
1

An Integrated Environment for the Development of

Knowledge-Based Recommender Applications

Abstract. The complexity of product assortments offered by online selling platforms makes the selection of

appropriate items a challenging task. Customers can differ significantly in their expertise and level of knowledge

regarding such product assortments. Consequently, intelligent recommender systems are required which provide

personalized dialogues supporting the customer in the product selection process. In this paper we present the domain-

independent, knowledge-based recommender environment CWAdvisor which assists users by guaranteeing the

consistency and appropriateness of solutions, by identifying additional selling opportunities, and by providing

explanations for solutions. Using examples from different application domains, we show how model-based

diagnosis, personalization, and intuitive knowledge acquisition techniques support the effective implementation of

customer-oriented sales dialogues. In this context, we report our experiences gained in industrial projects and present

an evaluation of successfully deployed recommender applications.

Keywords: Recommender Systems, Personalization, Knowledge Acquisition, End-User Programming, Knowledge-

based Recommenders, Testing Recommender Knowledge Bases, Model-based Diagnosis.

1 Introduction

The selection of products from a complex assortment such as financial services or digital cameras

is still a challenging task for customers interacting with online selling environments. In many

cases, those environments only offer simple query interfaces based on the assumption that

customers know technical product details. Recommender technologies [1] [29] [34] [36] [37]

improve this situation by generating product proposals which are automatically derived from a set

of given customer requirements. The three most well known approaches to the implementation of

recommender applications are the following: collaborative filtering [20] [33] relies on product

preferences of a large set of customers. Recommendations are derived from preferences of a

group of customers with similar purchasing patterns. Consequently, no deep knowledge about the

product domain is needed in this context. When using content-based filtering [30],

2

recommendations are based on similarities between product descriptions and the preferences of

the current customer. When a customer interacts with the recommender application, products are

proposed that are similar to those the customer has liked in the past. Finally, knowledge-based

recommender applications (advisors) [4] [5] [13] [24] [39] exploit deep knowledge about the

product domain in order to determine recommendations. When selling, for instance, financial

services, recommendations must adhere to legal regulations and suit the customers’ financial

restrictions as well as their needs and wishes. Compared to customers purchasing simple products

such as books or compact disks, customers purchasing financial services are much more in the

need of information and in the need of intelligent interaction mechanisms which support the

selection of appropriate solutions. Therefore, an explicit representation of product, marketing and

sales knowledge [13] is needed. Such deep knowledge allows us (a) to calculate solutions which

adhere to legal regulations, which are in the line with a company’s marketing and sales strategy,

and which suit the requirements of the customer, (b) to explain solutions to a customer, and (c) to

support customers in situations in which no solution can be found. Primarily, knowledge-based

recommender technologies can provide the formalisms that are needed in this context.

In this paper, we present the knowledge-based recommender environment CWAdvisor. The

major innovations of this environment compared to other knowledge-based approaches [4] [5]

[24] [39] are the following:

• Graphical knowledge acquisition. CWAdvisor provides a graphical development and test

environment for knowledge-based recommender applications [13] [14]. This environment

supports the design of knowledge bases (product, marketing and sales knowledge) and

process definitions (intended behavior of the recommender user interface) on a graphical level

(see Section 2.2). Such an approach allows rapid prototyping processes by automatically

translating graphical models into an executable application.

3

• Relaxations of filter constraints and repairs of inconsistent customer requirements. Model-

based diagnosis techniques [11] [32] can be used to actively support customers in situations

where no solution could be found (see Section 3.1): either by identifying minimal relaxations

of filter constraints or by the determination of repair actions for customer requirements. Both

can guarantee the identification of at least one solution.

• Personalization of sales dialogues and recommendation results. Recommender dialogues in

CWAdvisor are based on a finite state model [14] which describes possible interaction

sequences of a recommender application on a graphical level. Using such representations, the

formulation of questions, answer alternatives, and explanations can be automatically adapted

to the domain knowledge level and preferences of a customer. Furthermore, recommendations

can be ranked using concepts of multi-attribute object rating [2].

CWAdvisor has been successfully applied in domains such as financial services or electrical

equipment. All these applications are based on one of the following basic scenarios:

• Consumer/Customer support. Similar to traditional sales channels, improved sales assistance

generates added value for online customers. On the one hand, knowledge-based advisors

allow an intuitive access to products for customers. On the other hand, sales representatives

are relieved from routine advisory tasks which are taken over by recommender applications.

• Support of sales representatives. Sales representatives interact with advisors when preparing a

sales dialogue or when talking to a customer. In this context, they are supported by guided

dialogues which consist of questions and explanations focusing on the customer’s needs and

wishes. Consequently, customer-oriented sales dialogues are supported in this context.

Within the scope of these scenarios, we present two example showcases (see Section 4) which

clearly demonstrate the utility of our approach. First, a digital camera advisor has been deployed

for the largest Austrian online price comparison platform. Effective preference elicitation is a

4

challenge in this context since customers can differ significantly in their product domain

knowledge and in their expectations. Second, financial service advisors have been deployed for

an Austrian financial service provider. Financial service advisory is a knowledge-intensive task

which in many cases overwhelms customers as well as sales representatives. Since the product

assortment is quite manifold (investment, financing, pension, life insurance, etc.), many sales

representatives focus on selling only a restricted set of products which leads to sub-optimal

offers. The goal here is to identify a solution which suits the needs, wishes, and financial

restrictions of the customer and which is in the line with the sales strategy of the company.

The remainder of this paper is organized as follows. In Section 2 we present the CWAdvisor

environment. In Section 3 we give an overview of Artificial Intelligence (AI) technologies which

ease the development of and improve the interaction with knowledge-based recommender

applications. Section 4 presents an evaluation of successfully deployed recommender

applications. Thus, we provide an overview of the CWAdvisor environment which is the result of

long-term research in the areas of knowledge-based configuration [2] [12] [17], model-based

diagnosis [11] [14] and knowledge-based recommender systems [13] [14] [22]. We focus our

discussions (a) on basic principles of testing knowledge-based recommender applications, (b) on

mechanisms supporting users in situations where no solution can be found, and (c) on experiences

gained from commercial recommender application development projects.

