework
for the configuration of entire processes. The framework
comprises an extensible metamodel of organization-specific
process entities and relations and a declarative constraint
language that incorporates constraints on process structure
and execution paths. The metamodel in conjunction with
the declarative constraint language allows organizations to
minimize the effort required to adopt the approach by
gradually amending the level of detail that is reflected
formally. Generic heuristics are applied to select changes
that resolve inconsistencies such that the overall process
structure is maintained. Methods or algorithms that imple-
ment the approach can be generic or chosen for the specific
context.

For the Siemens case, a semi-interactive tool was built that
fit within the Siemens process environment, allowing project
managers to tailor and validate work processes with respect to
a set of project-specific constraints and a given reference pro-
cess. The approach has helped to identify a large number of
errors in development processes that had been manually tai-
lored at Siemens AG. Furthermore, substantially smaller
processes have been obtained from the monolithic reference
process with very little effort. The efforts involved in creating
the initial metamodel, constraints, and tool implementation
have been offset by a significant reduction in time required
to tailor and validate specific processes.

Given that considerable improvements in the management
of development processes at Siemens AG have been demon-
strated, we intend to conduct further studies and evaluate our
configuration approach on additional processes sourced from
different organizations and work process domains. Our pri-
mary objective will be to refine the heuristic adaptation
mechanisms for common work process patterns and to further
improve the quality of tailored processes for common process
patterns and change operations.

The investigations in this project have focused largely on
structural and flow aspects within a process. Further exten-
sions can be incorporated that reflect additional properties
of the domain, such as an explicit representation of time
and detailed resource allocation and scheduling. Expanding
the declarative representation to incorporate approaches that
strive to capture semantics of larger building blocks of the
design also opens further research directions. Developing
declarative means to specify context-dependent search
strategies in order to synthesize efficient implementations
would also be desired to yield even more efficient yet flexible
tools.

ACKNOWLEDGMENTS

This research was supported by the Australian Research Council
(Grant DP0988961) and by Siemens A.G.

REFERENCES

Albert, P., Henocque, L., & Kleiner, M. (2005). Configuration-based work-
flow composition. Proc. IEEE Int. Conf. Web Services (ICWS), pp. 285–
292, Orlando, FL.

Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Com-
munications of the ACM 26(11), 823–843.

Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., &
Ocampo, A. (2008). Scoping software process models—initial concepts
and experience from defining space standards. Proc. Int. Conf. Software
Process (ICSP’08), LNCS, Vol. 5007, pp. 160–172. Berlin: Springer.

Asikainen, T., & Männistö, T. (2009). A metamodelling approach to config-
uration knowledge representation. IJCAI’09 Workshop on Configuration,
pp. 9–16, Pasadena, CA.

Bajec, M., Vavpotič, D., & Krisper, M. (2007). Practice-driven approach for
creating project- specific software development methods. Information &
Software Technology 49(4), 345–365.

Beckert, B., & Trentelman, K. (2005). Second-order principles in specifica-
tion languages for object-oriented programs. Proc. LPAR, LNCS, Vol.
3835, pp. 154–168. Berlin: Springer.

Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
and Siméon, J. (2007). XML Path Language (XPath) 2.0. World Wide
Web Consortium, Recommendation REC-xpath20-20070123.

Brinkkemper, S. (1996). Method engineering: engineering of information
systems development methods and tools. Information & Software Tech-
nology 38(4), 275–280.

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2003). Counterex-
ample-guided abstraction refinement for symbolic model checking. Jour-
nal of the ACM 50(5), 752–794.

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., & Zadeck, F.K. (1991).
Efficiently computing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming Languages and
Systems 13(4), 451–490.

Dausch, M., & Hsu, C. (2006). Engineering service products: the case of
mass-customising service agreements for heavy equipment industry.
International Journal of Services Technology and Management 7(1),
32–51.

Egyed, A., Letier, E., & Finkelstein, A. (2008). Generating and evaluating choi-
ces for fixing inconsistencies in UML design models. Proc. IEEE Conf. Au-
tomated Software Engineering (ASE’08), pp. 99–108, L’Aquila, Italy.

Felfernig, A., Friedrich, G., & Jannach, D. (2001). Conceptual modeling for
configuration of mass-customizable products. Artificial Intelligence in
Engineering 15(2), 165–176.

Fitzgerald, B., Russo, N., & O’Kane, T. (2003). Software development
method tailoring at Motorola. Communications of the ACM 46(4), 65–70.

Ginsberg, M., & Quinn, L. (1995). Process tailoring and the software capa-
bility maturity model. Technical report. Pittsburgh, PA: Software Engi-
neering Institute (SEI).

Heiskala, M., Tiihonen, J., & Soininen, T. (2005). A conceptual model for
configurable services. Proc. IJCAI’05 Workshop on Configuration, Edin-
burgh, Scotland.

IDS Scheer. (2006). ARIS design platform. Accessed September 8, 2010, at
http://www.ids-scheer.com/us/en/ARIS/ARIS_Platform/ARIS_Design_
Platform/32390.html

Jensen, K. (1997). Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use, Vol. 1, 2nd ed. Berlin: Springer–Verlag.

Keller, G., Nüttgens, M., & Scheer, A. (1992). Semantische Prozessmodel-
lierung auf der Grundlage Ereignisgesteuerter Prozessketten (EPK).
Technical Report 89, Universität des Saarlandes.

Killisperger, P. (2010). Instantiation of information systems development
processes. PhD Thesis. University of South Australia, School of Compu-
ter and Information Science.

Killisperger, P., Stumptner, M., Peters, G., & Stückl, T. (2008). Challenges in
software design in large corporations—a case study at Siemens AG. Proc.
Int. Conf. Enterprise Information Systems (ICEIS) (3-2), pp. 123–128,
Barcelona, Spain.

Kindler, E. (2006). On the semantics of EPCs: resolving the vicious circle.
Data & Knowledge Engineering 56(1), 23–40.

Latvala, T., Biere, A., Heljanko, K., & Junttila, T.A. (2005). Simple is
better: efficient bounded model checking for past LTL. Proc. VMCAI,
pp. 380–395, LNCS, Vol. 3385. Berlin: Springer.

List, B., & Korherr, B. (2005). A UML 2 profile for business process mod-
eling. In Proc. ER (Workshops), LNCS, Vol. 3770, pp. 85–96. Berlin:
Springer.

Framework for work process configuration 161

Ly, L.T., Rinderle, S., & Dadam, P. (2008). Integration and verification of se-
mantic constraints in adaptive process management systems. Data &
Knowledge Engineering 64(1), 3–23.

Magro, D. (2010). F: conceptual language-based configuration. AI Commu-
nications 23(1), 1–46.

Mailharro, D. (1998). A classification and constraint-based framework for
configuration. Artificial Intelligence for Engineering, Design, Analysis
and Manufacturing 12(4), 383–397.

Marcus, S., & McDermott, J. (1989). SALT: a knowledge-acquisition
language for propose-and-revise systems. Artificial Intelligence 39(1),
1–37.

Mayer, W., Thiagarajan, R., & Stumptner, M. (2009). Service composition as
generative constraint satisfaction. Proc. IEEE Int. Conf. Web Services
(ICWS), pp. 888–895, Los Angeles.

Mendling, J. (2009). Empirical studies in process model verification. T. Petri
Nets and Other Models of Concurrency 2, 208–224.

Milner, R. (1990). Operational and algebraic semantics of concurrent pro-
cesses. In Handbook of Theoretical Computer Science. Volume B: Formal
Models and Semantics (B), pp. 1201–1242. Cambridge, MA: MIT Press.

Mittal, S. (1990). Reasoning about resource constraints in configuration
tasks. Technical report, Xerox PARC.

Muchnick, S.S. (1997). Advanced Compiler Design and Implementation. Pa-
sadena, CA: Morgan Kaufmann.

Niknafs, A., & Ramsin, R. (2008). Computer-aided method engineering:
an analysis of existing environments. Proc. 20th Int. Conf. Advanced
Information Systems Engineering (CAiSE’08), pp. 525–540. Berlin:
Springer.

Object Management Group. (2006). Object constraint language: OCL spec-
ification v2.0 [Computer software]. http://www.omg.org/spec/OCL/2.0/
PDF

Rosemann, M., & van der Aalst, W.M.P. (2007). A configurable reference
modelling language. Information Systems 32(1), 1–23.

Rossi, F., Beek, P.v., & Walsh, T. (2006). Handbook of Constraint Program-
ming. New York: Elsevier Science.

Scheer, A.-W. (2000). ARIS—Business Process Modeling, 3rd ed. New
York: Springer–Verlag.

Schmelzer, H., & Sesselmann, W. (2004). Geschäftsprozessmanagement in
der Praxis: Produktivität steigern—Wert erhöhen—Kunden zufrieden-
stellen, 4th ed. Munich: Hanser Verlag.

Sirin, E., Parsia, B., Wu, D., Hendler, J.A., & Nau, D.S. (2004). HTN plan-
ning for Web Service composition using SHOP2. Journal of Web Seman-
tics 1(4), 377–396.

Soininen, T., Tiihonen, J., Männistö, T., & Sulonen, R. (1998). Towards a
general ontology of configuration. Artificial Intelligence for Engineering,
Design, Analysis and Manufacturing 12(4), 357–372.

Stumptner, M., Friedrich, G., & Haselböck, A. (1998). Generative constraint-
based configuration of large technical systems. Artificial Intelligence for
Engineering, Design, Analysis and Manufacturing 12(4), 307–320.

Thomas, O., & Fellmann, M. (2007). Semantic EPC: enhancing process
modeling using ontology languages. Proc. SBPM, CEUR Workshop,
Vol. 251. Accessed at http://www.CEUR-WS.org

Van der Aalst, W.M.P. (1999). Formalization and verification of event-driven
process chains. Information and Software Technology 41(10), 639–650.

Van der Aalst, W.M.P. (2000). Workflow verification: finding control-flow er-
rors using petri-net-based techniques. In Business Process Management,
Models, Techniques, and Empirical Studies (van der Aalst, W.M.P., Desel,
J., & Overweis, A., Eds.), pp. 161–183. Berlin: Springer–Verlag.

Van der Aalst, W.M.P., & van Hee, K.M. (2004). Workflow Management—
Models, Methods, and Systems. Cambridge, MA: MIT Press.

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change patterns and
change support features enhancing flexibility in process-aware informa-
tion systems. Data & Knowledge Engineering 66(3), 438–466.

WFMC. (2008). WFMC-TC-1025-Oct-10-08A (final XPDL 2.1 specifica-
tion). Technical report, WFMC. Accessed April 28, 2009, at http://
www.wfmc.org

Zeller, A. (2002). Isolating cause-effect chains from computer programs.
Proc. Foundations of Software Engineering (SIGSOFT FSE), pp. 1–10,
Charleston, SC.

Wolfgang Mayer is a Lecturer at the University of South
Australia. He received his PhD from the University of South
Australia and his MS in computer science from the Vienna
University of Technology. His research interests include anal-
ysis, composition, and diagnosis of process models and soft-
ware systems. Dr. Mayer’s work focuses on model-based rea-
soning and knowledge representation techniques with
applications to fault localization, automated configuration,
and data- and workflow integration.

Markus Stumptner is a Professor of computer science at the
University of South Australia, where he directs the Advanced
Computing Research Centre. He received MS and PhD degrees
in computer science from the Vienna University of Technol-
ogy. Dr. Stumptner’s research interests include object-oriented
modeling, knowledge representation, and model-based reason-
ing in areas such as configuration and diagnosis.

Peter Killisperger is a Researcher at Siemens Corporate Re-
search and Technologies in Munich. He received a PhD in in-
formation technology from the University of South Australia,
an MS in distributed and multimedia information systems
from the Heriot–Watt University in Edinburgh, Scotland,
and a diploma degree in business informatics from the Uni-
versity of Applied Sciences in Augsburg, Germany. Dr. Kill-
isperger’s work focuses on improving information systems
development processes.

Georg Grossmann is a Research Fellow at the University of
South Australia. His PhD thesis on behavior-based integra-
tion of object-oriented information systems was awarded
the Ian Davey Research Thesis Prize for the most outstanding
research thesis at the University of South Australia. He also
received an MS in economics and computer science (jointly
from University of Vienna and Vienna University of Technol-
ogy). Dr. Grossmann’s current research interests include
business process integration, behavior-based integration of
Web services, ontology-driven data integration, and distrib-
uted event-based systems.

W. Mayer et al.162

Reasoning about conditional constraint specification
problems and feature models

RAPHAEL FINKEL1
AND BARRY O’SULLIVAN2

1Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA
2Cork Constraint Computation Centre, University College Cork, Cork, Ireland

(RECEIVED March 19, 2010; ACCEPTED October 29, 2010)

Abstract

Product configuration is a major industrial application domain for constraint satisfaction techniques. Conditional con-
straint satisfaction problems (CCSPs) and feature models (FMs) have been developed to represent configuration prob-
lems in a natural way. CCSPs are like constraint satisfaction problems (CSPs), but they also include potential variables,
which might or might not exist in any given solution, as well as classical variables, which are required to take a value in
every solution. CCSPs model, for example, options on a car, for which the style of sunroof (a variable) only makes sense
if the car has a sunroof at all. FMs are directed acyclic graphs of features with constraints on edges. FMs model, for ex-
ample, cell phone features, where utility functions are required, but the particular utility function “games” is optional,
but requires Java support. We show that existing techniques from formal methods and answer set programming can be
used to naturally model CCSPs and FMs. We demonstrate configurators in both approaches. An advantage of these
approaches is that the model builder does not have to reformulate the CCSP or FM into a classic CSP, converting po-
tential variables into classical variables by adding a “does not exist” value and modifying the problem constraints. Our
configurators automatically reason about the model itself, enumerating all solutions and discovering several kinds of
model flaws.

Keywords: Alloy; Answer-Set Programming; Configuration; Constraint Satisfaction; Flaw Detection

1. INTRODUCTION

Product configuration has provided constraint programming
with one of its most successful application domains (Sabin
& Weigel, 1998; Junker, 2006). Model-based, particularly
constraint-based, approaches to configuration are the most
successful in practice (http://www.gartner.com), because con-
straint-based product configurators are specified in a highly
declarative formalism.

Configuration presents several modeling and reasoning
challenges. First, it is challenging to maintain consistent inte-
gration between product catalogs and constraint-based con-
figurator models. Second, constraint-based approaches need
to be able to handle taxonomic inheritance among compo-
nents and subsystems. Third, the space of possible configur-
able products is often unbounded but might be subject to re-
source restrictions. Fourth, users have preferences, and full
customization must be possible.

Most configurator engines restrict the configuration process
to some degree. In particular, a configurator will typically con-
figure systems before subsystems. Also, isomorphic configura-
tions provide challenges for the configurator; isomorphic con-
figurations can be regarded as being structurally symmetric.
For this reason, many configurators represent the product being
configured as a set of systems rather than associating each sys-
tem with a variable, which can introduce unnecessary symme-
tries into the configuration space.

Although constraint satisfaction techniques have supported
configuration for many years, they have required extensions to
the basic constraint satisfaction problem. For example, compos-
ite constraint satisfaction (Sabin & Freuder, 1996) has been in-
troduced to handle hierarchical system configuration. Mittal and
Falkenhainer (1990) introduced dynamic constraint satisfaction
to cover problems in which the existence of features depended
on the existence or values of other features; this scheme was
subsequently given a formal logical semantics (Bowen & Bah-
ler, 1991). This work was subsequently extended by other
researchers (Mailharro, 1998; Stumptner et al., 1998). Dynamic
constraint satisfaction has more recently been referred to as
conditional constraint satisfaction (Gelle & Faltings, 2003) to

Reprint requests to: Raphael Finkel, Department of Computer Science,
University of Kentucky, Lexington, KY 40506, USA. E-mail: raphael@cs.
uky.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 163–174.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000600

163

distinguish dynamism due to conditional relevance of some
variables and constraints from dynamism due to uncertainty
and environmental change.

Many authors (including Mittal and Falkenhainer) refor-
mulate conditional constraint satisfaction problems (CCSPs)
into classic CSPs by introducing redundant domain values
and augmenting the problem constraints so that some problem
variables take a “not defined” value (Sabin & Gelle, 2006). Al-
though feature models (FMs) appear quite different from
CCSPs, they can also be mapped to CSPs (Benavides et al.,
2005) and other data structures. These reformulations are prob-
lematic. First, they seem unnatural as a modeling technique, es-
pecially for large real-world configuration problems. Second,
they become impractical and difficult to maintain, especially
when the configuration space is extremely large or unbounded.

Our motivation arises from sophisticated tools that the
formal methods community has developed for modelling
and reasoning about complex engineered artifacts that can
be regarded as configuration problems (Hinchey et al.,
2008). Our objective is to study the utility of formal methods
for modeling and reasoning about configuration models. The
two main contributions of this paper are the following:

1. Using well-known examples, we show how to model
constraint-based configuration problems naturally and
concisely in the formal methods package Alloy (Jack-
son, 2002), which is usually used for modeling software
systems, and in the answer-set programming (ASP) lan-
guage lparse (http://www.tcs.hut.fi/Software/smodels/)

2. In addition to providing a natural modeling paradigm,
these approaches are capable of providing reasoning
capabilities that are very appropriate for configuration,
in particular, verifying the specification of the config-
uration problem to ensure that specific flaws are absent,
a problem identified and studied in earlier work (Sabin
& Freuder, 1998). We argue that formalisms such as Al-
loy and lparse provide modeling tools that can be easily
used by nonexperts to model and reason about config-
uration problems directly and naturally.

In Section 2 we informally present conditional constraint
satisfaction, motivated by a well-known configuration prob-
lem, which we use as a running example. We also list some
flaws that can occur in the specification of conditional config-
uration problems. We present both a formal methods ap-
proach (Section 3) and an answer set programming approach
(Section 4) to reasoning about CCSPs. In Section 5 we show
how we can easily identify flaws in CCSPs and demonstrate
that Mittal and Falkenhainer’s benchmark problem exhibits
such flaws. We briefly show how ASP can easily find solu-
tions involving the minimum or maximum number of options
in Section 6. We turn our attention to FMs in Section 7, show-
ing how an ASP approach can reason about these configura-
tion models. In Section 8 we present XML representations for
both CCSPs and FMs and report on our software to apply
ASP methods to the data stored in such XML representations.

Finally, in Section 9 we draw several conclusions and sum-
marize our plans for future study.

2. CONDITIONAL CONSTRAINT
SATISFACTION

Mittal and Falkenhainer (1990) introduced CCSPs. A CCSP
differs from a classical CSP in that some variables are marked
as potential, which means that they need not take a value in
all solutions. CCSPs allow activity constraints that deal with
the existence of potential variables, including the following:

† require variable (RV), which stipulates that under cer-
tain value assignments to other variables, a potential
variable must exist;

† require not variable (RN), which stipulates that under
certain value assignments to other variables, a potential
variable must not exist;

† always require variable (ARV), which stipulates that
the existence of some other variable implies the exis-
tence of a potential variable; and

† always require not variable (ARN), which stipulates
that the existence of some other variable precludes the
existence of a potential variable.

Mittal and Falkenhainer demonstrate these concepts by pre-
senting two examples. In the first, the task is to generate valid
configurations of options for a car. Because we plan to encode
this example for our own purposes, we present it essentially as
Mittal and Falkenhainer do in Figure 1. This small model cap-
tures, among other constraints, that luxury vehicles must have
some sort of sunroof (constraint 1), that any sort of sunroof re-
quires an option for glass (constraint 6), that an sr1 sunroof
has no opener (constraint 10), and that a luxury car may not
have an ac1 air conditioner (constraint 14).

Given such a CCSP, one can pose several queries:

1. Find/count/enumerate solutions to the CCSP. To find is
to compute a single solution; to count is to discover the
number of unique solutions, and to enumerate is to list
all those solutions.

2. Enumerate all variable flaws in the CCSP. A variable
flaw is a potential variable that is present in all solu-
tions, so it is really a classical, not a potential, variable,
or a potential variable that is never present in any
solution.

3. Enumerate all value flaws in the CCSP. A value flaw is
a value for a variable (actual or potential) that is never
achieved by any solution.

4. Find/count/enumerate minimum/maximum solutions to
the CCSP. A minimum (maximum) solution is one
with the fewest (most) potential variables.

5. Find/count/enumerate minimal/maximal solutions to
the CCSP. A minimal (maximal) solution is one in
which removing (adding) any potential variable leads
to a nonsolution.

R. Finkel and B. O’Sullivan164

3. REASONING ABOUT CCSPS IN ALLOY

Alloy Analyzer 4.0 is a language originally intended to model
design of data structures. Jackson presents the formal seman-
tics of Alloy in a comprehensive manner (Jackson, 2002). Al-
loy has been widely used for modeling large complex engi-
neering systems (http://alloy.mit.edu/community/models). It
provides a way to specify types and constrain their instances.
It can convert those types and constraints into SAT problems
that it then solves, displaying the solutions via a graphical in-
terface. If it fails to find a solution, the specification is most
likely inconsistent, although the solver might not have
searched a large enough population of instances; the specifica-
tion indicates how many instances of each type to generate for
testing purposes. In this sense, Alloy is not a complete solver.

If the graphical representation of the solution seems erro-
neous to the user, new constraints that the user adds to the
specification can prevent the erroneous interpretation.

We find that Alloy is well suited to represent CCSPs. Fig-
ure 2 presents our Alloy representation of part of the car ex-
ample from Figure 1. In Alloy, a sig introduces a type.
These types, something like classes in object-oriented pro-
gramming languages, may be defined to contain members.
To model the car-configuration problem, we introduce a
sig called Car with a member for each variable. During
configuration we define instances of Car.

Each car has required attributes, including a package. The
fact that every instance of a car comprises one of each of these
attributes is specified with the keyword one. These attributes
represent the classical CSP variables of the problem.

A car has additional optional attributes, including a battery
and an air conditioner. These attributes correspond to the po-
tential variables of the problem. We specify them with the
keyword lone to state that each instance of a car may have
at most one instance of each of these attributes. Alloy can
now generate one instance of every classical variable and

Fig. 1. A car-configuration problem based on Mittal and Falkenhainer (1990).

Reasoning about conditional constraint specification problems and feature models 165

an optional instance of every potential variable. The particu-
lar instance that Alloy generates captures the CSP idea of a
variable’s value.

We introduce each CCSP variable with an abstract
sig, introducing a type (such as Package) that has no direct
instances. Then we introduce subtypes (such as Luxury).
These subtypes may have at most one instance each.

Constraints are represented inside a fact. RV and ARV
constraints differ in the form of their left-hand side, referring
either to values (like Luxury in constraint 2) or variables
(like sunroof in constraint 6). RN and ARN constraints
(like constraints 13 and 14) differ from RV and ARV con-
straints only in that they have no on the right-hand side.

This representation would lead to a fifth and sixth sort of
constraint not contemplated by Mittal zFalkenhainer, in
which the nonexistence of a potential variable leads to the ex-
istence or nonexistence of another potential variable. We
would model such constraints in Alloy by facts with no
on the left-hand side and either one or no on the right-
hand side.