2 CWAdvisor Environment

CWAdvisor technologies can be used for a variety of tasks: the formalization of product,

marketing and sales knowledge by non-programmers; the test of recommender knowledge bases;

the mapping of customer requirements to a set of product properties; the repair of inconsistent

customer requirements, and the explanation of solutions in order to increase a customer’s trust.

5

The major reasons for the application of CWAdvisor technologies in the financial services

domain are the following:

• Solutions must be objective, correct, and explainable. This requirement makes approaches

such as collaborative or content-based filtering not the best choice since, explanations in the

form of repair proposals, for example, rely on the existence of a knowledge base.

• Typically, financial service providers want to develop and test recommender applications

autonomously. Therefore, knowledge representations are needed which allow both an

effective knowledge base design and the validation of calculated results by domain experts.

• Financial services recommendation is a complex task with a large number of constraints and

possible solutions [13]. In such scenarios, a knowledge-based approach can significantly

reduce the development efforts for recommender applications [16].

Similar reasons motivate the application of CWAdvisor technologies in other domains such as

digital cameras where the following additional aspects have to be taken into account:

• In the consumer electronics market we observe a fast technological progress. Knowledge

bases have to be updated on a regular basis when new features have to be considered in the

recommendation process, or when increased performance characteristics become standard.

Such change requests related to the knowledge base happen very frequently and must be

fulfilled fast and without extensive programming efforts.

• Personal preferences that cannot be captured in advance play an important role in the domain

of digital cameras. In this context, recommender applications should allow customers to

experiment with decision alternatives (undoing choices, sorting proposals by different criteria,

changing the priority of preferences, etc.).

6

2.1 CWAdvisor Architecture

The overall CWAdvisor architecture is shown in Figure 1. This architecture consists of two major

parts: the development and test environment, which supports the graphical design of

recommender applications, and the runtime environment, which is responsible for controlling the

execution of recommendation processes. CWAdvisor knowledge bases and process definitions

are developed and maintained using the development and test environment (CWAdvisor

Designer, Process Designer, and Test Designer) and are stored in an underlying relational

database (Repository). Product structures and instances are defined within CWAdvisor Designer

or imported from external systems using an XML interface. CWAdvisor Server supports the

execution of advisory processes. Based on given user inputs, the server determines and executes

the personalized dialogue flow, initiates result computations and retrieves explanations, such as

explanations as to why a certain product suits the needs and wishes of the customer.

[Insert Figure 1 here]

2.2 CWAdvisor Designer and Process Designer

CWAdvisor Designer is a graphical development environment for knowledge-based

recommender applications (see Figure 2). It is based on Java Web Start technology which

provides an environment for deploying Java-based applications on a Web server and executing

those applications on a corresponding client. Using CWAdvisor Designer, the relevant set of

product and customer properties and constraints is identified and transformed into the formal

representation of a recommender knowledge base [12] [13].

[Insert Figure 2 here]

A recommender knowledge base consists of the following parts:

7

1. Customer properties describe possible customer requirements. Customer requirements are

collected by posing questions to the customer. The question under the assumption that your

investment of 10,000 EURO decreases in value, at which value would you sell your

investment? is related to the customer property willingness to take risks (‘low’, ‘medium’,

‘high’). Examples from the digital camera domain are preferred motif (‘landscapes’,

‘portraits’, ‘sport scenes’) or maximum price.

2. Product properties describe possible product instances. Life insurances, for instance, can be

characterized by the possible length of life insurance policies, premiums of life insurance

policies, or product type. Furthermore, digital cameras can be described by their resolution,

brand name, or weight of the camera.

3. Compatibility constraints are restricting possible combinations of customer requirements:

return rates above 9% require the willingness to take risks or high resolution cameras cannot

be provided in a low-price segment. Furthermore, filter constraints define the relationship

between customer properties and product properties: customers without experiences in the

financial services domain should not receive recommendations which include high risk

products. It is important to note that compatibility as well as filter constraints can also be

represented on a tabular level.

Apart from the description of the offered products, customer properties and constraints, a process

definition is needed to complete the model of a recommender application (see Figure 3).

[Insert Figure 3 here]

A recommender process definition represents possible navigation paths which define the way the

system adapts the formulation of questions, explanations, error messages, etc. to the knowledge

level and interests of the customer. Such process definitions are based on the formalism of a

predicate augmented finite state recognizer (PFSR) [14]. In such a PFSR, constraints describe

8

transitions between different states (see Figure 3). Based on layout template definitions [22],

knowledge bases and process definitions can be automatically translated into an executable

recommender application. Figure 4 depicts example screenshots of a financial service

recommender application. First, the advisor poses questions to the customer (a). Answers

provided by the customer (requirements) serve as input for the calculation of a solution (b). If no

solution can be found, alternative repair actions are presented to the customer (c). Selecting such

a repair action guarantees the identification of a solution (see Section 3.1).

[Insert Figure 4 here]

2.3 CWAdvisor Test Designer

The increasing complexity of recommender knowledge bases makes quality assurance a critical

task [26] [31]. Mechanisms have to be provided which allow us to guarantee the correctness of

calculated recommendations. In order to avoid situations in which inconsistencies are detected by

a customer who interacts with the recommender application, the recommender development

environment must indicate potential sources of inconsistencies as early as possible. Therefore,

automated testing functionalities have been integrated into the CWAdvisor development

environment. In Test Designer, process definitions (see Section 2.2) are the basis for

automatically generating test cases for recommender knowledge bases. A test case is the

combination of an input sequence and a set of corresponding results calculated by the current

version of the recommender knowledge base. An input sequence represents a set of customer

requirements (see Section 2.2) for which a corresponding result has to be calculated by the

knowledge base. Typically, domain experts are responsible for checking the correctness of results

calculated for a given set of input sequences. This validation step is necessary in order to make

the test cases applicable for regression testing. Figure 5 depicts a simple example of the

9

generation of input sequences. The basis for the generation of input sequences is a set of paths

which have been selected from a given recommender process definition (in our case only one

path is selected). For each selected path, we can derive a query which generates a set of input

sequences. For the purpose of automated input sequence generation, customer properties are

represented as tables, their possible instantiations are represented as tuples of the table (see Figure

5). If we execute the query of Figure 5 by only using path transition conditions as selection

criteria, we receive 12 different input sequences as query result (see Figure 5). The following

concepts allow us to further reduce the number of input sequences:

• Equivalence partitioning. Variable domains can be split up into equivalence classes out of

which we can select a representative subset of input values. When selecting equivalence

classes, the interchangeability of the values within a class needs to be taken into account

because different variable values inside a class should not change a corresponding result.1 In

the example of Figure 5 we assume that the domain expert selects knowledge level (‘average’,

‘expert’) as single equivalence class and knowledge level = ‘average’ as representative input

value. This input value is included as additional restriction criterion in the input sequence

generation query of Figure 5.