The Alloy program is executable. It generates the solution
in Figure 3, among others. Unfortunately, Alloy gives us no
way to directly count or enumerate the solutions, short of in-
teracting multiple times with the Alloy Analyzer to request
the next solution.

4. REASONING ABOUT CCSPS IN ASP

To represent CCSPs using ASP, we use the syntax that lparse
recognizes and converts to a form acceptable to solvers such
as smodels (Niemela & Simons 1997), clasp (Gebser et al.,
2007), and Cmodels (which converts lparse into SAT and in-
vokes a SAT solver; Giunchiglia et al., 2004). ASP programs

deal with predicates, which are either true or false. We intro-
duce a predicate for each value of each actual and potential
variable. For instance, the predicate package(luxury)
represents the value luxury for the variable package. In
any given model, this predicate is either true or false.

Many ASP solvers allow cardinality-constrained predi-
cates, in which the number of true predicates in a given list
is bounded above, below, or both. We say

0 { battery(bsmall), battery(bmed),
battery(blarge) } 1

to represent a cardinality-constrained predicate stating that at
least 0 and at most 1 of the three predicates in the list is true.
The car may have no battery at all, but if it has one, the battery
must be one of small, medium, or large. lparse allows a short-
hand for lists of predicates that share the same functor; we can
equivalently write

0 { battery(bsmall; bmed; blarge) } 1

We use ASP implications to represent CCSP constraints:

1 { battery(bsmall; bmed; blarge) }
:- package(luxury).

This implication says that if a car has the luxury package, it
must have at least one of the battery sizes.

Finally, ASP programs have failures,1 indicated by an
empty left-hand side of an implication. The conjunction of

Fig. 2. An Alloy model encoding the car-configuration problem (excerpt).

1 The ASP community calls them constraints, but we avoid that term here
because it conflicts with CSP terminology.

R. Finkel and B. O’Sullivan166

predicates (some of which may be negated) on the right-hand
side must not be true in any satisfying model. For example,

:- 1 { opener(auto; manual) }, sunroof(sr1) .

specifies that no model may have an sr1 sunroof and have
either an automatic or a manual opener.

An excerpt of the cars specification in lparse syntax is pre-
sented in Figure 4. Although the lparse representation is not
as elegant as the Alloy one, it is not difficult to read. Instead of
one, we bound above and below by 1 (as in the rule for the
classical variable package). Instead of lone, we bound be-
low by 0 and above by 1 (as in the rule for the potential vari-
able battery). Instead of no, we bound a failure below by
1, as in rule 10. We represent constraints that preclude particu-

lar values by failures (rule 13). We represent classical con-
straints that imply particular values by implications (rule 16).

ASP solvers, unlike Alloy, can easily enumerate all solu-
tions. Each solution is an answer set, that is, a set of predicates
that satisfies all the rules in the specification. A few of the 450
solutions to the car configuration specification are presented
in Table 1. One can look through the list of solutions to search
for variable and value flaws. However, one can also generate
them automatically, as we show in the next section.

5. AUTOMATICALLY CHECKING
FOR SPECIFICATION FLAWS

Specifications of CCSPs can contain a variety of flaws that
can be difficult to detect manually (Sabin & Freuder, 1998).

Fig. 3. A car configuration comprising a deluxe package, a sedan frame, a medium engine, a medium battery, sunroof SR2 with untinted
glass, and a manual opener. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 4. The car-configuration problem implemented in lparse (excerpt).

Reasoning about conditional constraint specification problems and feature models 167

We can apply both the Alloy and ASP approaches to identify
flaws in the constraint specification. In particular, we can dis-
cover that the car-configuration problem exhibits both a vari-
able flaw and a value flaw. As we mentioned earlier, a vari-
able flaw occurs when a potential variable is required in all
models, that is, an option is not really optional. A value
flaw occurs when a value cannot exist in any valid configura-
tion, so it does not represent an option.

5.1. Checking for specification flaws in alloy

We extend the model we presented in Figure 2 to introduce an
abstract type Flaw, with lone subtypes for each category
of flaw for we would like to test. Here are some of the sig
definitions for the possible flaws in our model.

abstract sig Flaw {}
lone sig
noLuxury, noDeluxe, noStandard,
noBSmall, noBMedium, noBLarge, batteryFlaw,
noAC1, noAC2, ACFlaw
} extends Flaw {}

We then introduce constraints that force the existence of flaw
instances, such as one for BatteriesFlaw.

fact { one noBSmall iff no BSmall }
fact { one batteryFlaw

iff (no c: Car| no c.battery) }

Given similar definitions for each flaw, we can run the Alloy
Analyzer requiring no flaws for a large number of cars as fol-
lows:

run {} for 4 but exactly 4 Car, 0 Flaw

This run fails to find an instance; by experiment, we need to
raise the number of flaws to 2 before the analyzer finds a solu-
tion. This solution includes an instance of batteryFlaw (all
cars have batteries: a variable flaw) and noConvertible
(there are no convertibles: a value flaw).

Figure 5 shows the Alloy Analyzer visualization of the
flaws in Mittal and Falkenhainer’s specification from Fig-
ure 1. We clearly see four instances of Car, with links to their
associated components. However, on the far right of the fig-
ure we see an instance of batteryFlaw and of
noConvertible. The fact that we see instances of these

flaws demonstrates that they exist in the specification. The
instance of batteryFlaw indicates the presence of the
variable flaw highlighted above, namely, that batteries are
not optional, despite the fact that the specification sug-
gests the opposite. The presence of the value flaw that no
convertible cars are possible is indicated by the instance of
noConvertible.

We can explain these flaws, once we find them, by refer-
ring to the original specification of Figure 1. Rule 7 forces
a battery in every car that has an engine, and engine is a
classical variable. We might as well call battery a classical
variable as well.

The other, noConvertible, is a value flaw: it is impos-
sible to generate a convertible. This flaw is hidden in the im-
plications of the activity and classical constraints. By con-
straint 11, convertibles do not have sunroofs. By constraints
1 and 3, cars with the luxury and deluxe packages do have
sunroofs, so by elimination, convertibles must have the stan-
dard package. But by rule 15, cars with the standard package
are not convertibles.

5.2. Checking for specification flaws in ASP

We expand the lparse representation for the car CCSP by add-
ing a second, numeric, argument to every predicate. The new
argument represents car number. For example, package
(luxury,4) is a predicate indicating that the fourth car
has a luxury package. Now rules like

1 {opener(auto,N), opener(manual,N)}
:- sunroof(sr2,N) .

are shorthands that lparse expands (in a process called
grounding) to a new rule for each valid value of N. We can
limit any solution to four car designs.

number(1..4).
#domain number(N).

The number 4 is arbitrary; we will use it for the examples to
follow. Next, we introduce new nullary predicates for each
value of each variable (both classical and potential) to indi-
cate the fact that no car at all uses a particular value, such
as in this rule:

noLuxury :- {package(luxury,M):number(M)} 0.

Table 1. A sample of solutions from the ASP model

Pack Frame Engine Battery Sunroof AC Glass Opener

Standard Sedan esmall blarge sr2 — — Auto
Standard Hatch esmall bsmall — — — —
Deluxe Hatch esmall bmed sr1 ac1 Tinted —
Deluxe Hatch esmall bsmall sr2 — Not Manual

Note: ASP, answer-set programming.

R. Finkel and B. O’Sullivan168

The grounder converts this shorthand into a rule containing a
list of predicates package(luxury,1) to package
(luxury,4). If not a single one of these package predi-
cates is true, which happens if none of the N cars has the lux-
ury package, then noLuxury is true, indicating a possible
value flaw.

For each potential variable, we introduce two rules, like
these:

okSunroof :- {sunroof(sr1,N), sunroof(sr2,N) }0.
sunroofFlaw :- not okSunroof.

The grounder expands the first rule to four rules, one for
each car. If for any car, no sunroof at all is specified, then
okSunroof is asserted. If no car at all asserts okSunroof,
then we have a variable flaw, as evidenced by asserting
sunroofFlaw.

A solution to this expanded program may contain one of
the predicates indicating a flaw for several reasons. One is
that the particular solutions chosen for the N cars may simply
not be the ones that demonstrate the use of each value and the
absence of each potential variable. We deal with this possibil-
ity by asking the solver to minimize the number of such pred-
icates:

minimize { % (excerpt)
noLuxury, noDeluxe, noStandard,
noBSmall, noBMedium, noBLarge, batteryFlaw,
noAC1, noAC2, acFlaw } .

The solver now searches for solutions containing N cars
that have the fewest flaws. If we limit N to 3, for instance,
we find at least four flaws: noLuxury, noConvertible,

batteryFlaw, noManual. Setting N¼ 4 produces the ap-
parent flaws batteryFlaw and noConvertible. No
matter how high we set N, these flaws remain.

When we try the same technique on the second example
that Mittal and Falkenhainer present (we omit the second ex-
ample in the interest of space), we also find both a variable
flaw (can capacity) and a value flaw (the particle-physics
value of the ontology variable).

It is instructive to note that only four cars are needed to
cover the reachable parts of the variable domains; we might
have expected that far more are needed. We can inspect these
cars to verify that all reachable values are covered and that po-
tential variables can be omitted, as in Table 2.

6. OPTIMAL CARDINALITY CONFIGURATIONS

We might often be interested in finding solutions to a set of
conditional constraints that involve the fewest number of
options or the largest number of options. We briefly demon-
strate how such queries can be answered using our ASP model.
We can use the minimize construct of lparse with our
original formulation (before we add the numeric argument)
to find a minimum solution, that is, a solution with the
fewest potential variables. The requirement we add is simply
as follows:

minimize {
battery(bsmall; bmed; blarge),
sunroof(sr1; sr2),
airConditioner(ac1; ac2),
glass(tinted; notTinted),
opener(auto; manual) } .

Fig. 5. The Alloy Analyzer visualization of the flaws in Mittal and Falkenhainer’s (1990) specification from Figure 1. We clearly see four
instances of Car, with links to their associated components. However, on the far right of the figure we see instances of batteryFlaw and
noConvertible. That we see instances of these flaws demonstrates that they exist in the specification. [A color version of this figure can
be viewed online at journals.cambridge.org/aie]

Reasoning about conditional constraint specification problems and feature models 169

Using the clasp solver for our lparse model we obtain 18
optimal (minimum) solutions, including those presented in
Table 3. Similarly, by using maximize, we can enumerate
all 176 maximum solutions, such as those also presented in
the table.

7. FMs

We now consider FMs, another form of specification that is
encountered in domains such as software configuration, in
which the architecture of an artifact is represented graphi-
cally. Although FMs appear quite different from CCSPs,
they have very similar purposes and yield to very similar anal-
ysis. FMs are directed acyclic graphs, where nodes are called
features and edges imply various kinds of constraints (Czar-
necki & Eisenecker 2000). A solution is a subset of the fea-
tures that satisfies all of the constraints. If a feature is present
in a solution, then all the features on the path from it to the
root of the tree must also be present. A feature in the tree
may be marked as mandatory, meaning that it must be pre-
sent in any solution if its parent is present; otherwise, it is op-
tional. A feature may indicate that its set of children consti-
tutes an OR set, meaning that if the feature is present, at
least one of the children must be present. Similarly, a feature
may indicate that is set of children constitutes an XOR set,
meaning that if the feature is present, exactly one of its chil-
dren must be present. Additional nontree edges indicate that
if a feature is present, its successor along the edge must
also be present or must not be present.

Figure 6 is based on Segura’s (2008) FM for mobile tele-
phones. Each node in the tree is a feature that might or might

not be included in any model. Filled circles above features in-
dicate that the feature is mandatory if the parent feature is in-
cluded in a model. Open circles indicate optional features.
Filled semicircles under a node indicate an OR set of children;
if the parent is included in the model, at least one of the chil-
dren must be included. Open semicircles under a node indicate
an XOR set of children; if the parent is included in the model,
exactly one of the children must be included. Therefore, the
Media feature is optional, but if it is present, the MP3 subfea-
ture is mandatory. The OS feature requires that exactly one of
its subfeatures, Symbian or WinCE, must be present. The
Messaging feature requires that at least one of its subfea-
tures, SMS and MMS, must be present. The Games feature re-
quires the presence of the Java feature elsewhere in the tree.

FMs are in most ways like CCSPs. Features in FMs are like
variables in CCSPs. These variables have only one possible
value, which we can depict as yes. The mandatory, optional,
and edge constraints are like activity constraints. The OR and
XOR constraints do not map directly to CCSPs, however.

Given these similarities, it is not surprising that representing
FMs in Alloy or ASP is very much like representing CCSPs.
In lparse, for instance, we can indicate the mandatory nature
of Settings and the optional nature of Media this way,
where N refers to the serial number distinguishing phones:

1 {settings(N)} 1 :- mobilePhone(N) .
0 {media(N)} 1 :- mobilePhone(N) .

We specify the constraint that Settings is implied by any
child:

settings(N) :- 1 {os(N), java(N)} .

Table 3. Sample optimum cardinality configurations

Package Frame Engine Battery Sunroof AC Glass Opener

Sample Minimum Cardinality Configurations

Standard Hatch Medium Medium — — — —
Standard Sedan Large Medium — — — —
Standard Hatch Large Large — — — —

Sample Maximum Cardinality Configurations

Standard Hatch esmall bmed sr2 ac1 Tinted Auto
Deluxe Hatch emed blarge sr2 ac2 Tinted Manual
Standard Hatch elarge blarge sr2 ac1 Not Manual

Table 2. A set of configurations covering all reachable values in the domains of each variable

Package Frame Engine Battery Sunroof AC Glass Opener

Standard Sedan elarge blarge sr2 ac1 Tinted Manual
Standard Sedan esmall bsmall — — — —
Deluxe Sedan emed blarge sr2 ac2 Not Auto
Luxury Hatch esmall bmed sr1 ac2 Not —

R. Finkel and B. O’Sullivan170

We represent the OR and XOR set constraints for the chil-
dren of Messaging and OS:

1 {sms(N), mms(N)} :- messaging(N) .
1 {symbian(N), winCE(N)} 1 :- os(N) .

Finally, the extra edge constraint from Games to Java:

java(N) :- games(N).

FMs are also subject to flaws. If a feature is marked as
optional but exists in all solutions, the FM has a optional-
feature flaw. If a feature is absent in all models, the FM
has a missing-feature flaw. These flaws can result from non-
tree edges. For instance, an edge from AlarmClock to
Symbian in Figure 6 (Segura, 2008) would create a miss-
ing-feature flaw for WinCE. An edge from AlarmClock
to Java would create an optional-feature flaw for Java.

Methods very similar to those we use in CCSPs can dis-
cover these flaws in FMs.

8. XML REPRESENTATIONS

In order to standardize how we represent CCSPs and FMs, we
have designed XML Document Type Definitions (DTDs) for
both, based roughly on XCSP 2.1, the DTD for CSPs (http://
www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf). We have also
written Perl scripts that accept instances of CCSPs and FMs
obeying these DTDs, generate lparse renditions of the con-
straints, and then apply clasp to count or enumerate solutions,
find minimum and maximum solutions, and detect flaws. In
this way we can automatically generate a formal model of a
configuration problem from a very natural specification.

Figure 7 shows our XML representation of the cars CCSP.
The constraints typically name a variable or value as a condi-

tion and as a result. Either may be negated (as in constraint
10). The XML representation may include the logical connec-
tor and in the condition (constraint 12).

Figure 8 shows our XML representation of the phones FM,
which nests feature nodes to mirror the picture of Figure 6.

9. DISCUSSION

Product configuration is a major industrial application do-
main for constraint satisfaction techniques. CCSPs and FMs
have been developed to represent configuration problems in
a direct and natural way. In this paper we have presented
two alternative approaches to reasoning about specifications
of conditional constraint sets: one approach based on well-es-
tablished formal methods techniques for reasoning about
software specifications, and another based on ASP. The mod-
els of the constraint specification are natural in both cases and
do not require any reformulation of the original CCSP or FM.
We have also shown how we could automate the testing for
variable and value flaws (for CCSPs), and missing-feature
and optional-feature flaws (for FMs), and that it is possible
to find optimal cardinality specifications.

The DTD and Perl script are available from the authors un-
der the GNU General Public License (http://www.gnu.org/
copyleft/gpl.html). We have used this software on the fairly
large “bikes” configuration (http://www.itu.dk/research/cla/
externals/clib/Bike.pm), with 27 variables, some them with
domains of size 14, 16, and 36. Our analyzer sets N to twice
the largest domain size and tries for 10 s to minimize flaws. It
then uses divide and conquer to verify each of the discovered
flaws, which might be false positives due to insufficiently
large N or incomplete minimization within the time limit.
Each verification, however, is very fast and not subject to
false positives. In the “bikes” specification, our analyzer finds

Fig. 6. A feature model for mobile phones based on Segura (2008).

Reasoning about conditional constraint specification problems and feature models 171

100 potential flaws in 10 s of minimization and then in an-
other 9 s verifies that 5 are actual value flaws. Finding a solu-
tion with a given variable set to a specific value is quite fast
(about 0.04 s) even in this relatively large specification; ver-
ifying a flaw takes about 0.09 s. We therefore think that the
ASP approach scales well. Alloy also scales well; it is used
routinely for reasoning about large complex industrial speci-
fications (http://alloy.mit.edu/community/).

10. CONCLUSION

Our future work will study three problems.

1. We will generalize constraint-based explanation tech-
niques so we can give advice on resolving flaws in prob-

lem specifications, thus contributing to the emerging
literature on conflict detection in formal specifications
(Torlak et al., 2008).

2. We will apply fault detection to configuration, so fixing
the value of a variable will eliminate all newly unreach-
able values of other variables.

3. We will investigate how to handle nondiscrete vari-
ables, such as real ranges.

ACKNOWLEDGMENTS

Raphael Finkel’s work was partially supported by the US National
Science Foundation (Grant IIS-0325063). Barry O’Sullivan is
funded by the Science Foundation Ireland (Grant 05/IN/I886).
Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily reflect

Fig. 7. An XML representation of Mittal and Falkenhainer’s (1990) car-configuration problem.

R. Finkel and B. O’Sullivan172

the views of the funding agencies. This work is an extension of a
conference paper (Finkel & O’Sullivan, 2009).

REFERENCES

Benavides, D., Ruiz-Cortés, A., & Trinidad, P. (2005). Automated reason-
ing on feature models. Proc. 17th Int. Conf. Advanced Information
Systems Engineering, CAiSE 2005 (Pastor, O., & Cunha, J.F., Eds.),
L, Vol. 3520, pp. 491–503. New York: Springer.

Bowen, J., & Bahler, D. (1991). Conditional existence of variables in gener-
alised constraint networks. Proc. AAAI, pp. 215–220.

Czarnecki, K., & Eisenecker, U. (2000). Generative Programming: Methods,
Tools, and Applications. Reading, MA: Addison–Wesley Professional.

Finkel, R.A., & O’Sullivan, B. (2009). Reasoning about conditional con-
straint specifications. Proc. ICTAI, IEEE Computer Society, pp. 349–353.

Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (2007). Clasp: a con-
flict-driven answer set solver. Proc. LPNMR, pp. 260–265.

Gelle, E., & Faltings, B. (2003). Solving mixed and conditional constraint
satisfaction problems. Constraints 8(2), 107–141.

Giunchiglia, E., Yu, L., & Maratea, M. (2004). Cmodels-2: SAT-based an-
swer set programming. Proc. AAAI.

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., & Margaria, T.
(2008). Software engineering and formal methods. Communications of
the ACM 51(9), 54–59.

Jackson, D. (2002). Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology 11(2), 256–
290.

Junker, U. (2006). Configuration. In Handbook of Constraint Programming,
Foundations of Artificial Intelligence (Rossi, F., van Beek, P., Walsh, T.,
Eds.), pp. 837–873. New York: Elsevier.

Mailharro, D. (1998). A classification and constraint-based framework for
configuration. Artificial Intelligence for Engineering, Design, Analysis
and Manufacturing 12, 383–397.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction prob-
lems. Proc. AAAI-90, pp. 25–32.

Niemelä, I., & Simons, P. (1997). Smodels—an implementation of the stable
model and well-founded semantics for normal logic programs. In Logic
Programming and Nonmonotonic Reasoning (Dix, J., Furbach, U., &
Nerode, A., Eds.), LNCS, Vol. 1265, pp. 420–429. New York: Springer.

Sabin, D., & Freuder, E.C. (1996). Configuration as composite constraint
satisfaction. Proc. Artificial Intelligence and Manufacturing. Research
Planning Workshop, (Luger, G.F., Ed.), pp. 153–161. Menlo Park, CA:
AAAI Press.

Sabin, D., & Weigel, R. (1998). Product configuration frameworks—a sur-
vey. IEEE Intelligent Systems 13(4), 42–49.

Fig. 8. An XML representation of Segura’s (2008) phone-configuration instance.

Reasoning about conditional constraint specification problems and feature models 173

Sabin, M., & Freuder, E.C. (1998). Detecting and resolving inconsistency
and redundancy in conditional constraint satisfaction problems. Proc.
CP98 Workshop on Constraint Problem Reformulation.

Sabin, M., & Gelle, E. (2006). Evaluation of solving models for conditional
constraint satisfaction problems. Proc. AAAI. New York: AAAI Press.

Segura, S. (2008). Automated analysis of feature models using atomic sets.
Proc. 1st Workshop on Analyses of Software Product Lines (ASPL
2008), SPLC’08, pp. 201–207, Limerick, Ireland.

Stumptner, M., Friedrich, G.E., & Haselböck, A. (1998). Generative con-
straint-based configuration of large technical systems. Artificial Intelligence
for Engineering, Design, Analysis and Manufacturing 12, 307–320.

Torlak, E., Chang, F.S.-H., & Jackson, D. (2008). Finding minimal unsatisfi-
able cores of declarative specifications. In FM (Cuellar, J., Maibaum, T.S.E.,
& Sere, K., Eds.), LNCS, Vol. 5014, pp. 326–341. New York: Springer.

Raphael Finkel has been a Professor of computer science at
the University of Kentucky in Lexington since 1987. He at-
tained his PhD from Stanford University in 1976. He was as-
sociated with the first work on quad trees; k-d trees; quotient
networks; and the Roscoe/Arachne, Charlotte, Yackos, and
Unify operating systems. Dr. Finkel was involved in develop-
ing DIB, a package for dynamically distributing tree-struc-

tured computations on an arbitrary number of computers.
His research includes tools for Unix system administration,
databases, operating systems, distributed algorithms, compu-
tational morphology, Web-based homework, and ASP appli-
cations. He has published over 50 articles in refereed journals
and has written two textbooks.

Barry O’Sullivan is the Associate Director of the Cork Con-
straint Computation Centre and a Senior Lecturer in the De-
partment of Computer Science at University College Cork.
He attained his PhD from University College Cork in 1999.
His main areas of research interest are constraint program-
ming, artificial intelligence, and optimization, with a focus
on application domains such as cancer care, health, environ-
mental sustainability, computer/network security, configura-
tion, design, telecommunications, combinatorial auctions, and
electronic commerce. Dr. Sullivan is also interested in theoreti-
cal computer science, particularly parameterized complexity
and its applications.