[Insert Figure 5 here]

• Constraint Certification. By the inclusion of incompatibility constraints which have been

considered as correct by domain experts (certified constraints), additional input sequences can

be eliminated. Those sequences which satisfy the negated incompatibility constraint are

filtered out. If the constraint a high willingness to take risks is incompatible with short term

investment periods is certified, we can filter out all sequences with related assignments

1 Currently, the selection of equivalence classes is the task of domain experts. In future versions of the test

environment we will include mechanisms supporting the automated derivation of equivalence classes.

10

(willingness to take risks=’high’ ∧ duration of investment=’shortterm’). If we apply the

concepts of constraint certification and equivalence partitioning to our example, the number

of relevant input sequences can be reduced to 4 (see Figure 5).

• Variables with no effects. In some situations, the advisor asks questions which have no in-

fluence on the recommendation. When recommending pension products, a customer may be

asked to make a decision concerning returns on investment (annuity payment, singular pay-

ment). Since all pension products allow a decision to be made at the end of the investment

period, the given answer does not have any effect on the recommendation. Therefore, all

values of the corresponding customer property can be assigned to a single equivalence class.

The example depicted in Figure 5 is a simple one. A typical recommender application such as an

investment advisor comprises about 20 possible paths. Each path is defined by about 7 variables

and 5 possible values per variable. Without including any additional restrictions, the input

sequence generation queries for such a setting would generate 1.5mio sequences. This does not

allow an effective result validation by domain experts. However, additional restrictions (transition

conditions of paths, equivalence partitioning, constraint certification, variables with no effects)

can significantly reduce the number of test cases: our experiences from the financial services

domain indicate a potential reduction of 1.5mio test cases to the number of about 500-1000.

3 AI Technologies in CWAdvisor

Using a knowledge-based approach, the relationship between customer requirements and

products can be explicitly modeled [12] [13]. Such a representation is the precondition for

applying the technologies discussed in the following subsections.

11

3.1 Representing Recommendation Knowledge and Calculating Solutions

The first step when building an advisor is the construction of a recommender knowledge base

which consists of two variable sets (VC, VPROD) and three sets of constraints (CR, CF, CPROD).

• Customer Properties (VC) describe possible customer requirements, such as willingness to

take risks (‘low’, ‘medium’, ‘high’) or knowledge level (‘beginner’, ‘average, ‘expert’).

• Compatibility Constraints (CR) are restricting the possible combinations of customer

requirements: not(willingness to take risks = ‘low’ ∧ expected return rate = ‘>9%’).

• Product Properties (VPROD) describe possible product instances: product type (‘savings’,

‘bond’, ‘equity fund’) or risk level (‘low’, ‘medium’, ‘high’).

• Filter Constraints (CF) establish the relationship between customer properties and product

properties: knowledge level = ‘beginner’ → risk level <> ‘high’.

• Allowed instantiations of product properties (offered set of products) are represented by con-

straints (CPROD) which define restrictions on the possible instantiations of variables in VPROD.

In order to calculate recommendations (solutions), we have implemented a relational query-based

approach2, in which a set of customer requirements makes a conjunctive query. The query is

constructed from the consequent part of those filter constraints of CF whose condition is

consistent with the given customer requirements (active filter constraints). The consequent part of

our example filter constraint knowledge level = ‘beginner’ → risk level <> ‘high’ is translated

into the expression risk level <> ‘high’ as part of the corresponding conjunctive query (in the case

of knowledge level = ‘beginner’ being a customer requirement). Accordingly, VPROD is repre-

sented by a set of table attribute definitions (the product table) and CPROD is represented by tuples

whose values represent instantiations of the attributes defined in VPROD. Furthermore, customer

2 A recommendation task can be represented as a Constraint Satisfaction Problem (CSP) as well [13] [39].

12

properties (VC) are represented as input variables where the compatibility (CR) of the corres-

ponding instantiations is ensured by a consistency checker. The execution of the conjunctive

query on a product table results in a set of recommendations which are presented to the customer.

Relaxing Filter Constraints. Filter-based approaches have well-known limitations. In the case of

inconsistent customer requirements, all products in the catalog are filtered out and no

recommendation can be given. This problem is addressed in CWAdvisor using the concept of

query relaxations in the sense of [18] [27] [28]. If none of the available products fulfills the

conjunctive query that is constructed from active filter constraints, we trigger the calculation of a

Maximum Succeeding Subquery (XSS): individual atoms are deleted from the conjunctive query

in order to identify products that fulfill as many of the active filter constraints as possible.

CWAdvisor implements a conflict-directed approach to the calculation of minimal relaxations of

a given query. The computation of conflicts is based on the QuickXPlain algorithm [25] which

solves a conflict detection problem using a divide and conquer strategy. Preferences related to the

elimination of filter constraints (priorities of filter constraints) can be defined a priori by domain

experts. They know that most digital camera users would rather settle on a camera of a brand that

is not their first choice than accept a camera with a different resolution. The second approach for

determining preferences is to directly ask the customer during an advisory session. XSS

calculation is based on the resolution of minimal conflicts [25] detected in a conjunctive query

(implemented as a version of the standard algorithm for calculating hitting sets [32]). All of our

advisory applications follow the strategy of immediately computing an (optimal) relaxation when

no product fulfills all customer requirements. An optimal relaxation can be determined by

selecting those filter constraints with the minimum relaxation costs. Relaxation costs are

determined by a corresponding cost function [23]. A simple cost function is, for example, the sum

of filter priorities in a relaxation candidate, where higher values represent higher priorities.

13

Repairing Customer Requirements. There are domains in which filter relaxation is not possible

or desirable. In many cases, filter constraints in the financial services domain cannot be relaxed

for reasons such as legal regulations or quality aspects. Simply reporting retrieval failures without

making further suggestions of how to recover from such a situation is not acceptable, however.