R. Finkel and B. O’Sullivan174

Personalized diagnoses for inconsistent user requirements

ALEXANDER FELFERNIG AND MONIKA SCHUBERT
Institute for Software Technology, Graz University of Technology, Graz, Austria

(RECEIVED May 25, 2010; ACCEPTED October 29, 2010)

Abstract

Knowledge-based configurators are supporting configuration tasks for complex products such as telecommunication sys-
tems, computers, or financial services. Product configurations have to fulfill the requirements articulated by the user and the
constraints contained in the configuration knowledge base. If the user requirements are inconsistent with the constraints in
the configuration knowledge base, users have to be supported in finding out a way from the no solution could be found
dilemma. In this paper we introduce a new algorithm (PERSDIAG) that allows the determination of personalized diagnoses
for inconsistent user requirements in knowledge-based configuration scenarios. We present the results of an empirical study
that show the advantages of our approach in terms of prediction quality and efficiency.

Keywords: Configuration; Model-Based Diagnosis; Personalization

1. INTRODUCTION

On an informal level, configuration can be defined as a spe-
cial case of design activity, where the artifact being config-
ured is assembled from instances of a fixed set of well-defined
component types which can be composed conforming to a set
of constraints (Sabin & Weigel, 1998). Configuration systems
typically exploit two different types of knowledge sources: the
explicit knowledge about the user requirements and deep con-
figuration knowledge about the underlying product. Configura-
tion knowledge is represented in the form of a product structure
and different types of constraints (Felfernig et al., 2003) such as
compatibility constraints (which component types can or can-
not be combined with each other), requirements constraints
(how user requirements are related to the underlying product
properties), or resource constraints (how many and which
components have to be provided such that needed and provided
resources are balanced).

Interacting with a knowledge-based configurator typically
means to specify a set of requirements, to adapt inconsistent re-
quirements, and to evaluate alternative configurations (solu-
tions). In this paper we focus on a situation where the configura-
tor is not able to find a solution. In such a situation it is very
difficult for users to find a set of changes to the specified set of

requirements such that a configuration can be found (Felfernig
et al., 2004). In order to better support users, we introduce PERS-

DIAG, which is an algorithm for the personalized diagnosis of in-
consistent user requirements. PERSDIAG improves the perfor-
mance of diagnosis calculation and the precision of diagnosis
predictions.

State-of-the-art approaches to the determination of mini-
mal diagnoses for inconsistent user requirements are focusing
on minimal-cardinality diagnoses (Felfernig et al., 2004) or
on the precalculation of all possible diagnoses (McSherry,
2004). In the context of recommender systems (Burke,
2000; Felfernig et al., 2007), the complement of such a diag-
nosis is often denoted as maximally successful subquery
(Godfrey, 1997; McSherry, 2004, 2005). Such a query con-
sists of those elements that are not part of a corresponding
minimal diagnosis. In the context of constraint-based systems
(Tsang, 1993) diagnoses are also interpreted as a specific type
of explanation (O’Sullivan et al., 2007).

Especially in interactive settings the calculation of all pos-
sible diagnoses is infeasible due unacceptable runtimes (Fel-
fernig et al., 2009). Furthermore, it cannot be guaranteed that
minimal-cardinality diagnoses lead the most interesting ex-
planations for a user (O’Sullivan et al., 2007; Felfernig
et al., 2009). The work of (O’Sullivan et al., 2007) is a first
step toward the tailoring of the presented set of diagnoses
in the sense that so-called representative explanations are de-
termined. These explanations fulfill the criteria that each ele-
ment part of a diagnosis is also contained in at least one of
the diagnoses presented to the user. The work presented in

Reprint requests to: Alexander Felfernig, Institute for Software Technol-
ogy, Graz University of Technology, Inffeldgasse 16b, A-8010 Graz, Austria.
E-mail: alexander.felfernig@ist.tugraz.at

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 175–183.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000612

175

Felfernig et al. (2009) takes one further step toward this direc-
tion by introducing personalization concepts that allow to de-
termine personalized repair actions for inconsistent require-
ments in knowledge-based recommendation (Burke, 2000)
where, in contrast to knowledge-based configuration scenar-
ios, a fixed and predefined set of candidate products exists.

On the basis of related work in the field, we introduce a
new algorithm for the personalized diagnosis of inconsistent
user requirements that is especially tailored to knowledge-
based configuration scenarios. The algorithm (PERSDIAG) per-
forms a best-first search for diagnoses acceptable for the user
where the decision on which nodes to expand during search is
based on criteria often used in recommender systems devel-
opment (Felfernig et al., 2007). The major contribution of
this paper is to show how standard model-based diagnosis
(MBD) approaches (Reiter, 1987; DeKleer et al., 1992) can
be extended with intelligent personalization concepts that im-
prove the prediction quality of diagnosis selection and reduce
the diagnosis calculation time when searching for the top-
most-n relevant diagnoses.

The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce a working example that will be used for
illustration purposes throughout the paper. In Section 3 we
discuss a basic approach to identify inconsistent user require-
ments (Felfernig et al., 2004) that is based on the concepts of
MBD (Reiter, 1987; DeKleer et al., 1992). In Section 4 we
present an algorithm (PERSDIAG) for the personalized identi-
fication of minimal sets of inconsistent user requirements.
The results of empirical and performance evaluations are pre-
sented in Section 5. In Section 6, we discuss related and future
work. We conclude the paper with Section 7.

2. WORKING EXAMPLE: COMPUTER
CONFIGURATION

We will use computer configuration as a working example
throughout this paper. The task of identifying a configuration
for a given set of user requirements can be defined as follows
(see Definition 1). This definition is based on the definition
given in Felfernig et al. (2004) and, in contrast to the compo-
nent-port based representation of a configuration problem
(Felfernig et al., 2004), it relies on the definition of a con-
straint satisfaction problem (CSP; Tsang, 1993).

DEFINITION 1 (configuration task). A configuration task
can be defined as a CSP (V, D, C), where V¼ {v1, v2, . . . , vn}
is a set of finite domain variables and D¼ {dom(v1), dom(v2),
. . . , dom(vn)} represents the domain of each variable vi. Here,
C¼CKB < CR is a set of all constraints, which can be divided
into the configuration knowledge base (KB) CKB ¼ {c1, c2,
. . . , cm} and the set of specific user requirements (R) CR ¼

{cmþ1, cmþ2, . . . , cp}. B

A simple example for a configuration task (V, D, C) is V¼
{cpu, graphic, ram, motherboard, harddisk, price}, where
cpu is the type of central processing unit, graphic represents
the graphics card, ram represents the main memory specified

in gigabytes, motherboard represents the type of mother-
board, harddisk is the harddisk capacity in gigabytes, and
price represents the overall price of the computer. These vari-
ables fully describe the potential set of requirements that can
be specified by the user. The respective variable domains
are D ¼ {dom(cpu) ¼ {CPUA, CPUB}, dom(graphic) ¼
{GCA, GCB, GCC, GCD}, dom(ram) ¼ {1, 2, 3, 4}, dom
(motherboard) ¼ {MBX, MBY, MBZ, MBW}, dom
(harddisk) ¼ {200..700}, dom(price) ¼ {300..600}}. Note
that for reasons of simplicity we do not explicitly discuss pri-
cing constraints; the reader can assume that for each relevant
variable value there is a corresponding specified price and
that there is a set of constraints responsible for calculating
the overall price of the configuration. The set of possible com-
binations of variable instantiations is restricted by the con-
straints in the configuration knowledge base CKB ¼ {c1, c2,
c3, c4, c5, c6}. In our working example these are simplified
technical and sales constraints:

† c1: cpu ¼ CPUA) graphic = GCA
† c2: cpu ¼ CPUB) ram . 1
† c3: motherboard ¼ MBY) ram . 1
† c4: harddisk ¼ 700) motherboard ¼ MBW
† c5: motherboard¼MBX) graphic¼ GCB _ graphic
¼ GCD

† c6: motherboard ¼ MBX) ram ¼ 1 _ cpu = CPUA

For the purposes of our simple example, we assume that the
following requirements have been specified by the user (CR

¼ {c7, c8, c9, c10, c11, c12}):

† c7: cpu ¼ CPUA
† c8: graphic ¼ GCA
† c9: ram � 2
† c10: motherboard ¼ MBX
† c11: price � 350
† c12: harddisk � 200

Based on this example of a configuration task, we can intro-
duce a definition of a concrete configuration, that is, a solu-
tion for a configuration task.

DEFINITION 2 (configuration). A configuration for a given
configuration task (V, D, C) is an instantiation I¼ {v1 ¼ i1, v2

¼ i2, . . . , vn ¼ in} of each variable vj where ij [dom(vj). A
configuration is consistent if the assignments in I are consistent
with the constraints in C. Furthermore, a configuration is com-
plete if all thevariables inVare instantiated.Finally, aconfigura-
tion is valid, if it is both consistent and complete. B

In our working example, we assume that users already in-
teracted with the computer configurator and created several
configurations (CONFIGS ¼ {conf1, conf2, conf3, conf4,
conf5, conf6, conf7}). These configurations are stored in a
corresponding table (see Table 1). We will exploit this infor-
mation for the determination of personalized diagnoses in
Section 4.

A. Felferning and M. Schubert176

3. CALCULATING MINIMAL CARDINALITY
DIAGNOSES

For the example configuration task specified in Section 2 we are
not able to find a valid solution, for example, the processor type
CPUA is incompatiblewith the graphic card GCA (a simple sales
constraint). Therefore, we want to identify the minimal set of re-
quirements (ci [CR) that have to be relaxed in order to find a
solution. For identifying such minimal sets, we exploit the con-
cepts of MBD (Reiter, 1987; DeKleer et al., 1992). MBD starts
with a system description, which in our case encompasses the
configuration knowledge base CKB that describes the set of pos-
sible product configurations. If the actual behavior of the system
conflicts with its intended behavior (a corresponding configura-
tion can be identified), the task of a diagnosis component is to
determine those elements (in our case the elements are require-
ments in CR) which, when assumed to be functioning abnor-
mally, sufficiently explain the discrepancy between the actual
and the intended behavior of the system. A diagnosis is a mini-
mal set of faulty components (in ourcase requirements) that need
to be relaxed in order to be able to identify a configuration.

On a more technical level, minimal diagnoses for faulty user
requirements can be identified as follows. Let us assume the ex-
istence of a set CKB ¼ {c1, c2, . . . , cm} of configuration con-
straints and a set CR¼{cmþ1, cmþ2, . . . , cp} of user requirements
(represented as constraints) inconsistent with CKB, that is, no so-
lution can be found for the constraints in CR < CKB. In such a
situation, state-of-the-art configurators (Sinz & Haag, 2007) cal-
culate a set of minimal diagnoses DIAGS¼ {diag1, diag2, . . . ,
diagk}, where 8diagi [DIAGS : CKB < (CR 2 diagi) is consis-
tent. A corresponding User Requirements Diagnosis Problem
(UR Diagnosis Problem) can be defined as follows:

DEFINITION 3 (UR diagnosis problem). A UR diagnosis
problem is defined as a tuple (CKB, CR) where CKB represents
the constraints of the configuration knowledge base and CR is
a set of user requirements. B

Based on the definition of the UR diagnosis problem, a UR
diagnosis can be defined as follows:

DEFINITION 4 (UR diagnosis). A UR diagnosis for (CKB,
CR) is a set of constraints diag # CR such that CKB < (CR 2

diag) is consistent. A diagnosis diag is minimal if there does

not exist a diagnosis diag0 C diag such that CKB < (CR 2

diag0) is consistent. B

Following the basic principles of MBD (Reiter, 1987;
DeKleer et al., 1992), the calculation of diagnoses is based
on the identification and resolution of conflict sets. A conflict
set in the user requirements CR can be defined as follows:

DEFINITION 5 (conflict set). A conflict set is defined as a
subset CS # CR such that CS < CKB is inconsistent. CS is
minimal if and only if there does not exist a conflict set CS0

with CS0 , CS. B

In our simple working example, the user requirements CR ¼

{c7, . . . , c12} are inconsistent with the constraints in the con-
figuration knowledge base CKB ¼ {c1, . . . , c6}, that is, there
does not exist a configuration (solution) that completely fulfills
the requirements in CR. The minimal conflict sets are CS1 ¼

{c7, c8}, CS2 ¼ {c8, c10}, and CS3 ¼ {c7, c9, c10}, because
each of these conflict sets is inconsistent with the configuration
knowledge base and there do not exist conflict sets CS1

0, CS2
0,

and CS3
0 with CS1

0 , CS1, CS2
0 ,CS2, and CS3

0 ,CS3.
In MBD (Reiter, 1987; DeKleer et al., 1992) the standard

algorithm for determining minimal diagnoses is the hitting
set-directed acyclic graph (HSDAG) as described in Reiter
(1987). User requirements diagnoses diagi [DIAGS can
be calculated by resolving conflicts in the set of requirements
CR. Because of its minimality property, one conflict can be
resolved by deleting exactly one of the elements from the con-
flict set. After deleting at least one element from each iden-
tified conflict set we are able to present a diagnosis. The
HSDAG algorithm employs breadth-first search where the
resolution of all minimal conflict sets leads to the identifica-
tion of all minimal diagnoses. In our working example the di-
agnoses derived from the conflict sets CS1, CS2, and CS3 are
DIAGS ¼ {{c7, c8}, {c7, c10}, {c8, c9}, {c8, c10}}.

The construction of such a HSDAG is exemplified in Fig-
ure 1. The HSDAG algorithm assumes the existence of a
component that is able to detect minimal conflict sets. Our
implementation is based on a version of the QUICKXPLAIN

Table 1. User interaction data from configuration sessions
(configuration log)

CPU Graphic RAM Motherboard Hard Disk Price

conf1 CPUA GCB 1 MBX 200 350
conf2 CPUB GCA 3 MBY 500 400
conf3 CPUA GCD 1 MBX 200 450
conf4 CPUA GCC 3 MBZ 650 550
conf5 CPUB GCB 3 MBW 700 600
conf6 CPUA GCC 2 MBY 200 300
conf7 CPUB GCC 4 MBY 300 550

Fig. 1. Hitting set directed acyclic graph (Reiter, 1987) for the working
example. The first identified diagnosis is diag1 ¼ {c7, c8}. The algorithm
returns minimal diagnoses with increasing cardinality, that is, diag1 ¼

{c7, c8} is a minimal cardinality diagnosis. The complete set of minimal
diagnoses is DIAGS ¼ {{c7, c8}, {c7, c10}, {c8, c9}, {c8, c10}}.

Personalized diagnoses for inconsistent requirements 177

conflict detection algorithm introduced by Junker (2004).
Following a breadth-first search regime with the goal of identi-
fying a minimal diagnosis, we have to resolve the conflict set
CS1 by checking whether c7 or c8 already represent a diagnosis.
Both alternatives to resolve the conflict do not lead to a diagno-
sis since (CR 2 {c7}) < CKB as well as (CR 2 {c8}) < CKB are
still inconsistent. We now can switch to the next level of the
search tree because breadth-first search inspects all nodes at
level n of the search tree first and then extends the search to
level n þ 1. Let us assume that the next conflict set returned
by QUICKXPLAIN is CS2 ¼ {c8, c10}. Now, (CR 2 ({c7} <
{c8})) < CKB does not trigger further conflicts, which means
that diag1 ¼ {c7, c8} has been identified as the first minimal
cardinality diagnosis. Further details on the standard HSDAG
algorithm can be found in Reiter (1987).

A major question to be answered is whether minimal car-
dinality diagnoses are leading to configurations of relevance,
that is, have a high probability of being selected by the user.
We will provide answers in the following sections.

4. CALCULATING PERSONALIZED DIAGNOSES

As the number of possible diagnoses can become large, and
presenting such a large number of alternatives to the user is in-
appropriate, we want to systematically reduce the number of al-
ternatives with the goal to identify relevant diagnoses for the
user and keep the diagnosis evaluation process as simple as pos-
sible. A simple heuristic to identify such diagnoses has already
been presented in Section 3, where diagnoses have been ranked
to conform to their cardinality; in our working example {c7, c8}
has been identified as first minimal cardinality diagnosis. An
alternative to this breadth-first search-based approach is to
exploit recommendation techniques (Felfernig et al., 2007)
for the identification of relevant diagnoses, that is, diagnoses
that have a higher probability of being accepted by the user.
In the following we will show how basic recommendation ap-
proaches can be exploited for the prediction of diagnoses that
are relevant to the user. First, we will show how we can deter-
mine diagnoses leading to configurations that are similar to the
original set of user requirements (similarity-based diagnosis se-
lection). Second, we will introduce a utility-based approach that
uses preference data for guiding the HSDAG construction (util-
ity-based diagnosis selection).

4.1. Similarity-based diagnosis selection

The idea of similarity-based diagnosis selection is to prefer
those minimal diagnoses that lead to configurations resembling
the original user requirements. In order to derive such diagno-
ses, we can exploit information contained in already existing
configurations (see, e.g., the configuration log in Table 1). For
each entry in Table 1 we can calculate its similarity with the
user requirements in CR. The similarity values of our working
example calculated on the basis of Eq. (4), simrec(CR, confk),
k ¼ 1..7, are conf1 ¼ 0.45, conf2 ¼ 0.60, conf3 ¼ 0.43, conf4
¼ 0.25, conf5 ¼ 0.30, conf6 ¼ 0.36, conf7 ¼ 0.14. These values

are calculated on the basis of the entries in Table 1 and the pref-
erences of our example user, which are the importance values
w(ci): c7 ¼ 0.08 (8%), c8 ¼ 0.34 (34%), c9 ¼ 0.08 (8%), c10

¼ 0.17 (17%), c11 ¼ 0.08 (8%), c12 ¼ 0.25 (25%).1

The calculation of similarity values is based on three attrib-
ute-level similarity measures (Konstan et al., 1997; Wilson &
Martinez, 1997; McSherry, 2004). These measures calculate
the similarity of a pair of attribute (ai) of configuration confk
and the corresponding user requirement (ci), for example, the
similarity between attribute ram of configuration conf1 and
the user requirement c9 (ram � 2) is 0.33, where we take the
lower bound ram ¼ 2 as basis for similarity calculation. De-
pending on the characteristics of the attribute, one of the three
measures [Eqs. (1)–(3)] is chosen: More-Is-Better (MIB), Less-
Is-Better (LIB) or Nearer-Is-Better (NIB; McSherry, 2004).

For attributes like harddisk size or the ram size, the higher
the value the better it is for the user (MIB). For attributes like
price, the lower the value the more satisfied the user is (LIB).
When the user specifies a certain type of CPU (no intrinsic
value scale), we suppose the most similar is the preferred
one. In those cases, the NIB similarity measure is used.2

MIB : sim ci, aið Þ ¼ val cið Þ � min aið Þ
max aið Þ � min aið Þ

(1)

LIB : sim ci, aið Þ ¼ max aið Þ � val cið Þ
max aið Þ � min aið Þ

(2)

NIB : sim ci, aið Þ ¼ 1 if val cið Þ ¼ val aið Þ
0 else

�
(3)

On the basis of the individual similarity values, Eq. (4) cal-
culates the overall similarity value between the sequence of
user requirements (c) and the sequence of attribute values
of configuration a. In this context w(ci) denotes the impor-
tance of requirement ci for our example user. The importance
values can be directly specified by the user or derived by a
learning algorithm, for example, a genetic algorithm.

simrec c, að Þ ¼
Xn

i¼1
sim ci, aið Þ � w cið Þ (4)

The similarity values provided above will now be exploited for
determining diagnoses in a personalized fashion (see Fig. 2).

For the similarity-based selection of diagnoses we again
assume that the QUICKXPLAIN algorithm (Junker, 2004) re-
turns as first conflict set CS1 ¼ {c7, c8}. Now there are two
possibilities of resolving CS1. If we delete c7 from CS1, the
following configurations CONFIGS ¼ {conf2, conf5, conf7}
are consistent with c7. This means that each of the configura-
tions in CONFIGS is inconsistent with the requirement c7 and

1 Note that our approach does not rely on a specific preference elicitation
method.

2 For a detailed discussion of different types of similarity measures see, for
example, McSherry (2004) and Wilson and Martinez (1997). In Eqs. (1)–(3),
val(ci) denotes the value of user requirement ci, min(ai) denotes the minimal
possible value of configuration attribute ai, and max(ai) denotes the maximal
possible value of attribute ai.

A. Felferning and M. Schubert178

thus a potential candidate configuration for supporting diag-
noses that include c7. If we delete c8 from CS1, then CON-
FIGS ¼ {conf1, conf3, conf4, conf5, conf6, conf7}. The con-
figuration with the highest similarity compared to the
original set of requirements CR ¼ {c7, . . . , c12} is conf2 con-
tained in node (2) of Figure 2. Consequently, node (2) of the
HSDAG is further expanded, which results in the next con-
flict set CS2 ¼ {c8, c10}, because CKB < (CR 2 {c7}) is still
inconsistent. With this expansion we have identified two al-
ternative diagnoses, namely, {c7, c8} and {c7, c10}. The diag-
nosis {c7, c10} will be rated higher because it is consistent
with the configuration conf2, the configuration with the high-
est similarity to the set of requirements, that is, conf2 < CKB

< (CR 2 {c7, c10}) is consistent. Note that in many config-
uration scenarios there exists a ramp-up problem (Burke,
2000) because initially no configuration data are available.
An approach to deal with this situation is to define a threshold
value that specifies an upper similarity limit for configura-
tions to be accepted as similar to the original set of require-
ments. If no such configuration exists, a fallback solution is
to present diagnoses resulting from breadth-first search or
to apply the criteria presented in the following.

4.2. Utility-based diagnosis selection

The idea of utility-based diagnosis selection is to prefer those
minimal diagnoses, which include requirements of low impor-
tance for the user. Following a utility-based approach (Winter-
feldt & Edwards, 1986) we are summing up the individual im-
portance values (see above) of the requirements part of a
diagnosis in order to generate a corresponding ranking. The
function utility(C # CR) returns a utility score for a specific
set C that is a subset of the user requirements CR [see Eq. (5)].

utility C # CRð Þ ¼ 1X
ci[CwðciÞ

(5)

For the utility-based selection of diagnoses we again assume
that QUICKXPLAIN returns as first conflict set CS1 ¼ {c7, c8}
(see Fig. 3). The importance value for c7 is 0.08, whereas the

importance value for requirement c8 is 0.34 (see above). By ap-
plying Eq. (5) we derive the corresponding utility values, for
example, utility({c7}) ¼ 1/0.08 ¼ 12.5 and utility({c8}) ¼ 1/
0.34 ¼ 2.9. Because resolving the conflict set {c7, c8} by de-
leting c7 has a higher utility [application of Eq. (5)], the search
for a diagnosis is continued with CR 2 c7, which results in the
second conflict set returned by QUICKXPLAIN (CS2 ¼ {c8,
c10}). Again, we sort the utility values for all nodes in the fringe
of the search tree and come to the conclusion that extending the
path {c7, c10} is the best choice (utility({c7, c10}) ¼ 4.0). Be-
cause (CR 2 {c7, c10} < CKB) is consistent, diag1 ¼ {c7, c10}
is the first diagnosis identified (in this case the result is the same
as the one determined by the similarity-based approach).

4.3. Algorithm for calculating personalized diagnoses

The algorithm for calculating best-first minimal diagnoses for
inconsistent user requirements is the following (Algorithm 1,
PERSDIAG). We keep the description of the algorithm on a
level of detail, which has been used in the description of
the HSDAG algorithm (Reiter, 1987). In PERSDIAG, the dif-
ferent paths of the HSDAG are represented as separate ele-
ments in a collection structure H that is initially empty. H
stores all paths of the search tree in a best-first fashion, where
the currently best path (h) is the one with the most promising
(partial) diagnosis. If the theorem prover (TP) call TP((CR 2

h) < CKB) does not detect any further conflicts for the ele-
ments in h (isEmpty(CS)), a diagnosis is returned. The major
role of the TP is to check whether there exists a configuration
for CR, disregarding the already resolved conflict set elements
in h. If the theorem prover call TP((CR 2 h) < CKB) returns a
nonempty conflict set CS, h is expanded to the paths contain-
ing exactly one element of CS each. In case that h is ex-
panded, the original h must of course be removed from H
(delete(h, H)). Afterward, the new elements have to be inserted
into H. This collection (H) is then finally sorted (sort(H, k))
according to the criteria defined in k.3 In this context, k repre-

Fig. 3. Utility-based selection of diagnoses with PERSDIAG.
Fig. 2. Similarity-based selection of diagnoses with PERSDIAG.

3 Note that the HSDAG pruning is implemented by the functionalities of
sort(H, k).

Personalized diagnoses for inconsistent requirements 179

sents the criteria used for selecting the next node to be ex-
panded in the search tree that could be breadth-first, similarity-
based, or utility-based.

Algorithm 1 PERSDIAG(CR, CKB, H, k)
{CR: set of user requirements}
{CKB: the configuration knowledge base}
{H: collection of all paths in the search tree (initially empty)}
{k: node evaluation criteria used by sort(H, k)}
{h: diagnosis returned}
h first(H)
CS TP((CR2 h) < CKB)
if isEmpty(CS) then

return h
else

for all X in CS do
H H < {h < {X}}

end for
H delete(h, H)
H sort(H, k)
PERSDIAG(CR, CKB, H, k)

end if

5. EVALUATION

5.1. Evaluation of prediction quality

To demonstrate the improvements achieved by our approach, we
conducted an empirical study. Configuration data were gathered
on the basis of an online user study conducted at the Graz Uni-
versity of Technology with 415 participants (82.4% male,
17.6% female) conform to the basic structure of Table 1.
Each participant had to define his/her requirements [including
the corresponding importance values—see Eq. (4)] regarding
a predefined set of 12 computer attributes (price, type of central
processing unit, operating system, operating system language,
amount of main memory, screen size, harddisk capacity, type of
DVD drive, Web cam, type of graphic card, amount of graphic
card memory, and type of service). After this requirements
specification phase participants were informed about the fact
that for the specified set of requirements no solution could be
found (the goal was to confront each participant with such a sit-
uation). The system then presented a list of a maximum of 50
alternative configurations (only those repair configurations in-
consistent with the current set of requirements) that have been
calculated by a computer configuration knowledge base built
for the product set offered by a commercial website.4 The order-
ing of the configurations in this list was randomized and the par-
ticipants were enabled to navigate in the list and to order the con-
figurations regarding different criteria such as the price (LIB),
the size of the hard disk (MIB), or the number of fulfilled re-

quirements (MIB). The participants then had the task to select
one out of the presented repair configurations that appeared to
be the most acceptable one for them.

Based on the data collected in the user study we evaluated
the three presented approaches with respect to their capability
of predicting diagnoses that are acceptable for the user. The
first approach is based on the algorithm proposed by Reiter
(1987), where diagnoses are ranked according their cardinal-
ity and diagnoses of the same cardinality are ranked according
to their calculation order (see Section 3). The second approach
identifies personalized diagnoses on the basis of a similarity-
based node expansion strategy in HSDAG construction (see
Section 4). The third approach uses a utility measure to find
relevant diagnoses for the user (see Section 4). Because of
the fact that no solution was made available for the original
set of requirements, for each such set of requirements we could
determine conflicts and a set of corresponding diagnoses that
indicated which of the requirements had to be relaxed in order
to be able to identify a solution (conflicts were induced by ex-
cluding those configurations from the set of possible config-
urations that are consistent with a given set of requirements).
Figure 4 depicts the distribution of diagnoses with respect to
their cardinality. Most of the diagnoses contained about five
elements (diagnoses of cardinality 5), the average number of
diagnoses per set of user requirements was 5.32.

We were then interested in the prediction accuracy of the
three different diagnosis approaches (cardinality based, simi-
larity based, and utility based). First, we analyzed the dis-
tance between the predicted position of diagnoses leading
to a selected repair proposal and their expected position
(which is 1). We measured this distance in terms of the root
mean square deviation [RMSD; see Eq. (6)], where predicted
position is the ranking determined by the diagnosis approach
and expected position is 1; that is, it is expected that the algo-
rithm correctly predicts the diagnosis. The utility-based diag-
nosis approach has the lowest RMSD, which is 0.97. The
similarity-based approach shows a similar RMSD value (1.03),
and the cardinality-based approach shows the worst perfor-
mance (RMSD¼ 1.64).

RMSD ¼

ffi
1
n

Xn

1
predicted position� expected positionð Þ2

s
(6)

Although RMSD is a good-quality estimate, it provides only
limited information about the precision of the prediction.
Therefore, we analyzed the precision of the three diagnosis
approaches; the precision measure is shown in Eq. (7). The
basic idea is to provide a measure on how often a diagnosis
that leads to the repair configuration selected by the partici-
pant is among the top-n ranked diagnoses. As can be seen in
Table 2, the utility-based approach has the highest prediction
accuracy in terms of precision, followed by the similarity-
based diagnosis approach. The cardinality-based approach
has the worst performance in terms of prediction accuracy.
We were interested whether we could detect a statistically sig-

4 The knowledge base has been implemented for the 50 configurations
extracted from www.dell.at. We chose this simple knowledge base in order
to avoid biases, for example, in terms of presenting only solutions that are
near the original set of requirements.

A. Felferning and M. Schubert180

nificant difference between the three diagnosis approaches in
terms of prediction accuracy. Therefore, we conducted a pair-
wise comparison between the diagnosis approaches on the ba-
sis of a Mann–Whitney U test. We could detect a significant
difference between the prediction accuracy of utility-based di-
agnosis and cardinality-based diagnosis (p ¼ 5.69e29) and
between similarity-based and cardinality-based diagnosis (p
, 2.2e216). There was no significant difference between util-
ity-based and similarity-based diagnosis in terms of prediction
accuracy (p ¼ 0.5952).

precision ¼ correctly predicted diagnosesj j
predicted diagnosesj j (7)

5.2. Performance evaluation

The PERSDIAG algorithm has been implemented on the basis
of the standard hitting set algorithm introduced in Reiter
(1987). The algorithm is NP-hard in the general case (Frie-
drich et al., 1990) but is applicable for interactive configura-
tion settings (see the following evaluation). In our implemen-
tation, the determination of minimal conflict sets is based in
QUICKXPLAIN (Junker, 2004). In the worst case, QUICKXPLAIN

needs O(2k� log(n/k) þ 2k) consistency checks to compute
one minimal conflict set of size k (given an inconsistent con-
straint set of cardinality n).

In order to be able to conduct an in-depth performance
analysis, we based our evaluation on different generated set-

tings characterized by a varying number of conflict sets (1–5
conflict sets of cardinality 1–4) and corresponding diagnoses
(3–22). As configuration engine we used the constraint solver
Choco (choco.emn.fr), the performance evaluation has been
conducted on a standard PC (Intel Core2 Quad QD9400
2.66-GHz CPU with 2 GB of RAM). The solver had to conduct
consistency checks on knowledge bases with n ¼ 100 vari-
ables, t ¼ 100 constraints in CKB, and q ¼ 5..20 user require-
ments (CR) inconsistent with CKB (we did not optimize the
knowledge bases in terms of, for example, variable selection
or value selection). Based on this setting we compared the per-
formance of the best-first based diagnosis approaches (similar-
ity-based and utility-based) with the performance of the stan-
dard breadth-first search approach (cardinality-based) when
calculating the topmost-n relevant diagnoses (for n ¼ 5.10,
see Fig. 5). Best-first based diagnosis clearly outperforms the
breadth-first one because the latter has to determine all diagno-
ses to be able to achieve a comparable prediction quality.

Table 2. Precision of the three diagnosis approaches

top-1 top-2 top-3

Cardinality based 0.51 0.75 0.87
Similarity based 0.70 0.87 0.97
Utility based 0.74 0.89 0.96

Fig. 5. The performance of the cardinality-based (breadth-first) diagnosis
approach compared to personalized approaches for the topmost-n relevant di-
agnoses for typical combinations of #conflict sets and #diagnoses (Felfernig
et al., 2004). Personalized approaches are significantly more efficient
(compared to the cardinality-based approach) and show similar performance
among themselves.

Fig. 4. Overall distribution of diagnoses in empirical study; average number
of diagnoses per set of user requirements ¼ 5.32 (SD ¼ 1.67).

Personalized diagnoses for inconsistent requirements 181

6. RELATED AND FUTURE WORK

6.1. Knowledge-based configuration

Configuration is one of the most successful application areas of
artificial intelligence (Stumptner, 1997). One of the first config-
uration systems was R1/XCON, which has been developed by
John McDermott on the basis of the OPS5 language (McDer-
mott, 1982). A detailed analysis and discussion of the experi-
ences with R1/XCON is provided in Barker et al. (1989). In pro-
ductive use, the system included �31,000 components and
�17,500 rules. R1/XCON was a rule-based system that trig-
gered enormous maintenance problems because of the inter-
mingling of product domain and problem solving knowledge.
Acquisition and maintenance processes for knowledge bases
have been significantly improved by the development of
model-based knowledge representations with a strict separation
of problem solving and domain knowledge (Mittal & Frayman,
1989, 1990). Most of today’s available configuration systems
are based on such a model-based approach: examples of corre-
sponding configuration environments are SAP (Haag, 1998),
SIEMENS (Fleischanderl et al., 1998), and TACTON (Orsvarn,
2005). The diagnosis concepts presented in this paper are focus-
ing on the mentioned model-based knowledge representations
and consequently provide an important contribution to the im-
provement of commercial systems in terms of usability.

6.2. MBD

The increasing size and complexity of configuration knowledge
bases motivated the application of MBD (Reiter, 1987; DeKleer
et al., 1992) for testing and debugging purposes (Felfernig et al.,
2004). Similar reasons led to the application of MBD in tech-
nical domains such as hardware designs (Friedrich et al., 1999)
and onboard diagnosis for automotive systems (Sachenbacher
et al., 2000). The work presented in Felfernig et al. (2004) has
a special relationship to the concepts presented in this paper: Fel-
fernig et al. (2004) focus on the application of MBD to the iden-
tification of faults in configuration knowledge bases where test
cases are used to induce conflicts in a given configuration knowl-
edge base. In addition, a first approach to calculate diagnoses for
inconsistent user requirements is presented, which is based on
breadth-first based HSDAG construction. In this paper we
have shown how to apply basic recommendation algorithms
(similaritybasedandutilitybased) to improve thediagnosis algo-
rithms in terms of prediction accuracy and performance.

6.3. Conflict detection

Diagnosis calculation for inconsistent user requirements relies
on minimal conflict sets. Such conflict sets can be determined,
for example, on the basis of QUICKXPLAIN (Junker, 2004),
which is a frequently applied divide and conquer algorithm. Al-
ternative approaches to the identification of conflicts have been
developed in the context of knowledge-based recommendation
(Schubert et al., 2009, 2010). These approaches cannot be ap-

plied in knowledge-based configuration scenarios, because
due to the size and complexity of the underlying products,
knowledge-based configurators typically do not operate on a
predefined set of products. The existence of predefined item
sets is a major precondition for applying the conflict detection
algorithms introduced in Schubert et al. (2009, 2010).

6.4. Diagnosing inconsistent requirements

An approach to suggest personalized repair actions for incon-
sistent requirements in the context of knowledge-based rec-
ommendation tasks has been introduced by Felfernig et al.
(2009). The underlying idea is to apply the concepts of MBD
(Reiter, 1987; DeKleer et al., 1992) to determine change pro-
posals (minimal sets of inconsistent requirements) in the case
of a given predefined list of products. In O’Sullivan et al.
(2007) such minimal sets are denoted as minimal exclusion
sets. In case-based recommendation scenarios (Godfrey,
1997; McSherry, 2004, 2005) the complement of a minimal
exclusion set is denoted as maximally successful subquery.
The concept of representative explanations has been introduced
by (O’Sullivan et al., 2007). Representative explanations fol-
low the idea of generating diversity in sets of diagnoses (mini-
mal exclusion sets). The approach does not explicitly take into
account the preference structure of the current user but rather
tries to determine diagnosis sets that satisfy the requirement
that each element (constraint) part of at least one diagnosis is
also contained in at least one of the diagnoses presented to
the user. Note that the scenario presented in this paper is based
on the assumption of an open configuration approach where the
user is free to specify requirements and the system provides
feedback in the form of explanations in the case of inconsisten-
cies. Alternatively, configurators precalculate still possible
options and dim options that cannot be selected in the current
context. In such a scenario our diagnosis approach could be
used for intentionally exploring trade-offs in the set of user re-
quirements (a kind of specific exploration mode in addition to
the standard mode where still valid options are predetermined).

6.5. Assumption-based truth maintenance based
approaches

The notion of conflict sets used in the context of MBD
(Reiter, 1987; DeKleer et al., 1992) corresponds to the notion
of nogoods in assumption-based truth maintenance ap-
proaches to calculate explanations (Haag, 1998; Sinz &
Haag, 2007). On the basis of the conjunctive normal form
of the set of nogoods we can easily determine the correspond-
ing set of diagnoses by transforming the conjunctive normal
form into a corresponding disjunctive normal form.

6.6. Future work

Future work will include the evaluation of other potential predic-
tion techniques for user requirements diagnoses such as prob-
ability-based prediction or similarity-based prediction using

A. Felferning and M. Schubert182

local search-based learning of attributeweights. Furthermore, we
are interested in developing mechanisms that support the calcu-
lation of preferred diagnoses in the case of complex requirement
structures, for example, structures such as x or y should be ful-
filled. We are also interested in the calculation of personalized
recommendations of repair proposals for inconsistent require-
ments, that is, we want to extend the concepts presented in this
paper with the determination of concrete change proposals (re-
pairs related to diagnoses) for inconsistent user requirements in
knowledge-based configuration scenarios.

7. CONCLUSION

In this paper we introduced an algorithm (PERSDIAG) for the
determination of personalized diagnoses. The algorithm sig-
nificantly improves the prediction quality compared to state
of the art diagnosis approaches. PERSDIAG follows a best-first
search regime and can be parametrized with different kinds of
selection strategies regarding the expansion of the search tree.
We have compared different expansion strategies (cardinality
based, similarity based, and utility based) within the scope of
an empirical study. The results of this study show the advan-
tages of personalized diagnosis calculation compared to ex-
isting breadth-first based search in terms of prediction quality
and efficiency. These results provide a solid basis for improv-
ing existing industrial applications regarding the determina-
tion of diagnoses for inconsistent requirements.

REFERENCES

Barker, V., O’Connor, D., & Soloway, E. (1989). Expert systems forconfiguration
at digital—XCON and beyond. Communications of the ACM 32(3), 298–318.

Burke, R. (2000). Knowledge-based recommender systems. Library and In-
formation Systems 69(32), 180–200.

DeKleer, J., Mackworth, A., & Reiter, R. (1992). Characterizing diagnoses
and systems. AI Journal 56(2–3), 197–222.

Felfernig, A., Friedrich, G., Jannach, D., & Stumptner, M. (2004). Consis-
tency-based diagnosis of configuration knowledge bases. AI Journal
152(2), 213–234.

Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., & Zanker, M.
(2003). Configuration knowledge representations for semantic web appli-
cations. Artificial Intelligence in Engineering Design, Analysis and
Manufacturing 17(2), 31–50.

Felfernig, A., Friedrich, G., & Schmidt-Thieme, L. (2007). Introduction to
the IEEE intelligent systems special issue: recommender systems. IEEE
Intelligent Systems 22(3), 18–21.

Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., & Teppan,
E. (2009). Plausible repairs for inconsistent requirements. Proc. 21st Int.
Joint Conf. Artificial Intelligence (IJCAI09), pp. 791–796, Pasadena, CA.

Fleischanderl, G., Friedrich, G., Haselboeck, A., Schreiner, H., & Stumptner,
M. (1998). Configuring large systems using generative constraint satis-
faction. IEEE Intelligent Systems 13(4), 59–68.

Friedrich, G., Gottlob, G., & Neijdl, W. (1990). Physical impossibility in-
stead of fault models. Proc. 8th National Conf. Artificial Intelligence
AAAI/IAAI90, pp. 331–336, Boston.

Friedrich, G., Stumptner, M., & Wotawa, F. (1999). Model-based diagnosis
of hardware designs. Artificial Intelligence 111(2), 3–39.

Godfrey, P. (1997). Minimization incooperative response to failingdatabase quer-
ies. International Journal of Cooperative Information Systems 6(2), 95–149.

Haag, A. (1998). Sales configuration in business processes. IEEE Intelligent
Systems 13(4), 78–85.

Junker, U. (2004). QUICKXPLAIN: preferred explanations and relaxations for
over-constrained problems. Proc. 19th National Conf. Artificial Intelli-
gence (AAAI04), pp. 167–172, San Jose, CA.

Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J.
(1997). Grouplens: applying collaborative filtering to usenet news. Com-
munications of the ACM 40(3), 77–87.

McDermott, J. (1982). R1—a rule-based configurer of computer systems.
Artificial Intelligence 19(1), 39–88.

McSherry, D. (2004). Maximally successful relaxations of unsuccessful
queries. Proc. 15th Conf. Artificial Intelligence and Cognitive Science,
pp. 127–136, Galway, Ireland.

McSherry, D. (2005). Retrieval failure and recovery in recommender sys-
tems. Artificial Intelligence Review 24(3–4), 319–338.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction prob-
lems. Proc. 8th National Conf. Artificial Intelligence, IAAI/AAAI90, pp.
25–32, Boston.

Mittal, S., & Frayman, F. (1989). Towards a generic model of configuration
tasks. Proc. 11th Int. Joint Conf. Artificial Intelligence (IJCAI89), pp.
1395–1401, Detroit, MI.

Orsvarn, K. (2005). Tacton configurator—research directions. Proc. IJCAI
2005 Workshop on Configuration, p. 75, Edinburgh, Scotland.

O’Sullivan, B., Papdopoulos, A., Faltings, B., & Pu, P. (2007). Representa-
tive explanations for over-constrained problems. Proc. 22nd National
Conf. Artificial Intelligence (AAAI07), pp. 323–328, Vancouver, Canada.

Reiter, R. (1987). A theory of diagnosis from first principles. AI Journal
23(1), 57–95.

Sabin, D., & Weigel, R. (1998). Product configuration frameworks—a sur-
vey. IEEE Intelligent Systems 13(4), 42–49.

Sachenbacher, M., Struss, P., & Carlen, C. (2000). Prototype for model-based on-
board diagnosis of automotive systems. AI Communications 13(2), 83–97.

Schubert, M., Felfernig, A., & Mandl, M. (2009). Solving over-constrained
problems using network analysis. Proc. Int. Conf. Adaptive and Intelli-
gent Systems, pp. 9–14, Klagenfurt, Austria.

Schubert, M., Felfernig, A., & Mandl, M. (2010). Fastxplain: conflict detec-
tion for constraint-based recommender problems. Proc. 23rd Int. Conf.
Industrial, Engineering and Other Applications of Applied Intelligent
Systems, pp. 621–630, Cordoba, Spain.

Sinz, C., & Haag, A. (2007). Configuration. IEEE Intelligent Systems 22(1),
78–90.

Stumptner, M. (1997). An overview of knowledge-based configuration. AI
Communications 10(2), 111–125.

Tsang, E. (1993). Foundations of Constraint Satisfaction. Reading, MA:
Academic Press.

Wilson, D., & Martinez, T. (1997). Improved heterogeneous distance func-
tions. Journal of Artificial Intelligence Research, 6, 1–34.

Winterfeldt, D., & Edwards, W. (1986). Decision Analysis and Behavioral
Research. Cambridge: Cambridge University Press.

Alexander Felfernig is a Professor of applied software engi-
neering at Graz University of Technology. Alexander is also
Cofounder and Director of ConfigWorks, a company focused
on the development of knowledge-based recommendation
technologies. Prof. Felfernig’s research focuses on intelligent
methods and algorithms supporting the development and
maintenance of complex knowledge bases. Furthermore, he
is interested in the application of AI techniques in the soft-
ware engineering context, for example, the application of de-
cision and recommendation technologies to make software
requirements engineering processes more effective. In 2009
Dr. Felfernig received the Heinz–Zemanek Award from the
Austrian Computer Society for his research.

Monika Schubert is a PhD student in the group of Applied
Software Engineering at Graz University of Technology. Ms.
Schubert received her MS in software engineering and economy
from Graz University of Technology. Her research focuses on
knowledge-based systems, intelligent product configuration,
MBD, and product recommendation. She is also interested in
user interaction with complex knowledge bases.

Personalized diagnoses for inconsistent requirements 183

Adaptive attribute selection for configurator design
via Shapley value

YUE WANG AND MITCHELL M. TSENG
Advanced Manufacturing Institute, Hong Kong University of Science and Technology, Hong Kong

(RECEIVED April 4, 2010; ACCEPTED October 29, 2010)

Abstract

Configurators have been generally accepted as important tools to elicit customers’ needs and find the matches between cus-
tomers’ requirements and company’s offerings. With product configurators, product design is reduced to a series of selec-
tions of attribute values. However, it has been acknowledged that customers are not patient enough to configure a long list of
attributes. Therefore, making every round of configuring process productive and hence reducing the number of inputs from
customers are of substantial interest to academic and industry alike. In this paper, we present an efficient product config-
uration approach by incorporating Shapley value, which is a concept used in game theory, to estimate the usefulness of each
attribute in the configurator design. This new method iteratively selects the most relevant attribute that can contribute most
in terms of information content from the remaining pool of unspecified attributes. As a result from product providers’ per-
spective, each round of configuration can best narrow down the choices with given amount of time. The selection of the next
round query is based on the customer’s decision on the previous rounds. The interactive process thus runs in an adaptive
manner that different customers will have different query sequences. The probability ranking principle is also exploited to give
product recommendation to truncate the configuration process so that customers will not be burdened with trivial selection of
attributes. Analytical results and numerical examples are also used to exemplify and demonstrate the viability of the method.