Therefore, we need to find out which requirements the customer is willing to change. We aim to

find possible compromises (repair actions) that can be presented to the customer. Similar to the

computation of filter relaxations, the identification of a minimal set of repair actions is based on

the calculation of hitting sets [11] [32]. The goal is to identify a minimal set of variable settings in

a set of requirements that should be changed in order to find a solution. A simple example of the

calculation of repair actions is shown in Figure 6.

[Insert Figure 6 here]

In this example, S ∪ CR has no solution because {r1, r2} ∪ CR and {r1, r3} ∪ CR are inconsistent

and therefore both {r1, r2} and {r1, r3} induce a conflict [25] with the given compatibility

constraints. Based on the hitting set algorithm [11] [32], we have to resolve each of the given

conflicts: in our example we simply have to change the setting of the expected return rate.

Consequently, one possible repair for S is to change the requirement r1: expected return

rate=’>9%’ to r1: expected return rate=’7-9%’. This makes S' ∪ CR consistent (S' = {r1: expected

return rate=’7-9%’, r2: willingness to take risks=’low’, r3: preferred investment

period=’shortterm’}). Another repair alternative would be S' = {r1: expected return rate=’>9%’,

r2: willingness to take risks=’medium’, r3: preferred investment period=’mediumterm’}.

3.2 Personalization

Dialogue Control. Customers have different preferences of how to specify their requirements:

from the direct specification of product parameters (such as a certain savings account running for

14

three years) to a general specification of their personal goals (for example, financing their

children’s education). Depending on the answers provided, the dialogue with the customer can be

adapted as follows (the knowledge level of a customer is derived either from answers to a set of

test questions or from a self-assessment at the beginning of an advisory session):

• Alternative formulation of questions. Questions posed to expert users can be differentiated

from those posed to customers with less knowledge about the product domain. Questions are

defined during design time; they are not dynamically composed during program execution.

The selection of questions strictly depends on the process definition (see Section 2.2).

• Rule-based formulation of default answers. If the goal of the customer is to put money away

for a rainy day the default answer to a question related to the maximum accepted decrease in

value of the investment is no value decrease accepted.

• Alternative explanations for constraint violations. If the customer has no detailed knowledge

about the product domain (novice), a very general explanation about changes in the pension

law is given. More detailed information can be included for experts.

Utility/Ranking of Solutions. A solution for a recommendation task is a set of products or

services. The order of products within a solution should strictly reflect the degree the products

correspond to the wishes of a customer. CWAdvisor supports multi-attribute object rating [2],

where each product is evaluated according to a predefined set of interest dimensions. Profit,

availability and risk are examples for such dimensions in the financial services domain. If a

customer is strongly interested in products with high return rates, compared to availability and

risk, profit is a very important dimension. Consequently, the order of products depends on the

importance the individual dimensions have for the customer. The set of products that are part of a

solution is ordered using the formula g(x) = Σ(i=1..n) eisi(x), where n denotes the number of

dimensions, g(x) represents the utility of a product x, ei represents the interest of the customer in

15

dimension i, and si(x) is the contribution of product x to dimension i. Values for ei can be

automatically derived from customer requirements on the basis of scoring rules. The score 9 for

the dimension profit in Table 1 can be derived from the customer requirement expected return

rate = ‘>9%’ where the corresponding scoring rule for the dimension profit can be defined as

return rate = ‘>9%’→9).3 Another alternative is to weigh the interest dimensions conforming to

an assessment provided by the customer. Values for si(x) have to be defined at design time and

manually specified for each product. Financial services can be ranked as follows (see Table 1)4:

for customer1, g(savings) = 9*1 + 4*8 + 7*8 = 97, whereas for customer2, g(savings) = 6*1 + 5*8

+ 1*8 = 54. The utility of savings is higher for customer1 than for customer2.

[Insert Table 1 here]

Presentation of Solutions. For each solution, a set of immediate explanations [17] is calculated.

These explanations are derived from active filter constraints. An explanation related to our

example filter condition knowledge level = ‘beginner’ → risk level <> ‘high’ could be this

product assures adequate return rates with a lower level of related risks. Consequently,

explanations related to filter conditions are predefined at design time.

Product Comparison. Product comparisons provide basic mechanisms to compare different

products that are part of a recommendation result. Product comparison is based on the definition

of rules stating under which conditions an argumentation for/against a certain product should be

displayed. If the price of product A is significantly higher than the price of product B, the product

comparison component should display a corresponding hint. In this context, the level of

significance has to be defined by the domain expert. Product comparisons are currently used in

our digital camera recommender application of geizhals.at (see Section 4).

3 Note that the score related to an interest dimension (e.g., profit) is not necessarily based on a single requirement.
4 In this example, scores are taken from a scale between 0 and 10.

16

Handling of Profiles. The user interface relies on a user model that describes capabilities and

preferences of individual customers. Some of these properties are directly provided by the

customer (e.g., name or personal goals). Other properties are derived using scoring mechanisms

which relate user answers to abstract dimensions [2] such as preparedness to take risks or

knowledge about financial services. This information is stored in the profile and can be exploited

in future advisory sessions.

4 Experiences from Industrial Projects

4.1 Digital Camera Advisor

In the domain of consumer electronics, customers are typically confronted with a large variety of

products. In our case (digital cameras of the price comparison platform geizhals.at), customers

can choose among more than 600 different models. The platform geizhals.at informs

approximately one million unique clients per month about the best price of products from

domains such as computer hardware, consumer electronics or household machines (about 85,000

products offered by more than 700 online shops). Customers can navigate in a product catalog

which is organized in hierarchical categories. For each product, an ordered list of prices and

additional user ratings of the corresponding online shops are presented to the customer. The

business model of geizhals.at is built on paid advertisements and pay-per-click commissions of

the enlisted online shops. The digital camera advisor project was not only initiated to provide a

better service for experts, but also to support new user groups with less product domain

knowledge. Therefore, the dialogue includes interaction paths that allow the specification of

technical features such as optical zoom as well as answers to problem-oriented questions such as

what is your preferred motif? The digicam advisor was introduced in 2003. Since then, more than

200,000 users have successfully completed their advisory sessions.