Keywords: Attribute Selection; Configurator; Probability Ranking Principle; Shapley Value

1. INTRODUCTION

Today, global marketplace is becoming increasingly com-
petitive and diversified. Offering tailored products and in
the mean time delivering products quickly to customers be-
come major challenges for current manufacturing industry
(McCutcheon et al., 1994). In this new situation, product con-
figurator systems have been explored to handle the so-called
“customization–responsiveness squeeze” phenomena, that is,
providing tailored products with short delivery time (Schier-
holt, 2001; Salvador & Forza, 2004). Basically, a product
configurator consists of a set of predefined attributes for cus-
tomers to choose from. Some constraints on these attributes
are also included to ensure that the selected attributes work
compatibly. It takes a customer’s specifications as input and
the output is the customer’s target product(s). With product
configurators, product design is reduced to a series of selec-
tions of attribute values (Darr & Birmingham, 2000). In the
studies of customers’ decision-making processes, it has been

shown that customers have higher satisfaction with the out-
comes of configuring process than traditional selection process
(Kurniawan et al., 2003). Today, product configurators have
not only been studied in academia but also been widely adopted
in industries. It is reported that configurators have greatly im-
proved manufacturers’ responsiveness in product customization
and reduced the cost of customer integration (Piller, 2004).
Product configuration systems have been accepted as a viable
strategy to bridge the gap between customers’ needs and compa-
nies’ offerings.

The history of product configurators can be traced back to
1970s. Digital Equipment Corporation (DEC) developed a
program called R1 (later called XCON) in 1978 to configure
VAX computer systems to customer specifications (McDer-
mott et al., 1980). It was first put to use in 1980, and by
1986, it had processed 80,000 orders, achieving 95–98% ac-
curacy. It was estimated to be saving DEC $25 million a year
by reducing the need to give customers free components
when technicians made errors, by speeding up the assembly
process, and by increasing customer satisfaction. Ever since
then, a large number of configuration expert systems had
been developed and put into use, such as Cossack (Frayman
et al., 1987), BLADES (Elturky et al., 1986), and MICON

Reprint requests to: Yue Wang, Advanced Manufacturing Institute,
RM2591, Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong. E-mail: yacewang@ust.hk

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 185–195.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000624

185

(Birmingham et al., 1988). Because of the development of
information technology in the past decade, it is possible for
companies to acquire immediate information about customers’
requirements and meet them by delivering customized products
or related information efficiently. One of the most cited suc-
cessful modern configurators cases is Dell Computer, which
is able to deliver customized personal computers and note-
books within 1 week, with prices lower than its mass producing
competitors. By using online configurator-based product cus-
tomization system, Dell Computer has gained the so-called
first-mover advantage and maintained high profitability and
growth in a hypercompetitive industry for a long period.

Using configurators can streamline and automate the config-
uring process, reduce configuration errors, and enhance flex-
ibility and responsiveness (Sabin & Weigel, 1998). However,
there are still some limitations and shortcomings that have
not been paid enough attention in previous research (Tseng &
Piller, 2003). First, most product configurators still rely on fixed
query sequences that entail sets of rigid interactive procedures.
Although some configurators can capture customers’ specifica-
tions in the order determined by customers, there is still no sys-
tematic study on adaptively eliciting customer needs according
to customers’ specifications in previous configuration steps.
Therefore, the configuration process can be characterized as a
one-way information flow from customers to designers, instead
of an interactive and adaptive customer needs elicitation pro-
cess. Second, product configuring process can be tedious and
time consuming, especially when the product is complex. The
configuring procedure may require seemingly redundant or
trivial dialogues between customers and product development
team. However, it has been widelyacknowledged that customers
are impatient to specify a long list of attributes (Enos, 2001).
Therefore, it is necessary to elicit customers’needs inan efficient
manner. Third, customers may have little knowledge about what
a manufacturer is offering, including products features, design,
limitations, cost, and delivery. Furthermore, they may even be
unable to articulate their needs. Sometimes they are unclear
about what they really want when facing a large number of op-
tions provided by companies. Customers may fail to understand
or appreciate manufacturers’ offerings (Simonson, 2005). They
may find the configuration process unpleasant or even stressful
(Schwartz, 2004). In summary, it is crucial for configurators to
capture customers’ specifications efficiently with less demand
for customers’ attention and time.

To overcome the limitations, we develop an approach for
attribute selection task inproduct configuration process.Product
configuring is considered as a sequential Q&A process. From
designers’ perspective, a customer’s specifications to a prod-
uct’s attributes are unknown before the configuration process.
Designers’ objective is to elicit the customer’s needs efficiently
and accurately. During configuring process, designers can dis-
cover the customer’s needs gradually based on the customer’s
partial specifications to some attributes. The more attributes the
customer configures, the more information about the customer’s
needs is obtained. Thus, in product configuration process, desi-
gners’ uncertainty about the customer’s needs is decreasing. In

this sense, the configuration process is an uncertainty elimination
process from designers’ point of view. We want to eliminate the
most uncertaintyabout acustomer’s needs in each configuration
round so that designers can capture the customer’s needs effi-
ciently. In this paper, Shapley value is deployed to evaluate
the relevance or usefulness level of each attribute. The method
iteratively selects the most relevant attribute from the unspeci-
fied attributes pool and proposes it for the customer to configure.
The selection of the next round query is based on the customer’s
decision in previous rounds. Thus, it solicits customers’ specifi-
cations in an adaptive manner in the sense that different custo-
mers may have different query sequences. The customized
one-to-one configuring procedure is presented and the final con-
figuration can converge to a customer’s target with fewer inter-
actions between the customer and designers. In this sense, the
configuration process is no longer a traditional process of pas-
sively accepting customers’ specifications, but a bidirectional
information flow procedure. This paper extends the methods
in Wang and Tseng (2007, 2009) by presenting an analytical
frameworkof attributes selection and product recommendation.
Numerical studies are also conducted to verify the proposed
approach.

The remainder of the paper is organized as follows. Related
literature will be briefly reviewed in Section 2. In Section 3
we introduce the methodology for attribute selection from
coalition game’s point of view. A product recommendation
approach is elaborated in Section 4. Section 5 presents the de-
tailed procedure for attribute selection. A numerical example
is presented in Section 6 to verify the proposed approach. Ses-
sion 7 concludes the whole paper and points out some further
research directions.

2. LITERATURE REVIEW

A configurator design can be considered as a reasoning task in
its nature. Existing configuration design methodologies can be
generally classified into rule-based, model-based, and case-
based methodologies, depending on the reasoning techniques
used (Sabin & Weigel, 1998).

In a rule-based system, design knowledge is codified as
configuration rules or constraints. Most of early configuration
systems fall in this category, like R1/XCON, Cossack,
BLADES, and MICON. They derive solutions in a forward
chaining manner. This kind of systems often suffers from
the maintenance issues because of the lack of separation be-
tween domain knowledge and control strategy, especially
when the configurator system is complex (Yu et al., 1998).

In a model-based system, design knowledge is contained in
a system model, which consists of decomposable entities and
interactions between their elements. The most extensively
studied approach is probably constraint-based approach. Mit-
tal and Frayman (1989) first treated configuration tasks as
constraint satisfaction problems (CSPs). In this framework,
a configuration task is to assign values to all the variables
without violating any constraints. Mittal and Falkenhainer
also modeled the configuration task as a sequence of dynamic

Y. Wang and M.M. Tseng186

CSPs to cope with the change of attributes set during product
configuration process. Both the ports and design alternatives
were considered as variables in a CSP domain (Mittal & Falk-
enhainer, 1990). Not only compatibility constraints but also ac-
tivity constraints were introduced into the extension to specify
conditions under which a configurator can dynamically include
or exclude component based on current selections. Sabin and
Freuder (1996, 1998) proposed an idea that represented the
configuration task as a new class of nonstandard CSP called
composite CSP. It provided a more comprehensive and effi-
cient basis for formulating and solving configuration problems
(Sabin & Freuder, 1996, 1998). Gelle and Faltings developed
a general framework to handle both continous and discrete
variables in configuration task that is called mixed and condi-
tional CSP problems (Gelle & Faltings, 2003). A generative
CSP framework was also defined that can support resource-
balancing constraints (Mailharro et al., 1998; Stumptner et al.,
1998). In this framework, component attributes were used to
represent the resource demands and supplies.

In a case-based system, the basic idea is to compute the simi-
larity between the input queries and existing product cases.
Then the existing configurations that are likely to satisfy the
input queries are refined according to customers’ particular
needs. As pointed by Wielinga and Schreiber (1997), the key
issue in case-based configuration is how to retrieve the best
configuration from the database and identify aspects that cause
violation of constraints or requirements. Different methods
have been used to tackle the issue. Rahmer and Voß (1996)
used resource-oriented scheme to deal with case adaptation
for telecooperation system. Löckenhoff and Messer (1994) pre-
sented detailed knowledge engineering based models for case-
based configuration. It is a structure-oriented approach where a
taxonomical structure of components is mapped onto a graph.
The approach is also resource-oriented based on balancing of
resource requesting and production model of components. Hül-
lermeier (1997) recast case-based reasoning task from combi-
nation optimization perspective. A combination optimization
based approach was applied to solve configuration problems.
Critiquing is also a method for case-based reasoning systems
by using customers’ feedback information (Burke, 2002; Burke
et al., 1996, 1997). Customers only need to indicate a direc-
tional preference for a feature instead of inputting detailed fea-
ture value. Traditional critiquing only copes with single feature.
Reilly et al. (2004) extended the technique to multiple features
case, which is called compound critiques. They argued that the
methods can offer explanatory benefits to help users better un-
derstand the structure of the recommendation mechanism and
improve the performance of case-based recommendations.
Tseng et al. (2005) also used case-based reasoning to construct
a new bill of materials to reduce the time and cost of product
design.

Table 1 gives an overview of different configuration
methods, including the advantages and limitations of each ap-
proach. It is worth noting that the proposed method in this pa-
per does not belong to any of the three categories. This paper
does not present a holistic configuration design method. It is

mainly concerned with the task of how to present attributes
for customers to configure which is a major step for config-
uration tasks. In this sense, the proposed approach can be
applied to any product configuration system.

3. ATTRIBUTE SELECTION AS A COALITION
GAME

As stated in Section 1, it is crucial for configurators to capture
customers’ specifications efficiently, because customers are
not patient enough to specify a long list of attribute. From a
designer’s point of view, the configuration design task is to
select the attributes and the way of configuring them (Yu
et al., 1998). During product configuration process, an attri-
bute is presented for a customer to specify in each configuration
round. A well-designed series of attributes could potentially
shorten the lengthy iterative information exchange procedure.
Therefore attribute selection serves as a critical factor for im-
proving the efficiency of configurators. In this section we in-
troduce a coalition game-based attribute selection criteria to
accelerate the product configuration procedure.

3.1. Preliminaries

In this section we will recast the attribute selection problem
from game theory point of view, particularly coalition game.
In a coalitional game, a set of players have certain payoff
functions that represent the benefit achieved by different sub-
coalitions in the game. In a formal language, a coalition game
is defined by (N, v) where N is a set of players and v is a worth
function of any subset of N, that is, the coalition. The mean-
ing of the worth function is that if S is a coalition of players
who agree to cooperate in a game, then v is the expected ben-
efit they can get from the cooperation. Here, v is assumed to be
monotone, that is, v(S 0) � v(S) for S , S 0 and v(f) ¼ 0. Let

Table 1. Overview of different configuration approaches

Approach Advantages Limitations

Rule-based
configurator

† Intuitive way of
presenting design
knowledge and
configurations

† Good at representing and
evaluating heuristic
relations

† Difficult to maintain
when the product is
complex

Model-based
configurator

† Good at handling
constraints within the
configuration rules

† Limited efficiency
when solving
constraints

Case-based
configurator

† More efficient by using
existing cases

† The results may be
unreliable and
inaccurate

† Cannot adapt to new
product configuration

Adaptive attribute selection for configurator design via Shapley value 187

fxigi[N be a partition of v(N), that is,

v(N) ¼
X
i[N

xi,

where xi is the benefit that player i can get from the coopera-
tion. The marginal benefit for player i with respect to S [N, i
� S isDi(S)¼ v(S < fig) 2 v(S). Intuitively, the worth function
and marginal benefit have the following properties:

† Dummy axiom: if player i is a dummy player, then xi ¼

0. It means that if a player contributes nothing in the
game, he should not receive any benefit.

† Symmetry axiom: if i = j such that Di(S)¼ Dj(S) for all
i, j � S, then xi ¼ xj. It means that if two players contrib-
ute equally in the game, they should receive the same
amount of benefit.

† Linearity axiom: if v(S)¼ v1(S)þ v2(S) where v1 and v2

are also nonnegative monotone function satisfying
v1(f) ¼ v2(f) ¼ 0, then xi ¼ x1

i þ x2
i where x j

i is the
cost share for vj. This axiom means that two coalition
games can be combined.

Then the Shapley value for the ith player is defined as the
expectation E(Xi) where Xi ¼ v((s1, s2, . . . , si)) 2 v((s1, s2,
. . . , si21)) and (s1, s2, . . . , si) is a permutation of (1, 2, . . . ,
i), where sj {can be any number in the set (1, 2, . . . , i). For
example, (s1, s2, s3) can be any element in the set of {(1, 2,
3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. Shapley
value is the expected marginal worth of a player over all the
possible sets of coalitions. The expectation is calculated
with respect to all the possible permutations with equal prob-
ability. Shapley (1953) proved that Shapley value is the only
value that satisfies the three axioms.

3.2. Estimating attribute contribution by Shapley
value

As stated above, customers are not patient enough to specify a
long list of items. In addition, the attributes to be specified
differ a lot in terms of the usefulness to reveal customers’
needs. We want to estimate the usefulness of each attribute
and ask customers to specify the most useful one. In this pa-
per, the Shapley value of each attribute is used to measure the
usefulness level.

The calculation of the Shapley value is usually time con-
suming for the attribute selection problem because it requires
summing over all the possible subsets of coalitions and per-
mutation on them. Keinan et al. (2004) presented an unbiased
estimator to calculate the Shapley value by uniformly sam-
pling from the permutation over N. Still, the estimator consid-
ers both large and small attributes sets to calculate the contri-
bution values. Cohen et al. (2005) found that in practical
problems, the contributions of players in a coalition formed
by a subset of N are not as significant as that in coalition N,
the coalition formed by all the players. They calculated the

contribution value of each player only with respect to N.
Thus, the computational complexity is reduced because coa-
litions with size smaller than N are not taken into considera-
tion. In this sense, the Shapley value of the ith attribute can be
approximated by

E(Xi)
1
n
� Di(Nn{i}):

Because the parameter 1/n is the same for all the attributes, we
only need to considerDi(N \ fig) to select attribute. During each
configuration round, the Shapley value of each unconfigured
attribute will be calculated and the attribute with the biggest
Shapley value is presented to for the customer to configure.

In this paper, we try to eliminate the most uncertainty about
a customer’s needs in each configuration round. Hence, the
amount of uncertainty about customers’ needs is adopted as
the evaluation criterion. Because one of the key concerns in
configurator design is to achieve product configuration quickly
and accurately, the most informative attribute should be se-
lected from the remaining unspecified attributes pool. Bearing
this in mind, we take Di as the form of

Di(C) ¼ entropy(C)� entropy(Cji), (1)

where C is the set containing all the end products. Each product
has certain probability to be a customer’s target. After knowing
the value of the ith attribute, the set C will be reduced to a
subset Cji; C is a discrete random variable with possible
states 1, . . . , n. Its entropy is defined as

entropy(C) ¼ �
Xn

k¼1
pklog2 pk,

where pk is the probability that C is in state k (Shannon, 1948).
The concept of entropy in information theory describes how
much uncertainty there is in a signal or random event. Sim-
ilarly, the entropy of Cji is

entropy(Cji) ¼ Ei(entropy(Cji ¼ ik))

¼
X
ik

P(i ¼ ik)� entropy(Cji ¼ ik), (2)

where ik is the kth alternative of the ith attribute.
In summary, from designers’ perspective the Shapley value

of an attribute is the amount of uncertainty that the attribute
can eliminate after getting its value. Shapley value is deployed
to select attribute for a customer to configure in each configura-
tion round. The unspecified attribute that can eliminate the
most uncertainty will be chosen for the customer to specify.

3.3. Estimation of parameters

To calculate the Shapley value of each attribute, we need to
know the probability (conditional probability) that each end
product meets a customer’s needs. Given enough customers’
choices data, the probabilities can be estimated from the data.

Y. Wang and M.M. Tseng188

In this paper, we use the frequency that each end product
being selected by customers to approximate the probability
that the product will meet customers’ needs. It can be proven
that it is a maximum likelihood estimator of the probability.
The estimation is

P(Ai ¼ aij jAk ¼ akl) ¼
jaij > aklj
jaklj

,

where aij and akl are the alternatives of attribute Ai and Ak, re-
spectively; jaij > aklj is the number of cases with attribute Ai

having value aij and in the mean time attribute Ak having value
akl in existing configuration data; and jaklj is the number of
cases with attribute Ak having value akl. To avoid zero prob-
ability caused by data sparsity, we apply the widely used
smoothing technique by adding constants to both numerator
and denominator (Cox, 1972). Then the estimation becomes

P(Ai ¼ aij jAk ¼ akl) ¼
jaij > aklj þ 1
jaklj þ r

, (3)

where r is the number of alternatives of attribute Ai. If jaij > aklj
¼ jaklj ¼ 0,

P(Ai ¼ aij jAk ¼ akl) ¼
1
r
: (4)

It means that each alternative of attribute Ai is equally likely to
be selected by the customer, that is, we assume the prior prob-
ability distribution of customers’ choices is uniform. When
sufficient data are obtained, the knowledge discovered from
data will dominate the prior probability, because if jaij > aklj
is large enough,

P(Ai ¼ aij jAk ¼ akl) ¼
jaij > aklj þ 1
jaklj þ r

 jaij > aklj
jaklj

: (5)

Therefore, this estimation is actually the compromise between
the knowledge discovered from the data and the prior belief
about the probability distribution of customers’ potential like-
lihood toward different attributes.

Both Ai and Ak can be generalized from one single attribute
to a set of attributes. The idea is also to use the frequency of
each event to approximate the true probability that we are in-
terested in. By law of large number, the estimation will con-
verge to the true probability when the data size increases. In
this way, the likelihood of customers’ choices dependency
among different attributes will be quantified by conditional
probabilities. The conditional probabilities will be deployed
for the calculation of Shapley value.

4. RECOMMENDATION OF PRODUCT
CONFIGURATIONS

The presented product configuration method aims at helping
customers find their target products quickly. To further im-
prove the efficiency of product configuration, a product recom-
mendation module is also used to present the most likely ac-

cepted product and thus truncate the product configuration
process as early as possible. After a customer configures an
attribute, certain number of products will be recommended.
If the customer is satisfied with one of them, he can select it
and terminate the configuration process ahead of time. Basi-
cally a recommendation method is to find the most likely ac-
cepted product configuration, that is, the one with the highest
probability to meet a customer’s requirements, based on the in-
complete specifications. In this section, two basic questions re-
garding product recommendation will be answered, namely,
how to calculate the probability of relevance for each product,
that is, the product’s probability of being a customer’s target
and in what order to present the recommendations if multiple
products are recommended.

Let E be the set of configured attributes and Q be the set of
attributes that are not specified. Let R denote the recommen-
dation that is an instantiation of Q plus the specified attributes
set E. Then we have

R ¼ E <

�
arg max

Q
P(QjE)

�
:

By Bayes rule,

P(QjE) ¼ jQ > Ej
jEj ,

where jQ > Ej is the number of configurations with attributes Q
and E and jEj is the number of configurations with attributes E.

If we assume customers’ choices among different attributes
are independent, the recommendation can be simplified to

R ¼ E <

�
<

qi[Q
arg max

qi

P(qijE)

�
, (6)

where qi is the ith unspecified attribute and P(qijE) can be
estimated by

P(qijE) ¼ jqi > Ej
jEj :

This independence assumption is often referred to as “local
independence” and has been applied in marketing research
(Kamakura & Wedel, 1995).

In this way, each end product’s probability of meeting the
customer’s needs can be calculated. A very natural way to
present the recommendations is based on the ranking of the
probabilities, which is known as probability ranking principle
(PRP; van Rijsbergen, 1979).

In information retrieval literature, expected search length is
used to measure the efficiency of a retrieval approach (van
Rijsbergen, 1979). It refers to the expected number of items
that a customer has screened when he finds a target one.
Let esl(S) represent the expected search length given a set
of specifications S. Then,

esl(S) ¼ E[i] ¼
XN
i¼1

pi � i,

Adaptive attribute selection for configurator design via Shapley value 189

where i is the search length and pi represents the correspond-
ing probability of occurrence of this search length. It is worth
noting that pi is a function of S. To simplify the notations, we
just use pi here. N is the number of possible search lengths and
is bounded by the total number of product configurations. It
can be proven that PRP guarantees the smallest expected
search length and thus the highest efficiency.

PROPOSITION 1. The PRP results in a minimal expected
search length. B

Proof: Given a set of partial specifications S from a cus-
tomer, let R1 ¼ (r11, r12, . . . , r1m) be the recommendation
based on PRP with corresponding probabilities of meeting
a customer’s needs (P11, P12, . . . , P1m), which satisfies P11

� P12 � . . . � P1m. Let us consider another recommendation
approach that proposes the same m recommendations in an-
other order R2 ¼ (r21, r22, . . . , r2m) with probabilities of meet-
ing a customer’s needs (Q11, Q12, . . . , Q1m), which is a per-
mutation of (P11, P12, . . . , P1m). The expected search length
can be reformulated as

esl(S) ¼ E[i] ¼
Xm
i¼1

pi � i ¼
Xm
n¼1

P(i � n),

where P(i � n)represents the probability that the first n 2 1
recommendations are not the target product (Durrett, 2003).
Then we can yield

PPRP(i � n) ¼
Yn�1

k¼1

(1� P1k):

Similarly,

Pothers(i � n) ¼
Yn�1

k¼1

(1� Q2k):

Because P11 � P12 � . . . � P1m and (Q11, Q12, . . . , Q1m) is a
permutation of (P11, P12, . . . , P1m), we can get

PPRP(i � n) ¼
Yn�1

k¼1

(1� P1k) �
Yn�1

k¼1

(1� Q2k)

¼ Pothers(i � n)

for any n. By applying rearrangement inequality, we arrive at

eslPRP(S) ¼
Xm
n¼1

PPRP(i � n) �
Xm
n¼1

Pothers(i � n)

¼ eslothers(S):

Because R2 is selected arbitrarily, the PRP results in the mini-
mal expected search length comparing with any other recom-
mendation approaches. B

It is worth noting that we assume each customer has certain
target product(s) in mind that is unknown to designers. How-
ever, designers can guess which configuration(s) may be the
target product(s) based on the customer’s partial specifications
during product configuring process. This proposition states that
the best strategy for designers to present recommendations is
based on the probability of relevance. Customers’ expected
search length can be minimized in this way.