17

Our evaluation of the digital camera advisor consisted of n=1,253 online users. An announced

lottery ensured that participants identified themselves with their genuine names and addresses and

no duplicate questionnaires were counted. The sample consisted of arbitrary online users of the

digital camera section of geizhals.at, who did not necessarily buy a digital camera. The goal of

the questionnaire was to evaluate to what extend the advisor helped users to find what they were

looking for and which of the provided advisory features were most useful. Therefore, the key

hypothesis of the evaluation was that advisor applications help users to better orientate

themselves when being confronted with a large product assortment. We asked users whether they

had noticed and used the advisor, and whether they had found the product they were looking for.

The answers verified our hypothesis: a significantly higher share of users had successfully

completed their product search among those who employed the advisor (χ2(1) = 9.39; p < 0.01)

which demonstrates an interdependence between the observed variables (see Table 2).

Furthermore, we wanted to know which features of a recommender application users especially

liked. Interviewees were asked to rate their subjective benefit from the different features of the

application. Product comparisons on the result page and the easy and quick way to access the

right products were rated highest (see Table 3). None of the results changed significantly when

allocating the sample by gender, age or technical expertise. A study on consumer behavior in the

interaction with knowledge-based recommender applications confirmed above results (for details

see [15]). This study was conducted within the scope of the COHAVE5 project. Examples of

results of this study are the following:

• Advisors supporting product comparisons clearly outperform advisors without this

functionality (trust in recommended products was one of the relevant features herein). The

5 Consumer Buying Behavior & Decision Modeling for Recommender Systems (Austrian Research Fund 810996).

18

reason for this lies in the lower mental workload of users when differences between

alternatives are clearly presented.

• Knowledge-based advisors clearly outperform simple product lists regarding dimensions such

as overall satisfaction with the advisory support or trust in recommended products.

• Finally, explanations of recommendation results significantly contribute to an increased

perceived conformance between expected and recommended products.

[Insert Table 2+3 here]

4.2 Financial Services Advisor

CWAdvisor has been deployed for 1,400 sales representatives (insurance brokers and employees

of the company) of the Wüstenrot building and loan association [13].6 In this context, financial

service recommender applications have been integrated into an existing Customer Relationship

Management (CRM) environment that supports sales representatives by providing functionalities

such as calculations, presentation of technical product details, quotation generation or scheduling

of meetings. The recommender applications support sales representatives in the preparation,

conduction, and summary of sales dialogues. In this context, they help explain recommendation

results. The motivation for the development of knowledge-based financial services recommender

applications was twofold. First, time effort related to the preparation, conduction and completion

of sales dialogues should be reduced. Second, an automated explanation of advisory results

should be supported in order to take into account regulations of the European Union [10] relating

to an improved documentation of advisory sessions in the financial services domain. On average,

a sales representative sells about 60-70 products per year, experts sell up to 500. One and a half

years after the initial deployment of the advisor applications we interviewed sales representatives

6 See Figure 4 for an example screenshot of a deployed investment recommender application.

19

(n=52) with the goal to evaluate the acceptance of the provided advisory applications and to

detect potentials for further improvements. The most important topics/questions of the survey are

contained in Table 4.

Expertise level. About 23.1% of the interviewees were beginners (focus is on selling 1-3 different

types of products), 28.9% were advanced sales representatives (selling more than 3 different

types of products) and about 48.0% were experts (selling all product types).

Satisfaction with advisory support. In order to evaluate the sales representatives' satisfaction with

the provided advisor functionalities, we compared evaluations related to the Wüstenrot CRM

environment without advisory support with evaluations related to the environment with a

corresponding advisory support (two separate questions). A one-sample z-test [7] resulted in a

significant increase of the average level of satisfaction with the provided advisory functionality (z

= 10.83, p < 0.01). Furthermore, there is a positive correlation between the estimated time savings

related to the advisory support and the satisfaction with the provided advisory functionalities

(Pearson’s r = 0.49) [7].

Importance of advisory support. The interviewees strongly agreed on the importance of the

provided advisory functionality (67.3% high importance, 21.1% average importance). Major

arguments for the application of knowledge-based recommender technologies were (a) automated

consistency checks which improve the correctness of offers (this was significantly more

important for beginners and representatives selling less than 50 products per year), and (b) the

automated generation of advisory protocols which allow for time savings in the introductory

dialogue as well as in the quotation phase.

Major application area. Most of the sales representatives (81.8%) reported that they used

CWAdvisor functionalities throughout the sales dialogue or for the generation of documentations

for completed advisory dialogues (protocols). Each such protocol includes a summary of

20

customer preferences, a listing of recommended products, an argumentation as to why the

recommendations suit the needs and wishes of the customer (explanations), and a listing of

further issues to be discussed with the customer. Furthermore, 53.8% of the sales representatives

reported that they also used the advisors at home in order to prepare for a sales dialogue.

Time savings. On average, the time savings caused by the application of financial service advisors

were specified with 11.73 minutes per advisory session. Most savings are explained by the

generation of advisory protocols at the end of a session and available summaries of previous

dialogues at the beginning of a new session. Assuming that an average sales representative

conducts about 170 advisory sessions per year, time savings can amount up to 33 hours per year

for each person. For a sales expert, time savings can amount up to 100 hours per year.

Importance for new representatives. Most of the sales representatives (97%) definitely agreed on

the potential of knowledge-based recommender technologies to provide e-learning support. Due

to this feedback, a corresponding project has already been initiated which exploits recommender

technologies in order to support learning processes for new sales representatives. The software

will be applied in the context of sales courses.

[Insert Table 4 here]

4.3 The Role of Knowledge Acquisition in Recommender Projects

Due to a lack of programming skills [21], there is a significant discrepancy between technical

experts who are able to create software artifacts and domain experts who are not. Consequently,

domain experts without technical knowledge are in the position of being solely responsible for

providing domain knowledge and knowledge engineers transform this knowledge into the formal

representation of an underlying knowledge base. This process is quite error-prone and is also

known as the knowledge acquisition bottleneck. In order to reduce this bottleneck, our goal was to

empower autonomous development and maintenance processes for end users. Such an integration

21

of end users has great potential to significantly improve the effectiveness of recommender

application development. Within the scope of the development of the CWAdvisor environment

we took into account the following principles which are crucial for supporting effective

knowledge acquisition and maintenance processes [6] [8]:

• Rapid prototyping follows the principle of concreteness. The user immediately sees the

effects of changing explanation texts, product properties, images, transition conditions, etc. in

the recommender knowledge base or process definition. In CWAdvisor, such changes are

performed on a graphical level (see Section 2.2); the corresponding recommender

applications can be automatically generated from graphical representations. Such an

automated application generation is extremely important to make the development of advisors

feasible for domain experts (end users) without a special IT education [3].