5. THE PROCESS OF ADAPTIVE ATTRIBUTE
SELECTION FOR CONFIGURATOR DESIGN

The configuring process is an interactive and adaptive commu-
nication procedure. A schematic configuration process is shown
in Figure 1. The conditional probabilities of customers’ choices
are estimated offline from existing configuration data. Once the
probabilities are estimated, they will serve as the supporting base
for product configuration procedure, particularly the attribute se-
lection and recommendation. It sequentially selects the most rel-
evant item from the remaining attributes pool for a customer to
configure and recommendations will be presented afterward.
The whole operation process can be summarized as follows:

1. Put all of the unspecified attributes into candidate set CS.
2. For each unspecified attributes qi, calculate the condi-

tional probability P(qijE) according to Eq. (3), where E
is the set of all the combination of the remaining attributes.

3. For each unspecified attribute qi, calculate its Shapley
value E(Xi) based on Eq. (1).

4. Select the attribute with the biggest Shapley value and
present it to the customer to configure.

5. Get the customer’s specification and remove the attri-
bute from the candidate set CS.

Fig. 1. The product configuration process. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Y. Wang and M.M. Tseng190

6. Calculate the probability that each end product meets
the customer’s needs

P
[

i

{qi}jE
 !

¼
Y

i

P(qijE)

according to Eq. (6) and present recommendations ac-
cording to the ranking of the probabilities.

7. Get the customer’s feedback toward the recommenda-
tions. If the customer is satisfied with one recommenda-
tion, end.

8. If CS ¼ f, end. Otherwise goes to step 3.

Note that we assume the customer’s target product is in
current product family. Because the purpose of this paper is
to elicit customer needs and provide customer’s target
product efficiently, the case that no target product exists in
current product family is not considered here (Fig. 1).

6. CASE STUDY

This section uses the configuration process of a simplified
personal computer as an example to illustrate the ideas pro-
posed in this paper. The set of components and their alterna-
tives are listed in Table 2. Here we use a sixtuple to represent
one PC configuration. For example, ,1, 2, 2, 3, 2, 2. stands
for the configuration containing the components A1, B2, C2,
D3, E2, and F2. A survey was conducted in an East Asian uni-
versity and 69 customers’ preferred configurations data were
obtained. We want to use them to estimate the conditional
probabilities P(qijE) that we need to run our method. How-
ever, the sample size is too small for the scale of the config-
uration task. To handle the data sparsity issue, we generated
1380 configuration data as training data to estimate the
conditional probability and 345 testing data by a perturbative
bootstrap approach. Bootstrap is a powerful data resampling
method in statistics (Efron, 1979). It generates samples
from an existing data set, where each sample is obtained by
random sampling with replacement from the data set.
Considering that customers may be flexible to some choices
(Lilien et al., 1992), we add some variants when generating

resamples. We call the resampling method perturbative boot-
strap.

Before conducting the resampling method, each attribute
alternative’s substitutes are identified according to the simi-
larity of performance, price and other characteristics. To
make the algorithm more general, let us suppose a product’s
attributes set is fAi : 1 � i� kg, where kis the number of at-
tributes. Each attribute Ai has a set of alternatives aij : 1� i
� k, 1� j � ni, where ni is the number of alternatives for
the ith attribute. Each attribute alternative aij has a substitute
set aij determined beforehand. The substitute set aij can be
empty if there is no proper substitute for aij. The detailed
data resampling algorithm is as follows:

For l ¼ 1 to m == m is the data size of the original data set

For i ¼ 1 : k

For j ¼ 1 : ni

u ¼ randð0,1Þ;==generating a random number following uniformð0,1Þ

if u . h and aij is not empty; aij
	 equals to one value in aij with probability

1
jaijj

where jaijj is the cardinal of set aij and h is a predetermined threshold;

else aij
	 ¼ aij;

end

end

end

Table 2. List of components and their alternatives for PC

Component Code Description

Processor (A) A1 Intel Core 2 duo 3.16 GHz
A2 Intel Core 2 duo 2.66 GHz
A3 Intel Core 2 duo 2.8 GHz
A4 Intel Pentium Dual-Core 2.6 GHz
A5 Intel Core 2 quad processor 2.5 GHz
A6 Intel Core 2 quad processor 2.6 GHz

Memory (B) B1 2 GB DDR2
B2 4 GB DDR2
B3 6 GB DDR2
B4 8 GB DDR2

Monitor (C) C1 17-in. LCD
C2 19-in. LCD
C3 20-in. LCD
C4 22-in. LCD or above

Hard disk (D) D1 160 GB
D2 250 GB
D3 500 GB
D4 750 GB

Disk driver (E) E1 16X DVD+/2RW*
E2 Blu-ray disk
E3 Blu-ray disk + 16X DVD+/2RW*

Display card (F) F1 Intel GMA 3100
F2 512-MB NVIDIA GeForce 9800GT
F3 256-MB ATI Radeon HD 3450 LE
F4 256-MB ATI Radeon HD 3650
F5 512-MB ATI Radeon HD 4670

Adaptive attribute selection for configurator design via Shapley value 191

In this numerical example, h is set to 0.9. After running the
algorithm once, a new set of configuration data are generated.
It has the same size as the original data set. We repeat the pro-
cess 25 times and generate 1380 training data and 345 testing
data. Because of the limit of pages, the conditional probabil-
ities estimated from the training data set are omitted here.

6.1. A product configuration example by applying the
proposed approach

Suppose a new customer’s target configuration is ,1, 2, 2, 3,
2, 2. that is unknown to designers before the product config-
uring process.

STEP 1. The probabilities P(qijE) are calculated according
to Eq. (3). Because no attributes are specified at the begin-
ning, P(qi) is used instead.

STEP 2. The Shapley values of each attribute are calculated
according to Eq. (1). For example,

DA(S) ¼ entropy(S)� entropy(SjA)

¼ �
X69

i¼1
0:014� log 0:014

� �0:246
X17

i¼1
0:059� log 0:059

�0:159�
X11

i¼1
0:091� log 0:091

�0:246�
X17

i¼1
0:059� log 0:059

�0:087�
X6

i¼1
0:167� log 0:167

�0:159�
X11

i¼1
0:091� log 0:091

�0:101�
X7

i¼1
0:143� log 0:143

!

¼ 2:48:

Similarly, we can get the Shapely values of other attributes.

DB(S) ¼ entropy(S)� entropy(SjB) ¼ 1:76;

DC(S) ¼ entropy(S)� entropy(SjC) ¼ 1:75;

DD(S) ¼ entropy(S)� entropy(SjD) ¼ 1:69;

DE(S) ¼ entropy(S)� entropy(SjE) ¼ 1:53;

DF(S) ¼ entropy(S)� entropy(SjF) ¼ 2:26:

As a result, we present the attribute A that has the highest
Shapley value to the customer.

STEP 3. After getting the customer’s specification A1, we
can present the corresponding recommendation just by

checking the conditional probability table. The independence
assumption stated in the last session is used here to present
the recommendation. The following recommendation can
be yielded:

arg max
B

P(BijA ¼ A1) ¼ B2; arg max
C

P(CijA ¼ A1) ¼ C3;

arg max
D

P(DijA ¼ A1) ¼ D3; arg max
E

P(EijA ¼ A1) ¼ E2;

arg max
F

P(FijA ¼ A1) ¼ F3:

Because the output recommendation ,1, 2, 3, 3, 2, 3. differs
from the target configuration ,1, 2, 2, 3, 2, 2 ., further pro-
cessing is required.

STEP 4. the Shapley values given that A1 is selected are
calculated and result to

DBjA1(S) ¼ entropy(SjA1)� entropy(SjA1, B) ¼ 1:45;

DCjA1(S) ¼ entropy(SjA1)� entropy(SjA1, C) ¼ 1:61;

DDjA1(S) ¼ entropy(SjA1)� entropy(SjA1, D) ¼ 1:55;

DEjA1(S) ¼ entropy(SjA1)� entropy(SjA1, E) ¼ 1:16;

DFjA1(S) ¼ entropy(SjA1)� entropy(SjA1, F) ¼ 2:26:

The highest Shapley value is the one for the attribute F, which
we therefore present to the customer to configure.

STEP 5. After getting the customer’s specification F2, the
following recommendation can be reached by checking the
conditional probability table.

arg max
B

P(BijA ¼ A1, F2) ¼ B2;

arg max
C

P(CijA ¼ A1, F2) ¼ C3;

arg max
D

P(DijA ¼ A1, F2) ¼ D3;

arg max
E

P(EijA ¼ A1, F2) ¼ E3:

Thus, ,1, 2, 3, 3, 3, 2. is recommended.

STEP 6. Because the recommendation is still not satisfac-
tory, the previous attribute selection process should be re-
peated until the recommendation meets the requirement.

In summary, the configuring process for this customer is
shown in Table 3. After three configuration rounds, the cus-
tomer gets his target PC. Section 6.2 presents the experiment
results to show the advantage of the proposed method.

6.2. Performance comparison

In this section, we compare the performance of the proposed
approach with other attribute selection and recommendation
methods. Let “FixSeq þ PRP” represent the method using
fixed query sequence and PRP based recommendation. Ac-

Y. Wang and M.M. Tseng192

cording to the number of attributes, there are 6! ¼ 720 possi-
ble query sequences for this PC configurator. We calculate
the average configuration rounds of all the possible sequences
(AverFixSeq þ PRP). The results of two arbitrarily selected
sequences (“FixSeq1 þ PRP” and “FixSeq2 þ PRP”) are
also presented for comparison. The other approach uses the
Shapley value based attributes selection method addressed
in this paper but recommends the configuration randomly
(Shapley þ Rand). The proposed approach is abbreviated
as “Shapley þ PRP.”

The products in the testing set generated by perturbative
bootstrap are used as customers’ targets. In previous section’s
example, only one recommendation is provided in each
round. In this numerical analysis, multiple products are rec-
ommended according to their probabilities of relevance. If a
customer’s target PC is in the set of recommendations, the
process will end and the corresponding configuration rounds
will be recorded. The number of configuration rounds is used
as the measure of efficiency. It can be anticipated that if the
whole framework performs better, then fewer rounds of com-

munications will occur. Figure 2 shows the experiment results
under different approaches.

The x axis represents the number of recommendations in
each round and y axis is the number of recommendations
rounds needed for the customer to find the target product. Be-
cause there are six attributes altogether in this example, the
worst case requires six configuration rounds. We can see
that the “Shapley þ PRP” approach proposed in this paper
outperforms others. When more recommendations are pre-
sented, the configuration rounds are also decreased, because
bigger recommendation set is more likely to contain the target
product. The experiment results show that our approach pro-
vides a promising direction of improving the efficiency of
product configuration.

7. CONCLUSION

This paper recasts the attribute selection task in configurator
design from game theory’s point of view. Shapley values are
adopted to measure the usefulness of different attributes.

Fig. 2. A comparison of the configuration approaches. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Table 3. The specification defining process for the customer with preference fA1, B2, C2, D3, E2, F2g

Specification
Round Information Gain Proposed Item Recommendation Target

1 EA ¼ 2.48, EB ¼ 1.76,
EC ¼ 1.75, ED ¼ 1.69,
EE ¼ 1.53, EF ¼ 2.26

CPU (A) ,1, 2, 3, 3, 2, 3 . No

2 EB ¼ 1.45, EC ¼ 1.61,
ED ¼ 1.55, EE ¼ 1.16,
EF ¼ 2.26

Display card (F) ,1, 2, 3, 3, 3, 2 . No

3 EB ¼ 0.92, EC ¼ 0.92,
ED ¼ 0, EE ¼ 0.92

Monitor (C) ,1, 2, 2, 3, 2, 2 . Yes

Adaptive attribute selection for configurator design via Shapley value 193

The most relevant attribute is selected for customers to con-
figure during product configuring procedure. The main con-
tributions are as follows:

1. A product configuring process is treated as a sequential
decision making procedure. In each configuring round,
the most uncertainty about a customer’s needs is elimi-
nated. The interactive process runs in an adaptive man-
ner in the sense that different customers will have dif-
ferent query sequences. This offers a brand new
perspective for us to understand configurator issues in
product customization context.

2. PRP is adopted for product recommendation. It could
shield customers from the tedious process of screening
and making a selection from a vast number of products
and thus overcome the information overload issue. Ana-
lytical results show that PRP is optimal with respect to
expected search length. The efficiency of matching be-
tween demand and supply is thus enhanced.

The presented method also has some limitations and can be
enriched along several dimensions. It functions well for cus-
tomers who have enough expertise and can clearly configure
each attribute. For customers who only have vague functional
requirements, there are no links between the customers’ needs
and the detailed attributes in this framework. The configura-
tion task is hard to conduct. How to incorporate customer
needs in fuzzy functional requirements form into the config-
uration task is a future research direction. In addition, this pa-
per assumes the product configuration space is fixed. Innova-
tion and evolvement in a product family are not considered.
Apparently, it is not profitable to start from scratch again to
collect data and implement the approach addressed in this pa-
per. One potential solution is to adapt previous configuration
data to the updated product family via some econometric
methods. Another direction is to improve the computational
complexity of the configuration design task. If the product
contains m attributes and each attribute has n attribute alterna-
tives, then the computational complexity of the proposed
attribute selection task is O(m2n). How to improve the com-
putational complexity remains to be a practical and signifi-
cant research issue.

ACKNOWLEDGMENTS

This research is supported by the Hong Kong Research Grants Coun-
cil (RGC CERG HKUST 620308 and 620609).

REFERENCES

Birmingham, W., Brennan, A., & Siewiorek, D. (1988). MICON: a single
board computer synthesis tool. IEEE Circuits and Devices Magazine
4(1), 37–46.

Burke, R. (2002). Interactive critiquing for catalog navigation in E-Com-
merce. Artificial Intelligence Review 18(3–4), 245–267.

Burke, R., Hammond, K., & Young, B. (1996). Knowledge-based navigation
of complex information spaces. Proc. 13th National Conf. Artificial Intel-
ligence, pp. 462–468. Portland, OR: AAAI Press/MIT Press.

Burke, R., Hammond, K., & Young, B. (1997). The Findme approach to as-
sisted browsing. Journal of IEEE Expert 12(4), 32–40.

Cohen, S., Dror, G., & Ruppin, E. (2007). Feature selection via coalitional
game theory. Neural Computation 19, 1939–1961.

Cox, D.R. (1970). The Analysis of Binary Data. London: Methuen.
Darr, T., & Birmingham, W.. (2000). Part-selection triptych: a representation,

problem properties and problem definition, and problem-solving method.
Artificial Intelligence for Engineering Design, Analysis and Manufactur-
ing 14(1), 39–51.

Durrett, R. (2003). Probability: Theory and Examples, 3rd ed. New York:
Thomson Learning/Brooks–Cole.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of
Statistics 7(1), 1–26.

Elturky, F., & Nordin, R. (1986). BLADES: an expert system for analog
circuit design. Proc. IEEE Symp. Circuit and System, pp. 552–555, San
Jose, CA.

Enos, L. (2001). Report: five keys for e-tail success. E-Commerce Times. Ac-
cessed at http://www.ecommercetimes.com/story/7743.html

Frayman, F., & Mittal, S. (1987). Cossack: a constraint based expert system
for configuration task. In Knowledge-Based Expert Systems in Engineer-
ing: Planning and Design (Sriram, D., & Adey, R., Eds.), pp. 143–166.
Boston: Computational Mechanics Publication.

Gelle, E., & Faltings, B. (2003). Solving mixed and conditional constraint
satisfaction problems. Constraint 8(2), 107–141.

Hüllermeier, E. (1997). Case-based search techniques for solving config-
uration problems. Accessed at http://citeseer.ist.psu.edu/old/79018.html

Kamakura, W.A., & Wedel, M. (1995). Life-style segmentation with tailored
interviewing. Journal of Marketing Research 32, 308–317.

Keinan, A., Sandbank, B., Hilgetag, C., Meilijson, I., & Ruppin, E. (2004).
Fair attribution of functional contribution in artificial and biological net-
works. Neural Computation 16(9), 1887–1915.

Kurniawan, S., Tseng, M., & So, R. (2003). Consumer decision making pro-
cess in mass customization. Proc. 2003 World Congress on Mass Cus-
tomization and Personalization, p. 38, Munich.

Lilien, G., Kotler, P., & Moorthy, K. (1992). Marketing Model. Englewood
Cliffs, NJ: Prentice–Hall.

Löckenhoff, C., & Messer, T. (1994). Configuration. In CommonKADS
Library for Expertise Modelling (Breuker, J., & Van de Velde, W.,
Eds.), pp. 197–212. Amsterdam: IOS Press.

Mailharro, D. (1998). A classification and constraint-based framework for
configuration. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 12(4), 383–397.

McCutcheon, D., Raturi, A., & Meredith, J. (1994). The customization-
responsiveness squeeze. Sloan Management Review 35(2), 89–99.

McDermott, J. (1980). R1: an expert in the computer systems domain. Proc.
1st Annual National Conf. Artificial Intelligence, pp. 269–271, Stanford
University.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction prob-
lems. Proc. American Association for Artificial Intelligence, pp. 25–32,
Boston.

Mittal, S., & Frayman, F. (1989). Towards a generic model of configuration
task. Proc. Int. Joint Conf. Artificial Intelligence, pp. 1395–1401. San
Mateo, CA: Morgan Kaufmann.

Piller, F., & Moeslein, K. (2004). Does mass customization pay? An eco-
nomic approach to evaluate customer integration. Production Planning
& Control 15(4), 435–444.

Rahmer, J., & Voß, A. (1996). Case-based reasoning in the configuration of
telecooperation systems, pp. 93–98, AAAI Technical Report FS-96-03.
Menlo Park, CA: AAAI Press.

Reilly, R., McCarthy, K., McGinty, L., & Smyth, B. (2004). Dynamic cri-
tiquing. Advances in Case-Based Reasoning, pp. 763–777. Berlin:
Springer.

Sabin, D., & Freuder, E. (1996). Configuration as composite constraint
satisfaction. Proc. 1st Artificial Intelligence and Manufacturing
Research Planning Workshop, pp. 153–161. Menlo Park, CA: AAAI
Press.

Sabin, M., & Freuder, E. (1998). Detecting and resolving inconsistency and
redundancy in conditional constraint satisfaction problems. Accessed
at http://citeseer.ist.psu.edu/sabin98detecting.html

Sabin, D., & Weigel, R. (1998). Product configuration frameworks—a sur-
vey. IEEE Intelligent Systems 13, 42–49.

Y. Wang and M.M. Tseng194

Salvador, F., & Forza, C. (2004). Configuring products to address the
customization-responsiveness squeeze: a survey of management issues
and opportunities. International Journal of Production Economics
91(3), 273–291.

Schierholt, K. (2001). Process configuration: combining the principles of
product configuration and process planning. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 15(5), 411–424.

Schwartz, B. (2004). The Paradox of Choice: Why More Is Less. New York:
ECCO.

Shannon, C.E. (1948). A mathematical theory of communication. Bell System
Technical Journal 27(7), 379–423.

Shapley, L. (1953). A value for n-person games. In Contributions to the The-
ory of Games, Vol. 1 (Kuhn, H.W., & Tucker, A.W., Eds.). Princeton, NJ:
Princeton University Press.

Simonson, I. (2005). Determinants of customers’ responses to customized
offers: conceptual framework and research propositions. Journal of
Marketing 69(1), 32–45.

Stumptner, M., Friedrich, G., & Haselböck, A. (1998). Generative constraint-
based configuration of large technical systems. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 12(4), 307–320.

Tseng, H., Chang, C., & Chang, S. (2005). Applying case-based reasoning
for product configuration in mass customization environments. Expert
Systems With Applications 29(4), 913–925.

Tseng, M., & Piller, F. (2003). New direction for mass customization. In The
Customer Centric Enterprise (Piller, F., & Tseng, M., Eds.), pp. 519–535.
Berlin: Springer.

van Rijsbergen, C.J. (1979). Information Retrieval. London: Butterworths.
Wang, Y., & Tseng, M.M. (2008). Incorporating probabilistic model of cus-

tomers’ preferences in concurrent engineering. Annals of the CIRP 58(1),
137–140.

Wang, Y., & Tseng, M.M. (2009). Attribute selection for configurator design
based on Shapley value. Proc. ASME 2009 Int. Design Engineering
Technical Conf., Computers and Information in Engineering Conf.
(IDETC/CIE 2009), Paper No. DETC2009-86904.

Wielinga, B., & Schreiber, G. (1997). Configuration-design problem solving.
IEEE Expert: Intelligent Systems and Their Applications 12(2), 49–56.

Yu, B., Skovgaard, H.. & Baan Frond Office Systems. (1998). A configura-
tion tool to increase product competitiveness. IEEE Intelligent Systems
13(July/August), 34–41.

Yue Wang received his PhD from the Department of Indus-
trial Engineering and Logistics Management at the Hong
Kong University of Science and Technology and his BS
and MS degrees in electronic engineering from Peking Uni-
versity, Beijing. Dr. Wang’s research interest is focused on
engineering design and manufacturing, artificial intelligence,
and applied statistics.

Mitchell M. Tseng is a Professor and the Director of the Ad-
vanced Manufacturing Institute and Zhejiang Advanced
Manufacturing Institute of Hong Kong University of Science
and Technology. Prof. Tseng joined Hong Kong University
of Science and Technology as the founding department
head of industrial engineering in 1993 after holding executive
positions at Xerox and DEC. He previously held faculty po-
sitions at the University of Illinois at Urbana–Champaign and
the Massachusetts Institute of Technology. Dr. Tseng re-
ceived MS and PhD degrees in industrial engineering from
Purdue University and a BS degree from National Tsing
Hua University. He is a fellow of the International Academy
of Production Engineers (CIRP) and ASME.

Adaptive attribute selection for configurator design via Shapley value 195

The impact of product configurators on lead times
in engineering-oriented companies

ANDERS HAUG,1 LARS HVAM,2 AND NIELS HENRIK MORTENSEN3

1Department of Entrepreneurship and Relationship Management, University of Southern Denmark, Kolding, Denmark
2Department of Management Engineering, Technical University of Denmark, Lyngby, Denmark
3Department of Management, Technical University of Denmark, Lyngby, Denmark

(RECEIVED March 17, 2010; ACCEPTED October 29, 2010)

Abstract

This paper presents a study of how the use of product configurators affects business processes of engineering-oriented com-
panies. A literature study shows that only a minor part of product configuration research deals with the effects of product
configuration, and that the ones that do are mostly vague when reporting the effects of configurator projects. Only six cases
were identified, which provide estimates of the actual size of lead time reduction achieved from product configurators. To
broaden this knowledge, this paper presents the results of a study of 14 companies concerning the impact of product con-
figurators on business processes related to the creation of quotes and detailed product specifications. The study documents
impressive results of the application of configurator technology. For example, in the data retrieved the use of configurators
was estimated to have implied up to a 99.9% reduction of the quotation lead time with an average estimated reduction of
85.5%.

Keywords: Configurator; Lead Times; Process Reengineering; Product Configuration; Sales Configuration

1. INTRODUCTION

Product configurators represent one of the most successful
applications of artificial intelligence principles (Stumptner,
1997; Sabin & Weigel, 1998; Blecker et al., 2004). A product
configurator is a software-based expert system that supports
the users in the specification of customized products by pro-
viding design choices for the user while restricting how differ-
ent elements and their properties may be combined. Thus, the
use of configurator technology means that product specifica-
tion tasks, which normally require human experts, can be au-
tomated. In many cases, product configurators have been used
for automating the creation of quote prices, sales prices, bills
of materials, and other product specifications.

Product configurators can be divided into two main classes:
those used for the specification of products that are traditionally
mass produced and those aimed at products that are tradition-
ally engineered (Haug et al., 2009). Configuration of products
that are traditionally mass produced implies very little com-
plexity of the knowledge base of the configurator compared
to configurators aimed at engineered products, which can in-
clude thousands of rules for how elements and properties

may be combined. The focus of this paper is on configurators
that support products that typically require engineering work
for each customer order. In engineering-oriented companies,
the use of product configurators has resulted in a range of ben-
efits such as shorter lead times, improved quality of product
specifications, preservation of knowledge, use of fewer re-
sources for specifying products, optimized products, less rou-
tine work, improved certainty of delivery, and less time needed
for training new employees (Felfernig et al., 2000; Forza &
Salvador, 2002a; Ardissono et al., 2003; Hvam, 2004; Piller
et al., 2004; Helo, 2006).

Configurators can automate much of the work of human ex-
perts in sales and design processes, which implies that large
reductions of lead times can be achieved. Lead time reduction
is actually one of the most mentioned effects of using product
configurators, as the literature review in the subsequent section
of this paper shows. However, although this type of effect is
often mentioned, only little empirical evidence has been pro-
vided. It seems that no major studies that investigate such ef-
fects in a detailed manner have been carried out. Furthermore,
the few studies that do provide quantitative descriptions of
lead time reductions as a consequence of using configurators
are not fully comparable because of unclear research methods
and different focus. Thus, existing research does not provide
a basis for making solid generalizations about lead time reduc-

Reprint requests to: Anders Haug, Department of Entrepreneurship and
Relationship Management, University of Southern Denmark, Engstien 1,
Kolding 6000, Denmark. E-mail: adg@sam.sdu.dk

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 197–206.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000636

197

tions in successful product configurator projects. To contrib-
ute to the knowledge of the effects of configurators on lead
times, this paper answers the question: What are the effects
of using configurators in terms of reduction of lead time dura-
tion and man hours in engineering-oriented companies? The
question is answered based on studies of 14 companies.

The remainder of the paper is structured as follows. Section
2 investigates relevant literature on reduction of lead times as
a consequence of using product configurators, and Section 3
discusses the changes of business processes implied by the
use of configurators. Section 4 describes the method applied
for conducting the study of 14 companies, an Section 5 pre-
sents the results of the study. The paper ends with a conclu-
sion in Section 6.

2. LITERATURE STUDY

The literature study has the purpose of clarifying what exist-
ing configurator research has to say about the effects of
product configurators. The literature was found by searching
relevant databases of academic journals (including all Insti-
tute for Scientific Information indexed papers), conference
proceedings, and PhD projects. The search terms used were
“configurator” and “product configuration,” with results de-
limited to relevant areas of research. More than 100 config-
uration-related papers were found. However, the majority of
this literature deals with proposition of methods, tools, and
techniques, whereas empirically based studies of the effects
of configurators in the companies using this technology are
rare. The literature presented in the following subsection is
based on two delimitations: it includes only literature that
deals explicitly with product configuration/configurators; it
includes only literature that deals with the effects of config-
urators in engineering-oriented companies. To illustrate the
vagueness of descriptions of the effects of configurators
found in most relevant research, the following subsection pro-
vides quotes from the relevant papers.

2.1. Literature

Barker et al. (1989) describe the configurators at Digital Equip-
ment Corporation. These configurators are used to validate the
technical correctness (configurability) of customer orders and
to guide the actual assembly of these orders, that is, computers
and computer room layout and networks. They mention that
“overall the net return to Digital is estimated to be in excess
of $40 million per year.” Furthermore, the effects of the config-
urator are mentioned: “contributing to customer satisfaction,
lower costs, and higher productivity”; “ensures that complete,
consistently configured systems are shipped to the customer”;
“simplifies field and manufacturing training needs and avoids
confusion about new products that can delay time-to-market
significantly”; “increases manufacturing’s flexibility”; “in-
creased the technical accuracy of orders entering manufactur-
ing”; “assures that when the components of the order come to-
gether for the first time at the customer site the system will

work”; and “major positive impact on cycle times, inventory
levels, and manufacturing costs.”

Heatley et al. (1995) describe the case of Carrier Corpora-
tion, a major air-conditioning manufacturer. Carrier introduced
a configurator that is capable of configuring a set of part num-
bers for a particular air-conditioning equipment series based on
customer request. The configurator was conceived for use by
salespeople to support the process of filling orders. Heatley
et al. describe a number of effects of the configurator, for exam-
ple, the order throughput cycle was reduced from 6 days to 1
day, the number of manufacturable orders increased from
40% to 100%, and the incidence of pricing errors in orders
was reduced from 80% to none. In relation to sales, among oth-
ers, the following benefits are mentioned: elimination of non-
value added overhead, reduced warranty and factory rework
by $100,000 annually, improved customer satisfaction, im-
proved morale of sales force, and a doubling of the sales en-
gineers’ selling time.

Ariano and Dagnino (1996) describe a case in which a
manufacturer of modular wooden office furniture applies a
configurator for the creation of bills of materials. They men-
tion the following benefits achieved from the configurator: “a
new and more organized way of structuring the company’s
product line”; “allows for a more consistent, faster, easier,
and more comprehensive way to enter an order”; “while the or-
der is entered, the system verifies that the configuration of the
products is correct and compatible with the company’s offer-
ings”; “helps in quoting an accurate pricing to the company’s
products”; and “implies a reduction in the duplication of infor-
mation, pricing deviations, and configuration inconsistencies.”

Fleischanderl et al. (1998) from Siemens describe the use
of the Lava configurator for configuring large telecommuni-
cation systems. They state that process gains implied a return
on investment within the first year of use. In addition, they
claim that the configurator has “improved the quality of the
configuration results,” helps with “avoiding error-prone man-
ual editing of parameters,” has “revealed numerous errors,
such as cables having wrong length codes,” and “makes the
knowledge about the EWSD [telecommunication systems]
configuration explicit.”

Forza and Salvador (2002a) present a case study of a small
company that produces voltage transformers. They mention
the following effects of the introduction of a configurator: a
“reduction to almost zero of the errors in the configurations
released by the sales office”; “reducing the total time neces-
sary for generating the tender”; made it “possible to recover
a notable volume of man-hours, which freed part of the sales
personnel for tasks with greater additional value”; “made it
possible to increase technical productivity, both as regards
product documentation release and design activities”; an “in-
crease in technical department productivity”; a “formaliza-
tion of the company knowledge”; and enabling “the transfor-
mation of individual competencies into organizational
competencies.” Finally, they state that “product configurators
reduce the risk to lose a strategic competence because of de-
parture of a key employee.”

A. Haug et al.198

Forza and Salvador (2002b) present a case study concerning
the implementation of product configuration software in a small
manufacturing company that produces mold bases for plastics
molding and punching bases for metal sheet punching. The im-
plementation of the product configuration software resulted in
two main kinds of advantages: reduction of manned activities
in the tendering process (tendering lead time from 5–6 days
to 1 day) and an increase in the level of correctness of product
information (almost 100%). They state that the configurator “in
turn would reduce the eventual distortions in the company–cus-
tomer communication channel, reducing the chance of deliver-
ing a product that does not conform to the customer needs” and
“the pay-off for the customers, besides the positive effect of
better coordination, is the reduced time in generating product
specifications and drawings.” Finally, they argue that the case
study shows that the company obtained both a rapid payback
of the investment in configuration technology as well as a com-
petitive advantage, and the configurator can be propagated to
departments not directly involved in the implementation. In ad-
dition, the resulting new workflow can also affect the organiza-
tion of the customers, that is, interfirm coordination.

Raatikainen et al. (2004) present results of a case study
undertaken in two companies that develop and deploy config-
urable software product families. They state that for both com-
panies the configurable software product family approach
“seemed an efficient way to systemize the software develop-
ment and enable an efficient control of versions and variants
in a set of systems,” but that “neither of the companies had es-
timates of investment payback times or other economic justi-
fications when compared with, for example, project-based
software development.” They further claim that the configur-
able software product family approach “enabled the compa-
nies to delay variability binding to installation and even opera-
tion time” and “by using the configurators, the companies
were able to deploy products in such a way that, in practice,
there is no software engineering knowledge needed.” Finally,
they argue that their study shows that it is feasible to system-
atically develop families of software and manage the variabil-
ity within the software family.

Hvam et al. (2002, 2004) describe the configurator project
of Demex Electric, a Danish manufacturer of electronic switch-
boards. Hvam et al. (2002) summarize the effects of introduc-
ing a configurator in Demex Electric/Solar A/S as a “reduction
of lead time from 3–4 days to 10 minutes when generating
quotes,” “up to 10% reduction of materials,” and a “huge re-
duction in specification hours.”

Hvam (2004, 2006b) describes the case of American Power
Conversion (APC), a producer of data center infrastructure
such as uninterruptible power supplies, battery racks, power
distribution units, racks, cooling equipment, and accessories.
APC uses configurators for working out quotations and man-
ufacturing specifications. On the effects of the configurators it
is mentioned that “products are sold through the product con-
figuration system, which makes it possible for APC to control
a huge amount of sales personnel around the world”; “the
product configuration, including the work out of quotations

and manufacturing specifications, is carried out by the config-
uration system saving considerably resources”; “the lead time
for making quotations and manufacturing specifications is re-
duced from weeks to hours”; and “the product configuration
systems make it easier to introduce new versions of the prod-
ucts to the sales personnel and the customers.” In the context
of large complex infrastructure systems for data centers, Hvam
(2006b) states that the use of mass customization and config-
urators has implied a “reduction of the overall delivery time
for a complete system from around 400 to 16 days.”

Hvam (2004, 2006a) and Hvam et al. (2006) describe the
case of FLSmidth, a manufacturer of large processing plants
for cement production. Hvam (2006a) states that the appli-
cation of a configurator “has enabled FLSmidth to reduce re-
sources for the elaboration of quotations by 50%”; “means
that sales representatives do not have to burden engineering
specialists with the elaboration of budget quotations”; im-
plied that “the period from a client request to the signing of
the final contract has been considerably reduced”; “enables
FLSmidth to respond to all requests with a quotation”; im-
plies “more structured negotiations with the customer”; im-
plies that “budget quotations become more homogeneous
and of better quality”; “ensures that the sales person obtains
all the necessary information before the budget quotation is
made”; “means that a quotation can be made at an early stage
with only very little customer input”; implies “it becomes pos-
sible to simulate different solutions for the customer”; “enables
the company to optimise the cement plant in relation to parts
already constructed and in use within the FLS group”; implies
that “customers can be led to select FLSmidth standard solu-
tions instead of specialised/customised solutions”; and is “a
major means of internal knowledge sharing.” Hvam (2004)
states that “a gap analysis indicated that the lead time for mak-
ing budget quotations could be reduced from 3–5 weeks to 1–2
days, the resources spent could be reduced from 15–25 man-
days to 1–2 man-days,” and Hvam et al. (2006) state that
“the usage of engineering resources for developing a budget
quotation is reduced from 5 MW to 0.2 MW, and the lead
time is lowered from several weeks to a few days.”

A contribution to a more general picture of the effects of
product configurators in engineering-oriented companies is
offered by a research project on product configuration / that
emerged from this project. (Edwards et al., 2005) and the pa-
pers Danish on product configuration / that emerged from this
project. The project was carried out during the period of 2003
to 2004 and includes studies of 12 Danish firms that were
using product configurators at the time of the investigation.
Based on this project, Pedersen and Edwards (2004) present
the results of the 12 companies’ answers to the realized effects
of their configurator projects, as shown in Figure 1. The firms
gave scores from 1 to 5 (1 ¼ very small and 5 ¼ very large)
and 0 ¼ without influence. As seen, the three top scorers
are lower turnaround time (average � 3.6), improved quality
(average � 4.4), and less use of resources (average � 3.3).

Forza et al. (2006) present a case study of a company that
produces electric motors. The case shows how the right

The impact of product configurators on lead times 199

grouping of components (into kits) has enabled the company
to implement a product configurator and to postpone product
differentiation along the material flow. They state that the
configurator “enhances product assortment communication”;
“makes it easier and faster to explore the solution space of-
fered by the company”; “enables a faster, accurate generation
of a feasible offer without consulting the technical office”;
“enables a faster, accurate creation of product code, BOM,
and production cycle”; “allows storage of a large amount of
customer data collected during the exploration and configura-
tion phases”; and “allows rapid retrieval of past configura-
tions for maintenance or repair purposes.”

Petersen et al. (2007) describe the case of Aalborg Indus-
tries, a company that specializes in steam and heat generating
equipment for maritime and industrial applications. The com-
pany has implemented a product configurator to render the
sales-delivery process more efficient. Petersen at al. (2007)
state that because of the configurator the company is “gaining
significant benefits, and has learned much about the chal-
lenges of implementing product configuration in ETO.”

Hong et al. (2008) describe the case of Gienow Windows
and Doors, a Canadian manufacturing company of windows
and doors. This company has introduced a configurator with
the purpose of modeling the designs based on customer
needs, creating requirements of materials, machines, and per-
sonnel, and identifying the optimal production schedule.
Hong et al. (2008) state that “the lead time from a customer
order to the product delivery has been reduced to 3 weeks
compared to the average of 2 months in this industry.”

Ladeby (2009) describes the configurator project at NNE
Pharmaplan, a Danish supplier of systems, consultancy, and
engineering services to the international pharmaceutical and
biotechnical industry. The configurator is primarily a 3D vi-

sualization system for plant layout, and it does not produce
prices or detailed bills of materials. It is stated that a main ben-
efit of the system is that “a customer should not wait for weeks
before he sees drawings and illustrations of what has been
agreed upon.”

Ladeby (2009) describes the configurator project of GEA
Niro, an international engineering company within the area of
design and supply of spray drying plants. According to Ladeby
(2009), the configurator of GEA Niro focuses on the quotation
phase, and it is used in about 50% of the first quotations sent
out to customers. He states that “the process of making quota-
tions has become more standardised and formalised,” “product
knowledge has become more standardised,” and the sales per-
son “gets the whole quotation served on a plate and sends it
to the customer.” It is also mentioned that “preservation of
knowledge has been a motivation for the configurator project.”

2.2. Literature summary

As shown in the literature review in the previous section, most
literature based on studies of configurator projects is rather
vague when it comes to describing the effects of such projects
in terms of the effects on business process length and resource
consumption. Although much such literature talks about large
reductions of lead times and similar, it is actually unclear if
such reductions represent, for example, 10% or 99%. The
six cases with the most accurately described effects of config-
urators on lead times are summarized in Table 1.

In the first four of the six cases in Table 1, it is clear that
configurators have had massive effects on lead times in the
quotation phase, that is, configurators in these cases are esti-
mated to have reduced lead times between 65% and 99.4%.
The last two cases refer to other types of lead times for which

Fig. 1. The benefits realized from configurator projects (Pedersen & Edwards, 2004). [A color version of this figure can be viewed online at
journals.cambridge.org/aie]

A. Haug et al.200

reason the reductions are not directly comparable. Thus, only
four comparable cases were found.

3. DEFINITIONS

As a basis for carrying out the studies of the effects of product
configurators, first some basic definitions were set forth on how
relevant business processes could be affected. As mentioned,
this paper focuses on what is referred to as “engineering-ori-
ented companies.” In this paper the term is used to describe en-
gineer-to-order (ETO) companies, and the part of the assem-
bly-to-order (ATO) and make-to-order (MTO) companies in
which each customer order requires some engineering work,
that is, companies that are not pure ATO or MTO but in be-
tween ETO and ATO or MTO (Olhager, 2003). Figure 2 shows
the four traditional types of product delivery strategies.

In ETO companies a product is often defined in two major
turns, namely, a high-level design in the sales phase and a de-
tailed design phase upon acceptance of an offer. Typically
configurators are only used for high-level design in ETO
companies, because it would be extremely time consuming to
define the solution space at a detailed level. An example of
this is the FLSmidth case (Hvam, 2004, 2006a). At FLSmidth,
potential customers provide some requirements (i.e., a form of
high-level design) that FLSmidth, by using a configurator, con-
verts into a high-level design and based on this a quote. If the
quote is accepted, detailed design is initiated. In contrast, often
in ATO companies that typically deal with somewhat simpler
products, the detailed design is defined during the sales phase

as a basis for calculating the price. An example of such a com-
pany is APC (Hvam, 2004, 2006b). At APC, configurators
can produce a quote at a detailed design level, for example,
for some of their emergency power supply systems (Hvam,
2006b). When focusing on the process from RFQ (request
for quotation) to production planning, the two discussed pro-
cess types can be illustrated in a principle manner as seen in
Figure 3. The gray boxes symbolize the processes normally
automated (or at least partly) by configurator technology,
wheres the black boxes show processes that in principle could
be automated but typically are not (Hvam et al., 2004, 2008;
Edwards et al., 2005). The color of the process “detailed de-
sign” is gray and black because the “simple” part of the engi-
neering work in this process is often automated due to the
overlap between high-level and detailed design.

As seen in Figure 3, at the quote creation stage of process
type 1, only high-level design has been carried out, whereas
in process type 2 detailed design has been made at this stage.
To illustrate the difference between the configurator outputs
of such processes, this paper proposes a division based on
the level of detail of the output, which is illustrated in a class
diagram in Figure 4.

In engineering-oriented companies, the quote creation phase
often lasts days or weeks without the use of configurators. For
example, at APC the quote process for emergency power sup-
ply systems lasted weeks before the use of configurators, and
the gains from automating the quotation process at APC im-
plied a reduction of the quote lead time of more than 90%
(Hvam et al., 2006b). This reduction can be explained by the

Fig. 2. The order penetration point (OPP; Olhager, 2003).

Table 1. Literature with quantified estimates of lead time reductions

Literature Case Lead Time Effect

Heatley et al. (1995) Carrier Corporation Order throughput cycle from 6 days to 1 day
Forza & Salvador (2002b) Voltage transformer manufacturer Quote lead time from 5–6 days to 1 day
Hvam et al. (2002), Hvam et al. (2004) Demex Electric Creation of quote lead time from 3–4 days to 10 min
Hvam (2004, 2006a),

Hvam et al. (2006)
FLSmidth Creation of quote lead time gap analysis indicated a reduction

from 3–5 weeks to 1–2 days (Hvam, 2004) and a reduction
from several weeks to a few days (Hvam et al., 2006)

Hvam et al. (2004, 2006) American Power Conversion Overall delivery time for a complete system estimated to be
reduced from around 400 to 16 days

Hong et al. (2008) Gienow Windows and Doors Lead time from a customer order to the product delivery
reduced to 3 weeks compared to an average of 2 months
in the industry

The impact of product configurators on lead times 201

fact that the majority of the work associated with this process
has been automated. However, the question is exactly which
processes do configurators automate or reduce the duration
of? To understand this question better, Figure 5 shows a gener-
alized illustration of a quotation process. This is subsequently
discussed.

As seen in Figure 5, the quotation generation process can
be divided into three phases: initial product specification, fur-
ther product specification, and quote creation. Besides the
duration of the processes included in the figure, time can be
added for waiting, handovers, and other internal communica-
tion. The use of configurators can affect all these activities. In

Fig. 3. Engineering-oriented customizers’ processes. ETO, engineer-to-order companies; ATO, assembly-to-order companies;
MTO, make-to-order companies; RFQ, request for quotation.

Fig. 4. The main configurator output types.

A. Haug et al.202

phase 1, a configurator directly reduces the duration of the
process termed “product engineering.” In many cases, config-
urators almost fully automate this phase. Subsequently, the
duration of this process is reduced to the time it takes for
the configurator to generate the relevant specifications, that
is, minutes or seconds. In many cases, phase 2 comes into
play when a need for further information occurs during the
product engineering. Because a configurator works as a check
list for needed information, a configurator may imply that phase
2 can be avoided or at least limit the number of loops in this
phase. Normally phase 3 is also automated by a configurator,
at least the part of calculating sales prices. Thus, it is also pos-
sible to significantly reduce the duration of phase 3.

4. RESEARCH METHOD

To investigate the effects of product configurators on the lead
times of engineering-oriented companies, a study of the use of
product configurators in the Danish industry was carried out
during spring and early summer of 2009. The study was carried
out as structured interviews of employees with knowledge of
the configurator projects. The main reason for using interviews
instead of a Web-based or paper-based questionnaire survey is

that the area in focus is characterized by much unclear termi-
nology. Therefore, the chosen approach allowed for the inter-
viewer to clarify the meaning of questions not understood.

A total of 26 companies were interviewed. For this paper
a sample of 14 companies was selected based on ability to
estimate the effects on lead times from the use of configura-
tors, and use of configurators that focus on products that are
traditionally engineered. All these 14 companies produce
business-to-business products, and in 9 of the 14 companies,
several configurators were in operation. In the context of
counting the number of configurators, a single configurator
was defined as an operable software application that has an
individual knowledge base. In most cases, such configurators
were created by using the same standard configurator soft-
ware shells. To be able to compare the data obtained from
the different companies while focusing on relatively recent
projects, the companies were told to focus on a configurator
developed recently, preferably as complex and widely used
as possible.

Table 2 shows the background information on the compa-
nies included and their configurators. As seen in Table 2, 11
of the 14 companies apply configurators for quotations and
for creating the manufacturing basis, but 3 of these only use

Fig. 5. The quotation process.

The impact of product configurators on lead times 203

configurators for the quotation phase. Table 2 also shows the
ratio between configured products (i.e., defined by use of a
configurator) and customized products (i.e., user-specific
products, not necessarily defined by using a configurator).
Note that the percentage of configured products in 8 of the
cases is smaller than the number of customized products, in
4 cases all customized products are configurable, and in 2
cases the number of configured products are higher than the
percentage of customized products. The explanation for the
latter phenomenon is that standard products are sold via a
configurator; that is, it is the combination of products that is
customized, not the products themselves.

5. RESULTS

This section presents the results of the study related to quota-
tion and manufacturing, which are subsequently discussed.

Table 3 and Table 4 show the companies’ answers to the
effects of configurators for the creation of quotes as measured
in duration and man-hour consumption, respectively. Note
that the numbers represent generalized estimates made by
key personnel.

As seen in Table 3, the lead time reductions estimated were
rather significant. More specifically, 12 of the 13 companies
that were able to answer this question provided estimates of a

75% to 99.9% reduction of quotation lead time. One com-
pany estimated a 50% reduction, but it should be noted that
the original lead time in this case was only 60 min; therefore,
the 30 min remaining may be related mainly to customer in-

Table 2. Background information

Turnover

ID
Approx. No. of

Employees
Product
Types

Year of 1st
Config.

No. of
Config.