• A flexible and simple graphical design of the intended behavior of the user interface protects

the user from programming details. CWAdvisor provides simple modeling concepts that

allow the explicit specification of the intended behavior of the recommender user interface

(principle of explicitness). This approach also follows the principle of separating application

logic design from implementation details.

• Effective test support follows the principle of immediate feedback. Potential sources of

inconsistencies in the knowledge base caused by the creation of a new knowledge base

version are indicated promptly. Especially automated test case generation and regression

testing have been identified as prerequisites for effective end-user debugging [35]. Following

this approach, errors in the recommender knowledge base can be detected immediately and

are not forwarded to the productive environment where, in the worst case, those errors are

detected by customers. Thus, domain experts can establish a higher level of trust in

recommendations, which is extremely important for our projects.

22

Our experiences show that all these principles are important for the development and

maintenance of recommender knowledge bases. We compared time efforts needed for the

development of advisors before and after CWAdvisor was available. Due to the graphical

development support, the overall development efforts were reduced significantly. In the case of

the Wüstenrot project, three domain experts are responsible for the development of knowledge

bases (investment & financing, pension & life insurance, property insurances). The first

knowledge base versions were developed in cooperation with knowledge engineers. Now, most

of the maintenance activities, including updates of products, (in)compatibility tables, filter

conditions, and process definitions, are conducted by domain experts. The time efforts related to

knowledge base maintenance done by knowledge engineers are now negligible. Changes to

current knowledge base versions are conducted in a test environment. After the completion of

changes in the knowledge base, a set of pre-generated test cases (see Section 2.3) is used for

regression testing. Thereafter, the new version of the knowledge base is synchronized with the

productive environment (synchronization with the client applications of sales representatives). In

the case of geizhals.at, knowledge engineers who are knowledgeable about digital cameras are

responsible for maintaining the knowledge base. In this context, knowledge bases must be

designed as generic as possible in order to be stable regarding the frequent changes in the product

assortment (technical information such as memory size or resolution is constantly changing).

5 Related Work

Recommender Technologies. An overview of different applications of recommender

technologies can be found in [29] [36], overviews of different technological approaches to the

implementation of recommender applications can be found in [1] [5] [38]. Basically, there are

three widely known technological approaches to the implementation of recommender

23

applications. Collaborative filtering systems [20] automate the recommendation process on the

basis of user opinions about items and generate new recommendations based on inter-user

comparisons. Because recommendations follow from a comparison between the target user and

other users, a user with few ratings becomes difficult to categorize which is also known as the

new user problem. Similarly, a new item that does not have many ratings also cannot be easily

recommended – this is known as the new item problem. Content-based filtering [30] is a special

type of information filtering that uses features of items the user has liked in the past to infer new

recommendations. In the case of collaborative filtering as well as in the case of content-based

filtering, user profiles are long-term models. Both approaches [20] [30] do not exploit deep

knowledge about the product domain and therefore are excellent techniques supporting

recommendation processes for simple products such as books or movies. A major strength of

these approaches is that no additional knowledge acquisition and maintenance efforts are needed.

Knowledge-based recommender technologies receive increasing attention in research [4] [5] [13]

[22] [24] [39]. In contrast to collaborative and content-based filtering approaches, knowledge-

based approaches are based on an explicit representation of product, marketing and sales

knowledge. Using such representations, new item and new user problems are avoided since

recommendations are directly derived from user preferences identified within the scope of the

requirements elicitation phase. The main reason for choosing a knowledge-based

recommendation approach stems from the requirements of domains such as financial services

where deep product knowledge is needed in order to identify and explain solutions. Jiang et al.

[24] present an approach to multimedia-enhanced product recommendation where basic

recommendation technologies are additionally equipped with a component supporting the

visualization of results. Thompson et al. [39] focus on the integration of conversational natural

language interfaces with personalized recommender systems with the major goal of reducing

24

system-user interactions. Long-term user preferences are obtained in the course of normal

recommendation dialogues and are used to adapt future dialogs with the same user [39]. A study

conducted in the restaurant recommendation domain found that users needed fewer interactions to

find a good restaurant when using a personalized conversational recommender than when using a

non-personalized one [39]. Both natural language interaction [39] and result visualization [24] are

not provided by CWAdvisor but are within the scope of future work. Compared to the approaches

of [4] [5] [24] [39], CWAdvisor additionally provides a graphical recommender application

development and test environment and supports the calculation of repair actions for customer

requirements in situations in which no solution can be found. Both functionalities are extremely

important when deploying knowledge-based advisors in industrial environments.

Knowledge Base Validation. Within the context of knowledge-based systems development,

validation technologies have, in many cases, not been adopted by practitioners; ad hoc techniques

are still dominating [31]. The literature on test case generation in knowledge-based systems

development is still largely directed at rule-based types of systems [31]. It is not directly

applicable to knowledge-based recommendation. Tiihonen et al. [40] present an approach to the

testing of configurator applications, in which the configuration model is considered as consisting

of a set of local requirement groups representing a set of potential inputs provided by the user. A

test case is represented by a group of requirement items, and test case generation is based on

randomly selecting requirement groups. In contrast to our work, [40] directly deal with the

generation of test cases from partonomies, whereas our approach defines test cases on the basis of

results of conjunctive queries that are related to paths in recommender process definitions.

Furthermore, no mechanisms for reducing the number of test cases are presented in [40]. This is,

however, crucial for the validation of knowledge bases by domain experts.

25

6 Conclusions

Effective knowledge acquisition processes and intuitive interaction mechanisms that support the

user in the product and service selection process are major preconditions for successful

recommender applications. Both aspects are supported by the recommender technologies

discussed in this paper. First, the CWAdvisor knowledge acquisition environment provides

innovative development, maintenance and testing techniques for recommender knowledge bases.