Share From
Customized

Products

Part From
Configured

Products

Config. Support
for Quotation

Process

Config. Product
Detail for
Production

1 4500 (WW) Plants, systems,
components

2004
6 90 30

Yes No

2 600 (DK) Plants, systems,
components

1985
10 90 50

Yes Yes

3 50 (DK) Components 1997 2 70 10 Yes Yes
4 2800 (WW) Systems 2001 1 90 30 Yes Yes
5 5000 (WW) Building parts and

systems
2003

5 90 30
Yes Yes

6 18,000 (WW) Systems,
components

2001
2 30 10

Yes Yes

7 5000 (WW) Plants, systems 1997 4 10 10 Yes Yes
8 26,000 (WW) Systems,

components,
spare parts

1995

2 5 85

Yes No

9 10,000 (WW) Building parts and
systems

1999
1 10 100

Yes Yes

10 3000 (WW) Systems,
components

1999
6 70 70

Yes Yes

11 75 (DK) Building parts and
systems

2006
1 50 40

Yes Yes

12 30 (DK) Components 2006 1 50 20 Yes No
13 2400 (WW) Building parts and

systems, service
1999

1 70 70
Yes Yes

14 750 (WW) Systems 2000 1 10 10 Yes Yes

Note: WW, worldwide; DK, Denmark.

Table 3. Effects of the process duration on the quotation
process

ID Without Config.a With Config.b Duration Reductionc

1 Do not know Do not know Do not know
2 2 days 9 min 99.9%
3 30 days 2 days 93.3%
4 5 days 2–8 h 80–95%
5 2–15 (avg. 8.5) h 10–180 min 64.7–98.0%
6 14 days 1 day 92.9%
7 50 days 2 days 96%
8 3 days 20 min 98.6%
9 2–5 (avg. 3.5) days 5 min to 8 h 71.4–99.7%

10 120 min 5 min 95.8%
11 60 min 30 min 50%
12 60 min 15 min 75%
13 4 h 1 h 75%
14 5 days 1 day 80%

Average 85.5%

aDuration of the creation of a quote before using the configurator.
bDuration of the creation of a quote using the configurator.
cReduction of the duration of the creation of a quote.

A. Haug et al.204

teraction. In general, the number of man-hours saved is a little
lower than the lead time reduction, that is, 85.5% versus
78.8%. This difference may be explained by the fact that con-
figurators cause fewer handovers. Fewer handovers imply
less waiting time between tasks, which is time wherein no hu-
man action is required. Thus, the lead time is reduced whereas
the use of man-hours is not, under the assumption that rele-
vant personnel carries out other tasks while waiting.

Table 5 shows the estimates of the effects configurator use
on the duration of the process of creating detailed product
specifications as a basis for production.

As can be seen, 8 of the 11 companies that use configurator
output as a basis for manufacturing were able to answer the
question of lead time reduction in the product specification
part of the production process. The average of these reduc-
tions was 85.2%. The high average reduction estimated can
be explained by the fact that the configurator in the 8 compa-
nies produces most (if not all) of the product specifications
needed for production during the quotation phase.

6. CONCLUSION

This paper has provided new insight into how product config-
urators may have an impact on business processes in engi-
neering-oriented companies, more specifically, the impact
of configurators on the quotation and production preparation
processes.

This paper first reviewed the literature in order to clarify the
effects of product configurators on lead times. However, de-
spite including more than 100 papers in the review, only six
cases were identified in which reports of lead time reductions
in a quantitative manner were provided. Next the paper pre-
sented the result of structured interviews with 14 companies
on the effects of product configurators on lead times. For quo-
tation processes, the use of configurators in 12 of the 14 com-
panies implied a 75% to 99.9% reduction of quotation lead
time, whereas the last 2 companies experienced a 50% reduc-
tion or were not able to answer, respectively. The average lead
time reduction relating to the creation of quotes was 85.5%, and
the average man-hours saved represented a reduction of 78.8%.
Concerning the creation of detailed product design specifica-
tions, 11 companies had this focus, and of these, 8 were able
to answer the question of lead time reduction. The average
size of these estimates of lead time reductions was 85.2%.

The results of this paper clearly show that engineering
companies that successfully implement product configurators
can achieve significant lead time and man-hour reductions in
processes relating to quotation and production preparation.
However, the creation of configurators is often a risky and
highly time-consuming project. Thus, even if a 90% reduc-
tion of lead time and man-hours is achieved, this may still
be an unprofitable project if the costs of achieving this are
too high. In this context, note that configurators need contin-
uous updates as the product assortment changes that may re-
sult in high maintenance costs. Therefore, instead of being
blinded by the impressive effects of configurators docu-
mented by this study, this paper recommends to carefully es-
timate the expected costs before initiating such a project.

Based on the configurator literature identified in the litera-
ture review, it seems that the study presented in this paper is
the first major study that has investigated in a detailed manner
the impact of product configurators on business processes re-
lated to the creation of quotes and manufacturing-related
product specifications. More specifically, only 6 cases in

Table 5. Effects on the process of creating product
specifications for manufacturing

ID Without Config.a With Config.b Duration Reductionc

1
2 Do not know Do not know Do not know
3 3–13 (avg. 8) days 0–3 days 62.5–100%
4 Do not know Do not know Do not know
5 3–4 (avg. 3.5) h 0 100%
6 5 h 3–5 min 98.3–99.0%
7 Do not know Do not know Do not know
8
9 Avg. 4 h 0 100%

10 60 min 30 min 50%
11 60–120 (avg. 90) min 30 min 66.7%
12
13 1 day 1 min 99.8%
14 10 days 1.5 days 85%

Average 85.2%

aDuration of the creation of the product specifications for manufacturing
before using the configurator.

bDuration of the creation of the product specifications for manufacturing
using the configurator.

cReduction of the duration of time for creation of the product specifica-
tions for manufacturing.

Table 4. Effects on the quotation process in man-hours

ID Without Config.a With Config.b Man-Hour Reductionc

1 20 h 2 h 90%
2 3–4 h 9 min 95.0–96.3%
3 Do not know Do not know Do not know
4 37 h 2–3 h 91.9–94.6%
5 2–15 (avg. 8.5) h 10–180 min 64.7–98.0%
6 4–5 h 1 h 75–80%
7 150 h 6 h 96%
8 1.5 h 20 min 77.8%
9 1 h 5–10 min 83.3–91.6%

10 2 h 5 min 95.8%
11 1 h 30 min 50%
12 2 h 1 h 50%
13 8 h 4 h 50%
14 5 days 1 day 80%

Average 78.8%

aMan-hours used for the creation of a quote before using the configurator.
bMan-hours used for the creation of a quote using the configurator.
cReduction of the man-hours used for the creation of a quote.

The impact of product configurators on lead times 205

which such effects have been quantified were found in litera-
ture. Thus, the data from the 14 cases of this paper represent a
significant contribution to configuration literature.

REFERENCES

Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G.,
Schäfer, R., & Zanker, M. (2003). A framework for the development of
personalized, distributed web-based configuration systems. AI Magazine
24(3), 93–108.

Ariano, M., & Agnino, D. (1996). An intelligent order entry and dynamic bill
of materials system for manufacturing customized furniture. Computers
and Electrical Engineering 22(1), 45–60.

Barker, V.E., O’Connor, D.E., Bachant, J., & Soloway, E. (1989). Expert sys-
tems for configuration at Digital: XCON and beyond. Communications of
the ACM 32(3), 298–318.

Blecker, T., Abdelkafi, N., Kreutler, G., & Friedrich, G. (2004). Product con-
figuration systems: state of the art, conceptualization and extensions. Proc.
8th Maghrebian Conf. Software Engineering (MCSEAI 2004), pp. 25–36.

Edwards, K., Hvam, L., Pedersen, J.L., Møldrup, M., & Møller, N. (2005).
Udvikling og implementering af konfigureringssystemer: Økonomi, Tek-
nologi og Organisation [Final Report From PETO Research Project].
Lyngby, Denmark: Technical University of Denmark, Department of
Manufacturing Engineering and Management.

Felfernig, A., Jannach, D., & Zanker, M. (2000). Contextual diagrams as
structuring mechanisms for designing configuration knowledge bases
in UML. In UML 2000—The Unified Modeling Language, Advancing
the Standard, Int. Conf. (Kent, S., & Selic, B., Eds.), LNCS, Vol.
1939, pp. 240–254. Heidelberg: Springer.

Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., & Stumptner,
M. (1998). Configuring large systems using generative constraint satis-
faction. IEEE Intelligent Systems 13(4), 59–68.

Forza, C., & Salvador, F. (2002a). Managing for variety in the order acquisi-
tion and fulfilment process: the contribution of product configuration sys-
tems. International Journal of Production Economics 76(1), 87–98.

Forza, C., & Salvador, F. (2002b). Product configuration and inter-firm co-
ordination: an innovative solution from a small manufacturing enterprise.
Computers in Industry 49(1), 37–46.

Forza, C., Trentin, A., & Salvador, F. (2006). Supporting product configura-
tion and form postponement by grouping components into kits: the case
of MarelliMotori. International Journal of Mass Customization 1(4),
427–444.

Haug, A., Ladeby, K., & Edwards, K. (2009). From engineer-to-order to
mass customization. Management Research News 32(7), 633–644.

Heatley, J., Agraval, R., & Tanniru, M. (1995). An evaluation of an innova-
tive information technology—the case of Carrier EXPERT. Journal of
Strategic Information Systems 4(3), 255–277.

Helo, P.T. (2006). Product configuration analysis with design structure ma-
trix. Industrial Management & Data Systems 106(7), 997–1011.

Hvam, L. (2004). A multi-perspective approach for the design of Product
Configuration Systems—an evaluation of industry applications. Proc.
Int. Conf. Economic, Technical and Organizational aspects of Product
Configuration Systems (PETO), pp. 13–25.

Hvam, L. (2006a). Mass customisation of process plants. International Jour-
nal of Mass Customisation 1(4), 445–462.

Hvam, L. (2006b). Mass customisation in the electronics industry based on
modular products and product configuration. International Journal of
Mass Customisation 1(4), 410–426.

Hvam, L., Malis, M., Hansen, B., & Riis, J. (2004). Reengineering of the
quotation process—application of knowledge based systems. Business
Process Management Journal 10(2), 200–213.

Hvam, L., Mortensen, N.H., & Riis, J. (2008). Product Customization. Ber-
lin: Springer–Verlag.

Hvam, L., Pape, S., & Nielsen, M.K. (2006). Improving the quotation process
with product configuration. Computers in Industry 57(7), 607–621.

Hvam, L., Riis, J., & Malis, M. (2002). A multi-perspective approach for the
design of configuration systems. Proc. 15th European Conf. Artificial In-
telligence. Accessed at www.produktmodeller.dk.

Hong, G., Hu, L., Xue, D., Tu, Y.L., & Xiong, Y.L. (2008). Identification of
the optimal product configuration and parameters based on individual
customer requirements on performance and costs in one-of-a-kind
production. International Journal of Production Research 46(2), 3297–
3326.

Ladeby, K.R. (2009). Applying product configuration systems in engineering
companies: motivations and barriers for configuration projects. PhD
Thesis. Technical University of Denmark, Department of Management
Engineering and Operations Management.

Olhager, J. (2003). Strategic positioning of the order penetration point. Inter-
national Journal of Production Economics 85(3), 319–329.

Pedersen, J.L., & Edwards, K. (2004). Product configuration systems and
productivity. Proc. Int. Conf. Economic, Technical and Organizational
Aspects of Product Configuration Systems (PETO), pp. 165–176.

Petersen, T.D., Jorgensen, K.A., Hvolby, H.H., & Nielsen, J.A. (2007).
Multi level configuration of ETO products. Proc. 4th Int. Conf. Product
Lifecycle Management: Assessing the Industrial Relevance, pp. 293–302.

Piller, F.T., Moeslein, K., & Stotko, C.M. (2004). Does mass customization
pay? An economic approach to evaluate customer integration. Production
Planning & Control 15(4), 435–444.

Raatikainen, M., Soininen, T., Männistö, T., & Matilla, A. (2004). A case
study of two configurable software product families. In Software
Product-Family Engineering, 5th Int.Workshop, PFE 2003 (van der
Linden, F., Ed.), LNCS, Vol. 3014, pp. 403–421. New York:
Springer–Verlag.

Sabin, D., & Weigel, R. (1998). Product configuration frameworks—a
survey. IEEE Intelligent Systems and Their Applications 13(4), 42–49.

Stumptner, M. (1997). An overview of knowledge-based configuration. AI
Communications 10(2), 111–126.

Anders Haug is an Assistant Professor in the Department of
Entrepreneurship and Relationship Management at the Uni-
versity of Southern Denmark. He received his PhD from
the Technical University of Denmark. Dr. Haug’s research fo-
cuses on information systems, knowledge engineering,
product configuration, and knowledge management from an
industrial perspective. He has published a long list of papers
on these topics in international journals and at international
conferences and has years of practical experience from pro-
jects in these areas.

Lars Hvam is a Professor at the Technical University of Den-
mark. He has been working on product configuration for
more than 15 years as a teacher, researcher, and consultant
for more than 15 configuration projects in large industrial
companies. He has supervised 8 PhD projects on the con-
struction and application of configuration systems and has
been the project leader for 4 large research projects on
product configuration. Dr. Hvam is also the founder and cur-
rent chairman of the Product Modelling Association (www.
productmodels.org), whose aim is to disseminate knowledge
of the possibilities offered by product configuration.

Niels Henrik Mortensen is a Professor at the Technical Uni-
versity of Denmark. He has been engaged in research into and
teaching of product configuration for 10 years. Dr. Mortensen
has also been a consultant for more than 15 configuration pro-
jects for companies in Denmark and abroad. He is the super-
visor for six PhD students within this field. Prof. Mortensen is
a member of the board of the Product Modelling Association.

A. Haug et al.206

CALL FOR PAPERS

AI EDAM Special Issue, August 2012, Vol. 26, No. 3
SKETCHING AND PEN-BASED DESIGN INTERACTION

Guest Editors: Levent Burak Kara & Maria C. Yang

Sketching is a primary medium for ideation and communication among humans, and it is widely used in tasks involving both
synthesis (design, creation) and analysis (problem solving, modeling, editing, marking). The increased availability of support-
ing digital tools has caused interest in sketch-based interaction to surge considerably, and researchers have developed compu-
tational systems and applications that are capable of working from such input. The challenges along the way, however, have
forced us to take a closer look at our knowledge of sketching and our interactions with sketches, because we realize how little
we understand the way they facilitate and contribute to our creative tasks.

This Special Issue presents new research that will push the field forward and establish future directions in sketching and pen-
based interaction. Thus, we are interested in theories, methods, systems, and experiments that shed light on the knowledge con-
tained and communicated in sketches; the role of sketches in design, creativity, and problem solving; and the utility of sketches
in both human–human and human–computer interaction.

We seek contributions from a variety of fields including engineering, computer science, cognitive sciences, psychology, ar-
chitecture, and art. Accepted papers are expected to provide new insights and approaches to existing problems or identify new
theories and problems that will fill the knowledge gap in the field. Both theoretical and computational studies are welcome.

Topics of interest include, but are not limited to, the following:

† Knowledge representation, capture, and reuse in sketching
† The role of sketching in design, creativity, problem solving, and cognition
† Sketch-based generative design
† Sketching in collaborative design
† Sketching and aesthetics
† Sketch recognition
† Sketch-based computer-aided design and solid modeling
† Novel sketch interfaces, visualization, and implications
† Applications in engineering, computer graphics, art, architecture, medicine, and so forth

All submissions will be anonymously reviewed by at least three expert reviewers, and the selection for publication will be
made on the basis of these reviews. The criteria for acceptance will be based on the importance of the problem and the review
of the literature, as well as the scientific approach, experiments or evaluations, and the significance of the results.

Information about the format and style required for AI EDAM papers can be found at www.cs.wpi.edu/~aiedam/Instructions/
Note that all inquiries and submissions for Special Issues go to the Guest Editors, not to the Editor in Chief.

Important Dates
Intent to submit (Title and Abstract): As soon as possible
Submission deadline for full papers: 1 May 2011
Reviews due: 30 August 2011
Notification and reviews to authors: 30 September 2011
Revised version submission deadline: 15 January 2012

Guest Editors
Levent Burak Kara Maria C. Yang
Mechanical Engineering Department Engineering Systems Division
Carnegie Mellon University Massachusetts Institute of Technology
Scaife Hall 315 Room 3-449B
5000 Forbes Avenue 77 Massachusetts Avenue
Pittsburgh, PA 15213 Cambridge, MA 02139-4307
E-mail: lkara@cmu.edu E-mail: mcyang@mit.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 207.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000648

207

CALL FOR PAPERS

AI EDAM Special Issue, May 2013, Vol. 26, No. 4
INTELLIGENT DECISION SUPPORT AND MODELING

Guest Editors: Andy Dong & Julie Jupp

Understanding how decisions are made in risky situations with incomplete, imperfect, and uncertain information continues to be
a critical interdisciplinary research question that has far-reaching implications in fields ranging from engineering to economics
to public policy. In situations where multiple alternatives to a particular problem exist, each with uncertain variables and payoffs
that must be analyzed and decided upon, the aim is to improve decision making so that goals can be attained while minimizing
undesirable, unintended consequences.

Concurrent with the problem of decision making is forecasting the effects of decisions. Both of these matters are complicated
by the realities of collective decision making of increasing scale and complexity that is typical of highly complex engineering
design problems. Decision-making research is also progressively turning to the problem of the complex interplay of stake-
holders, each with differing authority and information on which to make decisions and who have competing beliefs and incen-
tives. All of these facets of decision make this an exciting area of research.

In order to tackle these matters, research methods in decision making now range from formal, mathematical modeling to sta-
tistical mechanics based models to agent-based modeling and simulation to empirical, behavioral research. Research in this area
is reaching beyond normative models of decision making to examine cognitive (e.g., frames), emotional (e.g., beliefs), and so-
cial factors (e.g., herding) that influence decision making.

This Special Issue is aimed at disseminating the state-of-the-art research and applications, addressing the major challenges
and issues of decision modeling, and developing and applying intelligent decision support systems. The Guest Editors invite
authors to submit original papers to this Special Issue. We are also interested in authoritative reviews of the state of the art
and directions for future research in the area.

The Special Issue will cover, but is not limited to, the following topics:

† Decision support systems and decision process modeling
† Empirical studies in decision making including handling risk, uncertainty, and imperfect information in individual, small

group, and collective decision making
† Decision analysis including new computational methods for analyzing large-scale decision networks
† Decision theories, including game theory, utility theory, probability theory, fuzzy set theory, Bayesian theory, among

others
† Approaches to decision-based design

All submissions will be anonymously reviewed by at least three reviewers. The selection for publication will be made on the
basis of these reviews. High-quality papers not selected for this Special Issue may be considered for standard publication in
AI EDAM.

Information about the format and style required for AI EDAM papers can be found at www.cs.wpi.edu/~aiedam/Instructions/
Note that all inquiries and submissions for Special Issues go to the Guest Editors, not to the Editor in Chief.

Important Dates
Intent to submit (Title and Abstract): As soon as possible
Submission deadline for full papers: 15 September 2011
Reviews due: 15 December 2011
Notification and reviews to authors: 15 January 2012
Revised version submission deadline: 1 April 2012

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 209–210.
Cambridge University Press, 2011 0890-0604/11 $25.00
doi:10.1017/S089006041000065X

209

Guest Editors
Andy Dong Julie Jupp
Faculty of Architecture, Design and Planning School of the Built Environment
Room 275, G04 Wilkinson 702–730 Harris Street
University of Sydney University of Technology, Sydney
Sydney, NSW 2006, Australia Ultimo, NSW 2007, Australia
E-mail: andy.dong@sydney.edu.au E-mail: julie.jupp@uts.edu.au

Call for Papers210

CALL FOR PAPERS

AI EDAM Special Issue, May 2013, Vol. 27, No. 2
STUDYING AND SUPPORTING DESIGN COMMUNICATION

Guest Editors: Maaike Kleinsmann & Anja Maier

Communication is an essential part of any design process. Problems in design communication can lead to delays, mistakes, and
even the ultimate failure of projects. Design communication is a multifaceted and complex phenomenon to study. It is about
products and services that may or may not yet exist and includes abstraction to possible future situations. Communication
can be formal or informal. For example, it can happen at the same time (synchronously) or at different times (asynchronously)
and it has different directions, such as from manager to designer (top-down), from designer to manager (bottom-up), between
designers, and between designers and the users. Transmitted information can take many different forms. It can be spoken, writ-
ten, or drawn and can be sent and received using different media. Further, a designer may work alone. More likely, however, the
design process is executed in large teams with members from differing backgrounds.

This Special Issue encourages investigation of a number of focus areas, including the following:

† design communication during different design stages of the product;
† design communication in different situations, for example, critical situations;
† interface communication (between a product and a designer, between designers, between design teams, between compa-

nies, between designers and society as a whole);
† organization of a design team to enable adequate communication, for example, the impact of team diversity or remote or

colocated teams on the design process;
† emergence of shared understanding through design communication;
† communication patterns in design meetings;
† impact of affective design communication on the design process;
† nature of informal and formal communication in the design process;
† visualization of design rationale as design communication;
† interpretation of intent from sketches and other forms of representation;
† using artifacts, such as drawings and prototypes, as media in the design process;
† the role and importance of the shape of products, for example, product language;
† understanding and supporting the information requirements of a design engineer;
† multimodal design communication; and
† the future of design communication in practice and research into design communication.

In investigating the topics listed above, we often draw on insights and use methods from a number of scholarly disciplines to frame
the phenomenon observed, to analyze our findings, and to draw our conclusions. Conscious or not, explicit or not, we as design
researchers view the subject matter from a certain disciplinary angle. Perhaps we even use several. Ideally, the authors of this Special
Issue will draw out the angle chosen and make its applicability and usefulness to design practice and research explicit.

We welcome papers that are empirical, conceptual, theoretical, or speculative.

† Empirical papers perhaps report on the practice of communication in design using field studies or experiments.
† Conceptual papers might reflect on existing discussions in the literature.
† Theoretical papers may explore one perspective or create an in-depth comparison between different theories of commu-

nication and their application to designing products.
† Speculative papers might describe the nature and future of design communication.

Together, the papers are intended to show an overview of the fields of research that contribute to the study of communication
in design.

All submissions will be anonymously reviewed by at least three reviewers. The selection for publication will be made on the basis
of these reviews. High quality papers not selected for this Special Issue may be considered for standard publication in AI EDAM.

Information about the format and style required for AI EDAM papers can be found at www.cs.wpi.edu/~aiedam/Instructions/
Note that all inquiries and submissions for Special Issues go to the Guest Editors, not to the Editor in Chief.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 211–212.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000661

211

Important Dates

Intent to submit (Title and Abstract): Before 31 January 2011
Submission deadline for full papers: 1 September 2011
Notification and reviews to authors: 15 January 2012
Revised version submission deadline: 1 May 2012
Final version submission deadline: 1 October 2012

Guest Editors

Maaike Kleinsmann Anja Maier
Department of Product Innovation Management Department of Management Engineering
Faculty of Industrial Design Engineering Technical University of Denmark
Delft University of Technology Produktionstorvet, Building 425
Landbergstraat 15, Delft 2628CE DK-2800 Kgs. Lyngby
The Netherlands Denmark
E-mail: M.S.Kleinsmann@tudelft.nl E-mail: amai@man.dtu.dk

Call for Papers212