Second, model-based diagnosis techniques actively support customers in situations in which no

solution could be found. Our goal for the future is to further increase the acceptance of

knowledge-based recommender technologies. In order to reach this goal, we will integrate

psychological theories from the area of consumer buying behavior into the design of our

recommender environment. Following this strategy, CWAdvisor technologies continuously

improve recommender application development processes and contribute to an improved

accessibility of complex product and service assortments.

7 Acknowledgements

Parts of the work presented in this paper have been done within the scope of the project

Koba4MS (Knowledge-based Advisors for Marketing and Sales – FFG-808479).

8 References

1. Adomavicius, G. and Tuzhilin, A. Toward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17, 6 (2005), 734–749.

2. Ardissono, L.; Felfernig, A.; Friedrich, G.; Jannach, D.; Petrone, G.; Schäfer, R.; and Zanker,
M. A Framework for the development of personalized, distributed web-based configuration
systems. AI Magazine, 24, 3 (2003), 93–108.

3. Bhargava, H.; Sridhar, S.; and Herrick, C. Beyond spreadsheets: tools for building decision
support systems. IEEE Computer, 32, 3 (1999), 31–39.

26

4. Burke, R.; Hammond, K.; and Young, B. The FindMe approach to assisted browsing. IEEE
Expert, 12, 4 (1997), 32–40.

5. Burke, R. Knowledge-based recommender systems. Encyclopedia of Library & Information
Systems, 69, 32 (2000).

6. Burnett, M. HCI research regarding end-user requirement specification: a tutorial.
Knowledge-Based Systems, 16 (2003), 341–349.

7. Dalgaard, P. Introductory Statistics with R. Springer, 2004.

8. DiGiano, C.; Kahn, K.; Cypher, A.; and Smith, D. Integrating learning supports into the
design of visual programming systems. Visual Languages & Computing, 12 (2001), 501–524.

9. Edvardson, J. A Survey on Automatic Test Data Generation. 2nd Conference on Computer
Science and Engineering CCSSe’99, Linköping, Sweden, 1999, pp. 21–28.

10. EU (2002). Richtlinie 2002/92/EG des Europäischen Parlaments und des Rates vom 9.
Dezember 2002 über Versicherungsvermittlung. Amtsblatt der EU, 2002.

11. Felfernig, A.; Friedrich, G.; Jannach, D.; and Stumptner, M. Consistency-based diagnosis of
configuration knowledge bases. AI Journal, 2, 152 (2004), 213–234.

12. Felfernig, A.; Friedrich, G.; Jannach, D.; Stumptner, M.; and Zanker, M. Configuration
knowledge representations for Semantic Web applications. AI Engineering Design, Analysis
and Manufacturing Journal, 17 (2003), 31–50.

13. Felfernig, A. and Kiener, A. Knowledge-based Interactive Selling of Financial Services using
FSAdvisor. 17th Innovative Applications of Artificial Intelligence Conference (IAAI'05),
Pittsburgh, Pennsylvania: AAAI Press, 2005, pp. 1475–1482.

14. Felfernig, A. and Shchekotykhin, K. Debugging User Interface Descriptions of Knowledge-
based Recommender Applications. ACM Conference on Intelligent User Interfaces, Sydney,
Australia: ACM Press, 2006, pp. 234–241.

15. Felfernig, A. and Gula, B. An Empirical Study on Consumer Behavior in the Interaction with
Knowledge-based Recommender Applications (to appear). IEEE Conference on e-Commerce
Technology (CEC’06), San Francisco: IEEE, 2006.

16. Fleischanderl, G.; Friedrich, G.; Haselböck, A.; Schreiner, H.; and Stumptner, M.
Configuring large systems using generative constraint satisfaction. IEEE Intelligent Systems,
13, 4 (1998), 59–68.

17. Friedrich, G. Elimination of Spurious Explanations. 16th European Conference on Artificial
Intelligence (ECAI 2004), Valencia, Spain: IOS Press, 2004, pp. 813–817.

18. Godfrey, P. Minimization in cooperative response to failing database queries. International
Journal of Cooperative Information Systems 6, 2 (1997), 95–149.

19. Goodwill, J. Mastering JSP Custom Tags and Tag Libraries. Wiley Publishers, 2002.

20. Herlocker, J.; Konstan, J.; Terveen, L.; and Riedl, J. Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems, 22, 1 (2004), 5–53.

27

21. Ioannidou, A. Programmorphosis: a Knowledge-Based Approach to End-User Programming.
INTERACT’03, Zürich, Switzerland: IOS Press, 2003, pp. 152–159.

22. Jannach, D. and Kreutler, G. A Knowledge-Based Framework for the Rapid Development of
Conversational Recommenders. Zhou, X.; Su, S.; Papazoglou, M.; Orlowska, M.; and Jeffery,
K. (eds.): WISE’04, Brisbane, Australia. LNCS 3306, 2004, pp. 390–402.

23. Jannach, D. and Liegl, J. Conflict-directed Relaxation of Constraints in Content-based
Recommender Systems (to appear). IEA/AIE 2006, Annency, France, 2006.

24. Jiang, B.; Wang, W.; and Benbasat, I. Multimedia-based interactive advising technology for
online consumer decision support. Communications of the ACM, 48, 9 (2005), 93–98.

25. Junker, U. QuickXPlain: Preferred Explanations and Relaxations for Over-Constrained
Problems. AAAI’04, San Jose: AAAI Press, 2004, pp. 167–172.

26. Kirani, S.; Zualkernan, I.; and Tsai, T. Evaluation of expert system testing methods.
Communiations of the ACM, 37, 11 (1994), 71–81.

27. McSherry, D. Maximally Successful Relaxations of Unsuccessful Queries. 15th Conference on
Artificial Intelligence and Cognitive Science, Galway, Ireland, (2004), pp. 127–136.

28. Mirzadeh, N.; Ricci, F.; and Bansal, M. Supporting User Query Relaxation in a
Recommender System, Zaragoza, Spain: LNCS 3182, 2004, pp. 31–40.

29. Montaner, M; Lopez, B.; and De la Rose, J. A taxonomy of recommender agents on the
internet. Artificial Intelligence Review 19 (2003), 285–330.

30. Pazzani, M. and Billsus, D. Learning and revising user profiles: the identification of
interesting web sites. Machine Learning 27 (1997), 313–331.

31. Preece, A.; Talbot, S.; and Vignollet, L. Evaluation of Verification Tools for Knowledge-
Based Systems. International Journal of Human-Computer Studies, 47 (1997), 629–658.

32. Reiter, R. A theory of diagnosis from first principles. AI Journal, 23, 1 (1987), 57–95.

33. Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and Riedl, J. GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. ACM Conference on Computer
Supported Cooperative Work, Chapel Hill, NC: ACM, 1994, pp. 175–186.

34. Ricci, F.; Venturini, A.; Cavada, D.; Mirzadeh, N.; Blaas, D.; and Nones, M. Product
Recommendation with Interactive Query Management and Twofold Similarity. 5th Intl.
Conference on Case-Based Reasoning. Trondheim, Norway, 2003, pp. 479–493.

35. Ruthruff, J. and Burnett, M. Six Challenges in Supporting End-User Debugging. Workshop
on End-User Software Engineering, Saint Louis, Missouri, 2005.

36. Schafer, J.; Konstan, J.; and Riedl, J. Electronic Commerce recommender applications.
Journal of Data Mining and Knowledge Discovery, 5, 1/2 (2000), 115–152.

37. Smyth, B.; Balfe, E.; Boydell, O.; Bradley, K.; Briggs, P.; Coyle, M.; and Freyne, J. A Live
User Evaluation of Collaborative Web Search, 19th International Joint Conference on
Artificial Intelligence. Edinburgh, Scotland: IJCAI, 2005, pp.1419–1424.

28

38. Terveen, L. and Hill, W. Beyond recommender systems: Helping people help each other. HCI
in the New Millennium, Addison Wesley, 2001.

39. Thompson, C.; Göker, M.; and Langley, P. A Personalized System for Conversational
Recommendations. Journal of Artificial Intelligence Research 21 (2004), 393–428.

40. Tiihonen, J.; Soininen, T.; Niemelä, I.; and Sulonen R. Empirical Testing of a Weight
Constraint Rule Based Configurator. ECAI Configuration Workshop, 2002, pp. 17–22.

Figures

Figure 1: CWAdvisor architecture.

29

Recommender
applications (financing,

investment, …)

Recommender
applications (financing,

investment, …)

Main windowMain window

Designing test casesDesigning test cases

Constraint (incompatibility)Constraint (incompatibility)

incompatibilityincompatibility

explanation for user

internal descriptioninternal description

Product properties
(name, investment period, …)

Product properties
(name, investment period, …)

Customer properties
(willingness to take risks, …)

Customer properties
(willingness to take risks, …)

Designing recommender
processes

Designing recommender
processes

Figure 2: Definition of customer properties and constraints in CWAdvisor Designer.

Final state
(result presentation)

Initial
state

Transition
conditions

Figure 3: Recommender process definition.

30

Proposed repair actions
(e.g., reduce expected

return rate)

Proposed repair actions
(e.g., reduce expected

return rate)

Provisional resultProvisional result

Customer requirements
(e.g., willingness to take risks)

Customer requirements
(e.g., willingness to take risks)

Proposed
(final) solution

(e.g., insured letter)

Proposed
(final) solution

(e.g., insured letter)

Activation of
explanations
Activation of
explanations

(a)

(b)

(c)

Figure 4: Example user interface of a financial services recommender application.

31

Path selected from
process definition

Final
state

Initial
state

Input sequence generation query

Customer properties
(as tables)

Transition conditions
of selected path

Constraint
certification

Equivalence
partitioning

Customer properties (as tables)Customer properties (as tables)

Generated input sequences (using a+b+c)

Generated input sequences (using a)

4
se

qu
en

ce
s

12
 s

eq
ue

nc
es

(a)

(b)

(c)

Transition
conditions

Figure 5: Generation of input sequences (for test cases).

expected return rate (‘1-3%‘, ‘4-6%‘, ‘7-9%‘, ‘>9%‘)
willingness to take risks (‘low‘, ‘medium‘, ‘high‘)
preferred investment period (‘shortterm‘,

‘mediumterm‘, ‘longterm‘)

c1: ¬(expected return rate = ‘>9% ‘ ∧
willingness to take risks = ‘low‘)

c2: ¬(expected return rate = ‘>9% ‘ ∧
preferred investment period = ‘shortterm‘)

VC (customer properties)

CR (compatibility constraints)

r1: expected return rate = ‘>9% ‘
r2: willingness to take risks = ‘low‘
r3: preferred investment period = ‘shortterm‘

Recommender knowledge base (relevant parts)

Customer requirements (S) Customer requirements (S‘)
r1

‘: expected return rate = ‘7-9% ‘
r2: willingness to take risks = ‘low‘
r3: preferred investment period = ‘shortterm‘

inconsistent!
conflicts:{r1,r2},{r1,r3}

consistent!
calculation of
repair actions:

(change r1)

Figure 6: Simple example of the repair of customer requirements.

32

product profit availability risk dimension customer1 customer2
savings 1 8 8 profit 9 6
bonds 4 2 2 availability 4 5
equity funds 9 2 0 risk 7 1

Table 1: Utility of solutions (object ratings and customer preferences).

Found the right products Did use the digicam advisor

 Yes No
Yes 276 (76%) 604 (67%)
No 85 (24%) 288 (33%)

Total 361 892

Table 2: Feedback of users accessing the digital camera section of geizhals.at.

Application features (very) high usefulness
Product comparisons 74.4%
Easy and quick access to the right products 72.7%
Explanation of product properties 57.6%

Table 3: CWAdvisor functionalities rated high or very high regarding usefulness.

Topic Description
Expertise level Expertise level of the sales representative

Satisfaction with advisory support Overall satisfaction with the advisory support of the
CRM environment (with/without CWAdvisor)

Importance of advisor support Importance of CWAdvisor for sales dialogues
Major application area Major application area for CWAdvisor

Time savings Time savings in sales dialogues directly related to the
application of CWAdvisor

Importance for new representatives Importance of CWAdvisor for educating (new) sales
representatives

Table 4: Major topics/questions of the questionnaire.

